Rainfall as the Dominant Trigger for Pulse Emissions During Hotspot Periods of N2O Emissions in Red Soil Sloping Farmland
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Meteorological Data and Soil Sampling
2.3. N2O Sampling
2.4. Statistical Analysis
3. Results
3.1. Meteorological and Soil Physical Environmental Variables
3.2. Daily and Cumulative N2O Emissions
3.3. Driving Factors of N2O Emissions During the Emission Hotspot Periods
4. Discussion
4.1. Characteristics of N2O Emissions and Emission Hotspot Periods
4.2. Weather and Soil Drivers of N2O Emission Hotspot Periods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westra, S.; Fowler, H.J.; Evans, J.P.; Alexander, L.V.; Berg, P.; Johnson, F.; Kendon, E.J.; Lenderink, G.; Roberts, N.M. Future changes to the intensity and frequency of short-duration extreme rainfall. Rev. Geophys. 2014, 52, 522–555. [Google Scholar] [CrossRef]
- Zhao, Y.S.; Zhu, D.Y.; Wu, Z.G.; Cao, Z. Extreme rainfall erosivity: Research advances and future perspectives. Sci. Total Environ. 2024, 917, 170425. [Google Scholar] [PubMed]
- Gao, H.; Zhang, S.B.; Zhang, Z.R.; Chen, X.; Xin, Y.; Huang, W.; Liu, S.D.; Xia, X.H. Warming-induced increase in N2O fluxes decreases with the legacy of agriculture and latitude in abandoned croplands. Agric. Ecosyst. Environ. 2025, 382, 109498. [Google Scholar]
- IPCC. Weather and Climate Extreme Events in a Changing Climate, Climate Change 2021: The Physical Science Basis—Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 1513–1766. [Google Scholar]
- IPCC. The Earth’s Energy Budget, Climate Feedbacks and Climate Sensitivity, Climate Change 2021—The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 923–1054. [Google Scholar]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous Oxide (N2O): The Dominant Ozone-Depleting Substance Emitted in the 21st Century. Science 2009, 326, 123–125. [Google Scholar]
- Tian, H.; Xu, R.; Canadell, J.G.; Thompson, R.L.; Yao, Y. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 2020, 586, 248–256. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 259–263. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51. [Google Scholar] [CrossRef]
- Butterbachbahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeisterboltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Hoben, J.P.; Gehl, R.J.; Millar, N.; Grace, P.R.; Robertson, G.P. Nonlinear nitrous oxide (N2O) response to nitrogen fertilizer in on-farm corn crops of the US Midwest. Glob. Change Biol. 2011, 17, 1140–1152. [Google Scholar] [CrossRef]
- Friedl, J.; Scheer, C.; Rowlings, D.W.; Mcintosh, H.V.; Grace, P.R. Denitrification losses from an intensively managed sub-tropical pasture—Impact of soil moisture on the partitioning of N2 and N2O emissions. Soil Biol. Biochem. 2016, 92, 58–66. [Google Scholar] [CrossRef]
- Vogeler, I.; Thomas, S.; van der Weerden, T. Effect of irrigation management on pasture yield and nitrogen losses. Agric. Water Manag. 2019, 216, 60–69. [Google Scholar] [CrossRef]
- Nguyen, L.T.T.; Kravchenko, A.N. Effects of cover crops on soil CO2 and N2O emissions across topographically diverse agricultural landscapes in corn-soybean-wheat organic transition. Eur. J. Agron. 2021, 122, 126189. [Google Scholar] [CrossRef]
- Stuchiner, E.R.; Fischer, J.C. Using isotope pool dilution to understand how organic carbon additions affect N2O consumption in diverse soils. Glob. Change Biol. 2022, 28, 4163–4179. [Google Scholar] [CrossRef]
- Yin, W.; Gou, Z.W.; Fan, Z.L.; Hu, F.L.; Fan, H.; Zhao, C.; Yu, A.Z.; Chai, Q. No-tillage with straw mulching and re-using old film boost crop yields and mitigate soil N2O emissions in wheat-maize intercropping at arid irrigated regions. Field Crops Res. 2022, 289, 108706. [Google Scholar] [CrossRef]
- Zhang, Q.; Niu, W.Q.; Du, Y.D.; Sun, J.; Cui, B.J.; Zhang, E.X.; Wang, Y.B.; Siddique, K.H.M. Effect of aerated drip irrigation and nitrogen doses on N2O emissions, microbial activity, and yield of tomato and muskmelon under greenhouse conditions. Agric. Water Manag. 2023, 283, 108321. [Google Scholar] [CrossRef]
- Stevens, R.J.; Laughlin, R.J.; Malone, J.P. Soil pH affects the processes reducing nitrate to nitrous oxide and di-nitrogen. Soil Biol. Biochem. 1998, 30, 1119–1126. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Dai, S.Y.; Sun, Y.Q.; Chen, J.; Cai, Z.; Zhang, J.; Christoph, M. Temperature effects on N2O production pathways in temperate forest soils. Sci. Total Environ. 2019, 691, 1127–1136. [Google Scholar] [CrossRef]
- Williams, P.H.; Jarvis, S.C.; Dixon, E. Emission of nitric oxide and nitrous oxide from soil under field and laboratory conditions. Soil Biol. Biochem. 1998, 30, 1893. [Google Scholar] [CrossRef]
- Senbayram, M.; Chen, R.; Mühling, K.H.; Dittert, K. Contribution of nitrification and denitrification to nitrous oxide emissions from soils after application of biogas waste and other fertilizers. Rapid Commun. Mass. Spectrom. 2010, 23, 2489–2498. [Google Scholar] [CrossRef] [PubMed]
- Han, B.B.; Yao, Y.Z.; Liu, B.; Wang, Y.N.; Su, X.X.; Ma, L.H.; Liu, D.Y.; Niu, S.L.; Chen, X.P.; Li, Z.L. Relative importance between nitrification and denitrification to N2O from a global perspective. Glob. Change Biol. 2024, 30, e17082. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Iqbal, J.; Hu, R.G.; Ruan, L.L.; Wu, J.S.; Zhao, J.S.; Wang, P.G. Differences in nitrous oxide fluxes from red soil under different land uses in mid-subtropical China. Agric. Ecosyst. Environ. 2011, 146, 168–178. [Google Scholar] [CrossRef]
- Su, X.X.; Wen, T.; Wang, Y.M.; Xu, J.S.; Cui, L.; Zhang, J.B.; Xue, X.M.; Ding, K.; Tang, Y.J.; Zhu, Y.G. Stimulation of N2O emission via bacterial denitrification driven by acidification in estuarine sediments. Glob. Change Biol. 2021, 27, 5564–5579. [Google Scholar] [CrossRef]
- Chen, J.J.; Jing, H.W.; Cao, W.C.; Tao, L.; Wang, J.G. Effects of nitrite addition on transcription activity of nitrification and denitrification functional genes and N2O emission in soil. Acta Pedol. Sin. 2023, 60, 726–737. [Google Scholar]
- Wang, G.; Zhang, Q.; Yu, H.Q.; Shen, Z.X.; Sun, P. Double increase in precipitation extremes across China in a 1.5 °C/2.0 °C warmer climate. Sci. Total Environ. 2020, 746, 140807. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, D.H.; Jia, Z.K.; Zhang, P. Ridge and furrow rainfall harvesting can significantly reduce N2O emissions from spring maize fields in semiarid regions of China. Soil Tillage Res. 2021, 209, 104971. [Google Scholar] [CrossRef]
- Yang, R.X.; Zheng, J.S.; Li, G.F.; Huang, Y.H.; Wang, J.H.; Qiu, F. Effects of rainfall characteristics and sugarcane growth stage on soil and nitrogen losses. Environ. Sci. Pollut. Res. Int. 2023, 30, 87575–87587. [Google Scholar] [CrossRef]
- Chen, R.M.; Dou, H.Q.; Lin, Y.Z.; Liu, Q.L.; Jian, W.B. In-situ infiltration-runoff characterization of slopes under the influences of different rainfall patterns and slope gradients. Catena 2024, 247, 108519. [Google Scholar] [CrossRef]
- Chen, S.Q.; Zhang, G.H.; Wang, C.S. Temporal variation in soil erodibility indicators of sloping croplands with different straw-incorporation rates. Soil Tillage Res. 2025, 246, 106340. [Google Scholar] [CrossRef]
- Jing, X.K.; Li, L.; Chen, S.H.; Shi, Y.L.; Xu, M.X.; Zhang, Q.W. Straw returning on sloping farmland reduces the soil and water loss via surface flow but increases the nitrogen loss via interflow. Agric. Ecosyst. Environ. 2022, 339, 108154. [Google Scholar] [CrossRef]
- Yang, J.H.; Liu, H.Q.; Zhang, J.P.; Rahma, A.E.; Lei, T.W. Lab simulation of soil erosion on cultivated soil slopes with wheat straw incorporation. Catena 2022, 210, 105865. [Google Scholar] [CrossRef]
- Wang, W.; Han, L.; Zhang, X.; Wei, K. Plastic film mulching affects N2O emission and ammonia oxidizers in drip irrigated potato soil in northwest China. Sci. Total Environ. 2020, 754, 142113. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.T.; Wen, S.Y.; Zhang, M.X.; Pan, Y.Y.; Chen, X.P.; Pu, X.; Zhang, M.M.; Dang, P.F.; Meng, M.; Wang, W.; et al. Effect on greenhouse gas emissions (CH4 and N2O) of straw mulching or its incorporation in farmland ecosystems in China. Sustain. Prod. Consum. 2024, 46, 223–232. [Google Scholar] [CrossRef]
- Wang, X.Y.; Li, Y.J.; Ciampitti, I.A.; He, P.; Xu, X.P.; Qiu, S.J.; Zhao, S.C. Response of soil denitrification potential and community composition of denitrifying bacterial to different rates of straw return in north-central China. Appl. Soil Ecol. 2022, 170, 104312. [Google Scholar] [CrossRef]
- Yao, Z.S.; Yan, G.X.; Zheng, X.H.; Wang, R.; Liu, C.Y.; Butterbach-Bahl, K. Straw return reduces yield-scaled N2O plus NO emissions from annual winter wheat-based cropping systems in the North China Plain. Sci. Total Environ. 2017, 590–591, 174–185. [Google Scholar] [CrossRef]
- Zhao, Y.K.; Li, P.F.; Liu, J.J.; Xiao, H.Y.; Zhang, A.F.; Chen, S.; Chen, J.Y.; Liu, H.L.; Zhu, X.Y.; Hussain, Q.; et al. Microbial effects of prolonged nitrogen fertilization and straw mulching on soil N2O emissions using metagenomic sequencing. Agric. Ecosyst. Environ. 2025, 382, 109476. [Google Scholar] [CrossRef]
- Cuello, J.P.; Hwang, H.Y.; Gutierrez, J.; Kim, S.Y.; Kim, P.J. Impact of plastic film mulching on increasing greenhouse gas emissions in temperate upland soil during maize cultivation. Appl. Soil Ecol. 2015, 91, 48–57. [Google Scholar] [CrossRef]
- Rowlings, D.W.; Grace, P.R.; Scheer, C.; Liu, S. Rainfall variability drives interannual variation in N2O emissions from a humid, subtropical pasture. Sci. Total Environ. 2015, 512–513, 8–18. [Google Scholar] [CrossRef]
- Abalos, D.; De Deyn, G.B.; Kuyper, T.W.; Van Groenigen, J.W. Plant species identity surpasses species richness as a key driver of N2O emissions from grassland. Glob. Change Biol. 2013, 20, 265–275. [Google Scholar] [CrossRef] [PubMed]
- FAO. FAOSTAT Agriculture Data; FAO: Rome, Italy, 2022. [Google Scholar]
- Cheng, Y.; Elrys, A.S.; Wang, J.; Xu, C.; Ni, K.; Zhang, J.B.; Wang, S.Q.; Cai, Z.C.; Pacholski, A. Application of enhanced-efficiency nitrogen fertilizers reduces mineral nitrogen usage and emissions of both N2O and NH3 while sustaining yields in a wheat-rice rotation system. Agric. Ecosyst. Environ. 2022, 324, 107720. [Google Scholar] [CrossRef]
- Zou, J.W.; Huang, Y.; Jiang, J.Y.; Zheng, X.H.; Sass, R.L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application. Glob. Biogeochem. Cycles 2005, 19, 1–9. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. In R Foundation for Statistical Computing; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Moritz, S.; Bartz-Beielstein, T. imputeTS: Time Series Missing Value Imputation in R. R J. 2017, 9, 207. [Google Scholar] [CrossRef]
- Zheng, J.L.; Luo, X.L.; Wang, R.M.; Yu, H.Q.; Xia, G.M.; Elbeltagi, A.; Chi, D.C. Zeolite application coupled with film mulched drip irrigation enhances crop yield with less N2O emissions in peanut field. Soil Tillage Res. 2024, 241, 106130. [Google Scholar] [CrossRef]
- Takeda, N.; Friedl, J.; Rowlings, D.; De Rosa, D.; Scheer, C.; Grace, P. Exponential response of nitrous oxide (N2O) emissions to increasing nitrogen fertiliser rates in a tropical sugarcane cropping system. Agric. Ecosyst. Environ. 2021, 313, 107376. [Google Scholar] [CrossRef]
- Reeves, S.; Wang, W. Optimum sampling time and frequency for measuring N2O emissions from a rain-fed cereal cropping system. Sci. Total Environ. 2015, 530–531, 219–226. [Google Scholar]
- Gao, S.J.; Peng, Q.; Liu, X.R.; Xu, C.Y. The Effect of Biochar and Straw Return on N2O Emissions and Crop Yield: A Three-Year Field Experiment. Agriculture 2023, 13, 2091. [Google Scholar] [CrossRef]
- Zhang, W.; Lu, J.S.; Bai, J.; Khan, A.; Liu, S.T.; Zhao, L.; Wang, W.; Zhu, S.G.; Li, X.G.; Tian, X.H.; et al. Introduction of soybean into maize field reduces N2O emission intensity via optimizing nitrogen source utilization. J. Clean. Prod. 2024, 442, 141052. [Google Scholar] [CrossRef]
- Kim, D.G.; Vargas, R.; Bond-Lamberty, B.; Turetsky, M.R. Effects of soil rewetting and thawing on soil gas fluxes: A review of current literature and suggestions for future research. Biogeosciences 2012, 9, 2459–2483. [Google Scholar] [CrossRef]
- Jia, M.Q.; Lapen, D.R.; Su, D.Y.; Mayer, K.U. Multi-Domain Reactive Transport Modeling of GHG Emissions From Macroporous Agricultural Soils with a Focus on N2O Hotspots and Hot Moments. Water Resour. Res. 2025, 61, e2025WR040588. [Google Scholar] [CrossRef]
- Lawrence, N.C.; Tenesaca, C.G.; Vanloocke, A.; Hall, S.J. Nitrous oxide emissions from agricultural soils challenge climate sustainability in the US Corn Belt. Proc. Natl. Acad. Sci. USA 2021, 118, e2112108118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.R.; Li, M.X.; Yan, Z.Q.; Li, M.; Kang, E.; Yan, L.; Zhang, X.D.; Li, Y.; Wang, J.Z.; Yang, A. Changes in precipitation regime lead to acceleration of the N cycle and dramatic N2O emission. Sci. Total Environ. 2022, 808, 152140. [Google Scholar] [CrossRef]
- Li, X.G.; Wang, R.; Du, Y.L.; Han, H.; Guo, S.L.; Song, X.T.; Ju, X.T. Significant increases in nitrous oxide emissions under simulated extreme rainfall events and straw amendments from agricultural soil. Soil Tillage Res. 2025, 246, 106361. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Hu, Z.H.; Shang, D.Y.; Xue, Y.; Towfiqul, A.R.M.; Chen, S.T. Effects of warming and elevated O3 concentrations on N2O emission and soil nitrification and denitrification rates in a wheat-soybean rotation cropland. Environ. Pollut. 2020, 257, 113556. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.Z.; Zhou, H.C.; Sheng, R.; Qin, H.L.; Wei, W.X. Differences in the nitrous oxide emission and the nitrifier and denitrifier communities among varying aggregate sizes of an arable soil in China. Geoderma 2021, 389, 114970. [Google Scholar] [CrossRef]
- Zaman, M.; Nguyen, M.L.; Blennerhassett, J.D.; Quin, B.F. Reducing NH3, N2O and NO3−-N losses from a pasture soil with urease or nitrification inhibitors and elemental S-amended nitrogenous fertilizers. Biol. Fert. Soils 2008, 44, 693–705. [Google Scholar]
- Park, S.; Choi, A.; Kim, T.; Lee, B. Zeolite application mitigates NH3 and N2O emissions from pig slurry-applied field and improves nitrogen use efficiency in Italian ryegrass-maize crop rotation system for forage production. J. Environ. Manag. 2024, 357, 120775. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Q.; Zhao, S.Y.; He, S.Y.; Yang, B.; Wang, N.; Hou, P.F.; Xue, L.H.; Yang, L.Z. Heavy rainfall stimulates more N2O emissions from wheat fields during basal and overwintering fertilization phases. Agric. Ecosyst. Environ. 2024, 376, 109227. [Google Scholar] [CrossRef]
- Cui, P.Y.; Chen, Z.X.; Fan, F.L.; Yin, C.; Song, A.; Li, T.Q.; Zhang, H.C.; Liang, Y.C. Soil texture is an easily overlooked factor affecting the temperature sensitivity of N2O emissions. Sci. Total Environ. 2023, 862, 160648. [Google Scholar] [CrossRef]
- Schindlbacher, A.; Zechmeister-Boltenstern, S.; Butterbach-Bahl, K. Effects of soil moisture and temperature on NO, NO2, and N2O emissions from European forest soils. J. Geophys. Res. Atmos. 2004, 109, D17. [Google Scholar] [CrossRef]
- Wang, H.; Yan, Z.F.; Ju, X.T.; Song, X.T.; Zhang, J.B.; Li, S.L.; Zhu-Barker, X. Quantifying nitrous oxide production rates from nitrification and denitrification under various moisture conditions in agricultural soils: Laboratory study and literature synthesis. Front. Microbiol. 2023, 13, 1110151. [Google Scholar] [CrossRef]
- Zheng, X.; Liu, Q.; Ji, X.F.; Cao, M.M.; Zhang, Y.F.; Jiang, J. How do natural soil NH4+, NO3− and N2O interact in response to nitrogen input in different climatic zones? A global meta-analysis. Eur. J. Soil Sci. 2021, 72, 2231–2245. [Google Scholar] [CrossRef]
- Madeline, G.; Nicholas, M.; Baggs, E.M.; Daniell, T.J. Soil nitrate reducing processes—Drivers, mechanisms for spatial variation, and significance for nitrous oxide production. Front. Microbiol. 2012, 3, 407. [Google Scholar]








| OM (g kg−1) | pH | TN (g kg−1) | TP (g kg−1) | TK (g kg−1) | AN (mg kg−1) | AP (mg kg−1) |
|---|---|---|---|---|---|---|
| 14.01 | 5.57 | 0.77 | 0.18 | 10.76 | 62.43 | 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhao, L.; Zheng, H.; Zuo, J.; Nie, X.; Mao, R. Rainfall as the Dominant Trigger for Pulse Emissions During Hotspot Periods of N2O Emissions in Red Soil Sloping Farmland. Agronomy 2026, 16, 330. https://doi.org/10.3390/agronomy16030330
Zhao L, Zheng H, Zuo J, Nie X, Mao R. Rainfall as the Dominant Trigger for Pulse Emissions During Hotspot Periods of N2O Emissions in Red Soil Sloping Farmland. Agronomy. 2026; 16(3):330. https://doi.org/10.3390/agronomy16030330
Chicago/Turabian StyleZhao, Liwen, Haijin Zheng, Jichao Zuo, Xiaofei Nie, and Rong Mao. 2026. "Rainfall as the Dominant Trigger for Pulse Emissions During Hotspot Periods of N2O Emissions in Red Soil Sloping Farmland" Agronomy 16, no. 3: 330. https://doi.org/10.3390/agronomy16030330
APA StyleZhao, L., Zheng, H., Zuo, J., Nie, X., & Mao, R. (2026). Rainfall as the Dominant Trigger for Pulse Emissions During Hotspot Periods of N2O Emissions in Red Soil Sloping Farmland. Agronomy, 16(3), 330. https://doi.org/10.3390/agronomy16030330

