Emergy and Environmental Assessment of Various Greenhouse Cultivation Systems
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Study Methods
2.2.1. Emergy Analysis
2.2.2. Life Cycle Assessment
2.2.3. EMA-LCA Analysis
2.2.4. Scenario Analysis
3. Results
3.1. Emergy Analysis of Tomato Production in Three Types of Facilities
3.2. LCA of Tomato Production in Three Types of Facilities
3.3. EMA-LCA Analysis of Tomato Production in Three Types of Facilities
3.4. Scenario Analysis Based on EMA-LCA
4. Discussion
4.1. Emergy-Based Assessment of Energy Efficiency Characteristics and Environmental Sustainability in Protected Tomato Production Systems
4.2. Environmental Footprint Assessment of Protected Tomato Production Systems
4.3. Sustainability Optimization of Protected Agriculture Based on Emergy Analysis of Ecosystem Services
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, P.; Tian, Z.; Lu, Y.; Lu, M.; Zhang, H.; Wu, H.; Hu, J. A Decision-Making Model for Light Environment Control of Tomato Seedlings Aiming at the Knee Point of Light-Response Curves. Comput. Electron. Agric. 2022, 198, 107103. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Liu, Y.; Lv, X.; Zheng, W. Comparison of a New Knapsack Mist Sprayer and Three Traditional Sprayers for Pesticide Application in Plastic Tunnel Greenhouse. Phytoparasitica 2022, 50, 177–190. [Google Scholar] [CrossRef]
- Yang, Y.; Gao, P.; Sun, Z.; Wang, H.; Lu, M.; Liu, Y.; Hu, J. Multistep Ahead Prediction of Temperature and Humidity in Solar Greenhouse Based on FAM-LSTM Model. Comput. Electron. Agric. 2023, 213, 108261. [Google Scholar] [CrossRef]
- Liu, X.; Wu, X.; Xia, T.; Fan, Z.; Shi, W.; Li, Y.; Li, T. New Insights of Designing Thermal Insulation and Heat Storage of Chinese Solar Greenhouse in High Latitudes and Cold Regions. Energy 2022, 242, 122953. [Google Scholar] [CrossRef]
- Ravishankar, E.; Booth, R.E.; Hollingsworth, J.A.; Ade, H.; Sederoff, H.; DeCarolis, J.F.; O’Connor, B.T. Organic Solar Powered Greenhouse Performance Optimization and Global Economic Opportunity. Energy Environ. Sci. 2022, 15, 1659–1671. [Google Scholar] [CrossRef]
- Mingzhi, Z.; Yingjie, L.; Zheng, H.; Chun, C.; Daorina, B.; Rasakhodzhaev, B.S.; Jobir, A. Research on the Influence of Solar Radiation Fuzzy Adaptive System on the Wet and Hot Environment in Greenhouse. Case Stud. Therm. Eng. 2024, 58, 104440. [Google Scholar] [CrossRef]
- Odum, H.T. Self-Organization, Transformity, and Information. Science 1988, 242, 1132–1139. [Google Scholar] [CrossRef]
- Zhao, H.; Zhai, X.; Guo, L.; Yang, Y.; Li, J.; Ren, C.; Wang, K.; Liu, X.; Zhan, R.; Wang, K. Comparing Protected Cucumber and Field Cucumber Production Systems in China Based on Emergy Analysis. J. Clean. Prod. 2019, 236, 117648. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.; Chen, J.; Hu, N.; Zhu, L. Evaluation on Environmental Consequences and Sustainability of Three Rice-Based Rotation Systems in Quanjiao, China by an Integrated Analysis of Life Cycle, Emergy and Economic Assessment. J. Clean. Prod. 2021, 310, 310. [Google Scholar] [CrossRef]
- Li, Y.; Cai, G.; Tan, K.; Zeng, R.; Chen, X.; Wang, X. Emergy−based Efficiency and Sustainability Assessments of Diversified Multi−cropping Systems in South China. J. Clean. Prod. 2023, 414, 137660. [Google Scholar] [CrossRef]
- Amaral, L.P.; Martins, N.; Gouveia, J.B. A Review of Emergy Theory, Its Application and Latest Developments. Renew. Sustain. Energy Rev. 2016, 54, 882–888. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Amiri, Z.; Campbell, D.E. Evaluation of the Sustainability of Four Greenhouse Vegetable Production Ecosystems Based on an Analysis of Emergy and Social Characteristics. Ecol. Model. 2020, 424, 109021. [Google Scholar] [CrossRef]
- Shah, S.M.; Liu, G.; Yang, Q.; Wang, X.; Casazza, M.; Agostinho, F.; Lombardi, G.V.; Giannetti, B.F. Emergy-Based Valuation of Agriculture Ecosystem Services and Dis-Services. J. Clean. Prod. 2019, 239, 118019. [Google Scholar] [CrossRef]
- Xu, C.; Chen, W.; Hong, J. Life-Cycle Environmental and Economic Assessment of Sewage Sludge Treatment in China. J. Clean. Prod. 2014, 67, 79–87. [Google Scholar] [CrossRef]
- Khoshnevisan, B.; Rafiee, S.; Omid, M.; Mousazadeh, H.; Clark, S. Environmental Impact Assessment of Tomato and Cucumber Cultivation in Greenhouses Using Life Cycle Assessment and Adaptive Neuro-Fuzzy Inference System. J. Clean. Prod. 2014, 73, 183–192. [Google Scholar] [CrossRef]
- Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Foteinis, S.; Borthwick, A.G.L. Life Cycle Assessment of the Environmental Performance of Conventional and Organic Methods of Open Field Pepper Cultivation System. Int. J. Life Cycle Assess. 2017, 22, 896–908. [Google Scholar] [CrossRef]
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental Impacts of Urban Hydroponics in Europe: A Case Study in Lyon. Procedia CIRP 2018, 69, 540–545. [Google Scholar] [CrossRef]
- Wildeman, R. Vertical Farming: A Future Perspective or a Mere Conceptual Idea? A Comprehensive Life Cycle Analysis on the Environmental Impact of a Vertical Farm Compared to Rural Agriculture in the US. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2020. Available online: https://docslib.org/doc/5148487/vertical-farming-a-future-perspective-or-a (accessed on 25 January 2026).
- Cai, S.; Wang, W.; Zou, Y.; Li, S.; Tu, Z. Performance and Sustainability Assessment of PEMFC/Solar-Driven CCP Systems with Different Energy Storage Devices. Energy 2023, 278, 127863. [Google Scholar] [CrossRef]
- Lin, H.-F.; Mansir, I.B.; Ameen, H.F.M.; Cherif, A.; Abdulwahab, A.; Dahari, M.; Lin, H.; Aly, A.A.; Nasr, S. Economic, Environmental and Multi Objective Optimization of a Clean Tri-Generation System Based Co-Firing of Natural Gas and Biomass: An Emergy Evaluation. Process Saf. Environ. Prot. 2023, 173, 289–303. [Google Scholar] [CrossRef]
- Wang, X.; Dadouma, A.; Chen, Y.; Sui, P.; Gao, W.; Jia, L. Sustainability Evaluation of the Large-Scale Pig Farming System in North China: An Emergy Analysis Based on Life Cycle Assessment. J. Clean. Prod. 2015, 102, 144–164. [Google Scholar] [CrossRef]
- Song, Q.; Wang, Z.; Li, J. Sustainability Evaluation of E-Waste Treatment Based on Emergy Analysis and the LCA Method: A Case Study of a Trial Project in Macau. Ecol. Indic. 2013, 30, 138–147. [Google Scholar] [CrossRef]
- Zhao, J.; Xie, H.; Liu, D.; Huang, R.; Peng, H. Climate-Smart Management for Increasing Crop Yield and Reducing Greenhouse Gas Emission in Beijing-Tianjin-Hebei Region, China. Agric. For. Meteorol. 2023, 339, 109569. [Google Scholar] [CrossRef]
- Wang, J.; Chen, B. Emergy analysis of a biogas-linked agricultural system in rural Chinada case study in Gongcheng Yao Autonomous County. Appl. Energ. 2014, 118, 173–182. [Google Scholar] [CrossRef]
- Campbell, D.E. Emergy Baseline for the Earth: A Historical Review of the Science and a New Calculation. Ecol. Model. 2016, 339, 96–125. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.-P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life Cycle Assessment: Part 1: Framework, Goal and Scope Definition, Inventory Analysis, and Applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, G. Life Cycle Assessment of Potential Pollutant-Induced Human Capital Loss Caused by Different Agricultural Production Systems in Beijing, China. J. Clean. Prod. 2019, 240, 118141. [Google Scholar] [CrossRef]
- Curran, M.A. Overview of Goal and Scope Definition in Life Cycle Assessment; LCA Compendium-The Complete World of Life Cycle Assessment; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Shen, J.; Chen, Q.Y.; Li, Z.M.; Gao, L.H. Life cycle assessment of three greenhouse construction types. Trans. Chin. Soc. Agric. Eng. 2012, 28, 8. Available online: https://lib.cqvip.com/Qikan/Article/Detail?id=40823971 (accessed on 25 January 2026).
- Rybaczewska-Błażejowska, M.; Jezierski, D. Comparison of ReCiPe 2016, ILCD 2011, CML-IA Baseline and IMPACT 2002+ LCIA Methods: A Case Study Based on the Electricity Consumption Mix in Europe. Int. J. Life Cycle Assess. 2024, 29, 1799–1817. [Google Scholar] [CrossRef]
- Ciroth, A.; Di Noi, C.; Lohse, T.; Srocka, M. openLCA, version 1.10; Comprehensive User Manual; GreenDelta: Berlin, Germany, 2020. [Google Scholar]
- Famiglietti, J.; Madioum, H.; Motta, M. Developing a New Data-Driven LCA Tool at the Urban Scale: The Case of the Embodied Environmental Profile of the Building Sector. Sustainability 2023, 15, 11518. [Google Scholar] [CrossRef]
- Liang, J.F.; Qi, Q.Z.; Jia, X.H. Investigation of Quality in Organic Fertilizers in Beijing Suburb. Soil Fertil. Ences China 2009, 6, 79–83. [Google Scholar]
- He, X.; Qiao, Y.; Liu, Y.; Dendler, L.; Yin, C.; Martin, F. Environmental Impact Assessment of Organic and Conventional Tomato Production in Urban Greenhouses of Beijing City, China. J. Clean. Prod. 2016, 134, 251–258. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Thissen, U.; Guinée, J.B.; Jager, T.; Kalf, D.; Meent, D.V.D.; Ragas, A.M.J.; Sleeswijk, A.W.; Reijnders, L. Priority Assessment of Toxic Substances in Life Cycle Assessment. Part I: Calculation of Toxicity Potentials for 181 Substances with the Nested Multi-Media Fate, Exposure and Effects Model USES-LCA. Chemosphere 2000, 41, 541–573. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wu, W.; Liu, W.; Bao, Y. Life Cycle Assessment of the Winter Wheat-Summer Maize Production System on the North China Plain. Int. J. Sustain. Dev. World Ecol. 2007, 14, 400–407. [Google Scholar] [CrossRef]
- Li, L.I.; Yang, X. Distribution Route Optimization for Multi-Vehicle Agricultural Materials Considering Carbon Emission Cost. INMATEH-Agric. Eng. 2023, 71, 611. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; He, C.Y.; Li, X.B.; Huang, Q.X.; Yang, Y. Comprehensive impact assessment of aridification and land use change on the natural productivity potential of grasslands and farmlands in the agro-pastoral ecotone of northern China. J. Nat. Resour. 2009, 24, 123–135. Available online: https://lib.cqvip.com/Qikan/Article/Detail?id=29341921 (accessed on 25 January 2026).
- Guo, Y.; Wang, H.; Zhang, W.; Chen, B.; Song, D. Sustainability Evaluation of Protected Vegetables Production in China Based on Emergy Analysis. J. Clean. Prod. 2023, 388, 135928. [Google Scholar] [CrossRef]
- Su, F.; Liu, H.; Zhu, D.; Li, L.; Wang, T. Sustainability Assessment of the Liaohe Estuary Wetland Based on Emergy Analysis. Ecol. Indic. 2020, 119, 106837. [Google Scholar] [CrossRef]
- Zhang, D.Y.; Leng, F.L.; Zhang, L.F.; Zhang, S.Q.; Liu, X.T.; Gao, W.S. Emergy analysis of crop production systems in gongzhuling city, a major grain-producing area of the northeast China plain. Trans. Chin. Soc. Agric. Eng. 2005, 21, 12–17. Available online: http://dianda.cqvip.com/Qikan/Article/Detail?id=15910997 (accessed on 25 January 2026). [CrossRef]
- Liu, G.; Hao, Y.; Dong, L.; Yang, Z.; Zhang, Y.; Ulgiati, S. An Emergy-LCA Analysis of Municipal Solid Waste Management. Resour. Conserv. Recycl. 2017, 120, 131–143. [Google Scholar] [CrossRef]
- Wang, Y.; Cai, Y.; Liu, G.; Zhang, P.; Shu, T. Evaluation of Sustainable Crop Production from an Ecological Perspective Based Emergy Analysis: A Case of China’s Provinces. J. Clean. Prod. 2021, 313, 127912. [Google Scholar] [CrossRef]
- Zhang, L.X.; Yang, Z.F.; Chen, G.Q. Emergy Analysis of Cropping-Grazing System in Inner Mongolia Autonomous Region, China. Energy Policy 2007, 35, 3843–3855. [Google Scholar] [CrossRef]
- Chen, G.; Jiang, M.; Chen, B.; Yang, Z.; Lin, C. Emergy Analysis of Chinese Agriculture. Agric. Ecosyst. Environ. 2006, 115, 161–173. [Google Scholar] [CrossRef]
- Lu, H.; Bai, Y.; Ren, H.; Campbell, D.E. Integrated Emergy, Energy and Economic Evaluation of Rice and Vegetable Production Systems in Alluvial Paddy Fields: Implications for Agricultural Policy in China. J. Environ. Manag. 2010, 91, 2727–2735. [Google Scholar] [CrossRef]
- Li, M.U.; Jun-Xiu, L.; Hui-Juan, L.; Li-Qun, C. Emergy Analyses of Wheat and Pea Production under Conservation Tillage. Agric. Res. Arid. Areas 2015, 33, 153–158. Available online: https://www.oalib.com/research/5322531 (accessed on 25 January 2026).
- Li, X.; Cui, D.; Ma, C.; Liu, R. Ecological Design Strategies of Wetland Based on Avian Habitats Restoration and Creation. Chin. Landsc. Archit 2020, 36, 133–138. Available online: http://jchla.ijournals.cn/ch/reader/view_abstract.aspx?file_no=20200522&flag=1 (accessed on 25 January 2026).
- Hollingsworth, J.A.; Ravishankar, E.; O’Connor, B.; Johnson, J.X.; DeCarolis, J.F. Environmental and Economic Impacts of Solar-Powered Integrated Greenhouses. J. Ind. Ecol. 2020, 24, 234–247. [Google Scholar] [CrossRef]
- Houshyar, E.; Wu, X.F.; Chen, G.Q. Sustainability of Wheat and Maize Production in the Warm Climate of Southwestern Iran: An Emergy Analysis. J. Clean. Prod. 2017, 172, 2246–2255. [Google Scholar] [CrossRef]
- Wu, X.; Wu, F.; Tong, X.; Jiang, B. Emergy-Based Sustainability Assessment of an Integrated Production System of Cattle, Biogas, and Greenhouse Vegetables: Insight into the Comprehensive Utilization of Wastes on a Large-Scale Farm in Northwest China. Ecol. Eng. 2013, 61, 335–344. [Google Scholar] [CrossRef]
- Wang, H. Analysis on Facility Vegetable Production Efficiency and Production Structure in Beijing-Based on Data Collected from Vegetable Farmer Householders. China Veg. 2015, 1, 45–49. Available online: https://www.sciengine.com/AES/doi/10.5846/stxb201306041318 (accessed on 25 January 2026).
- Ulgiati, S.; Brown, M.T. Monitoring Patterns of Sustainability in Natural and Man-Made Ecosystems. Ecol. Model. 1998, 108, 23–36. [Google Scholar] [CrossRef]
- Cavalett, O.; De Queiroz, J.F.; Ortega, E. Emergy Assessment of Integrated Production Systems of Grains, Pig and Fish in Small Farms in the South Brazil. Ecol. Model. 2006, 193, 205–224. [Google Scholar] [CrossRef]
- Zhang, L.; Song, B.; Chen, B. Emergy-Based Analysis of Four Farming Systems: Insight into Agricultural Diversification in Rural China. J. Clean. Prod. 2012, 28, 33–44. [Google Scholar] [CrossRef]
- Lu, H.-F.; Kang, W.-L.; Campbell, D.E.; Ren, H.; Tan, Y.-W.; Feng, R.-X.; Luo, J.-T.; Chen, F.-P. Emergy and Economic Evaluations of Four Fruit Production Systems on Reclaimed Wetlands Surrounding the Pearl River Estuary, China. Ecol. Eng. 2009, 35, 1743–1757. [Google Scholar] [CrossRef]
- Asgharipour, M.R.; Shahgholi, H.; Campbell, D.E.; Khamari, I.; Ghadiri, A. Comparison of the Sustainability of Bean Production Systems Based on Emergy and Economic Analyses. Environ. Monit. Assess. 2018, 191, 2. [Google Scholar] [CrossRef]
- Wang, X.; Han, Y.; Chen, Y.; Sui, P.; Gao, W.; Wu, X.; Du, C. Efficiency and Sustainability Evaluation of a Pollution-Free Vegetable Production System Based on Emergy Analysis. Acta Ecol. Sin. 2015, 35, 2136–2145. [Google Scholar] [CrossRef]
- Naseer, M.; Persson, T.; Hjelkrem, A.-G.R.; Ruoff, P.; Verheul, M.J. Life Cycle Assessment of Tomato Production for Different Production Strategies in Norway. J. Clean. Prod. 2022, 372, 133659. [Google Scholar] [CrossRef]
- João, P.; João, C.; Thais, M.; Tulio de, A.; Juliana, L.; Anderson, G. Greenhouse gas emissions and energy consumption from different soil management practices in industrial tomato production in Brazil. Environ. Dev. 2026, 57, 101347. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing More Grain with Lower Environmental Costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, F.; Ma, X.; Guo, G.; Liu, B.; Cheng, T.; Liang, T.; Tao, W.; Chen, X.; Wang, X. Greenhouse Gas Emissions from Vegetables Production in China. J. Clean. Prod. 2021, 317, 128449. [Google Scholar] [CrossRef]
- Xu, X.; Lan, Y. Spatial and Temporal Patterns of Carbon Footprints of Grain Crops in China. J. Clean. Prod. 2017, 146, 218–227. [Google Scholar] [CrossRef]
- Brentrup, F.; Küsters, J.; Lammel, J.; Barraclough, P.; Kuhlmann, H. Environmental Impact Assessment of Agricultural Production Systems Using the Life Cycle Assessment (LCA) Methodology II. The Application to N Fertilizer Use in Winter Wheat Production Systems. Eur. J. Agron. 2004, 20, 265–279. [Google Scholar] [CrossRef]
- Jia, W.; Wang, L.; Chen, Q. Seasonal Differences in Net Mineralization Rate of Organic Nitrogen in Vegetable Field of North China Plain. Acta Agric. Boreali.-Sin. 2013, 28, 198–205. Available online: https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=201502219352391346 (accessed on 25 January 2026).
- Romero-Gámez, M.; Audsley, E.; Suárez-Rey, E.M. Life Cycle Assessment of Cultivating Lettuce and Escarole in Spain. J. Clean. Prod. 2014, 73, 193–203. [Google Scholar] [CrossRef]
- Hueso-Kortekaas, K.; Romero, J.C.; González-Felipe, R. Energy-Environmental Impact Assessment of Greenhouse Grown Tomato: A Case Study in Almeria (Spain). World 2021, 2, 425–441. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Bruun, S.; Beccaro, G.L.; Bounous, G. A Review of Studies Applying Environmental Impact Assessment Methods on Fruit Production Systems. J. Environ. Manag. 2011, 92, 2277–2286. [Google Scholar] [CrossRef]
- Nemecek, T.; Huguenin-Elie, O.; Dubois, D.; Gaillard, G.; Schaller, B.; Chervet, A. Life Cycle Assessment of Swiss Farming Systems: II. Extensive and Intensive Production. Agric. Syst. 2011, 104, 233–245. [Google Scholar] [CrossRef]
- Ulgiati, S.; Brown, M.T. Quantifying the Environmental Support for Dilution and Abatement of Process Emissions: The Case of Electricity Production. J. Clean. Prod. 2002, 10, 335–348. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.H.; Tao, Y.Y.; Lu, C.Y.; Dong, L.L.; Shi, L.L.; Jin, M.J.; Zhou, X.W.; Shen, M.X. Regulation of modern “grass-sheep-field” agro-pastoral circular system based on life cycle assessment. Trans. Chin. Soc. Agric. Eng. 2021, 37, 2093. Available online: http://tcsae.org/cn/article/doi/10.11975/j.issn.1002-6819.2021.24.030 (accessed on 25 January 2026).
- Odum, H.T. Environmental Accounting: Emergy and Environmental Decision Making. 1996. Available online: https://www.wiley.com/en-cn/Environmental+Accounting%3A+Emergy+and+Environmental+Decision+Making-p-9780471114420 (accessed on 25 January 2026).
- Odum, H.T. Handbook of Emergy Evaluation. 2000. Available online: https://www.emergysociety.com (accessed on 25 January 2026).
- Brown, M.T.; Ulgiati, S. Assessing the Global Environmental Sources Driving the Geobiosphere: A Revised Emergy Baseline. Ecol. Model. 2016, 339, 126–132. [Google Scholar] [CrossRef]
- Lan, S.; Odum, H.T.; Liu, X. Energy Flow and Emergy Analysis of the Agroecosystems of China. Ecol. Sci. 1998, 17, 32–39. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=e3ad1b1477a81fd50c08e2af5f88cedc&site=xueshu_se&svcp_stk=1_u8wwg2Zr5R9Y2C2p930-9rw76Y2-5eLvmOFoTG9LOLHvIwzAMfeqNVieHhhyMIHjM3d2_mZxCNFFRB2H4uA1PmcyJmUIGwDRJCBOqo3yYcMLwCXrMot5vZOVWSL0ED1tIUL4SvS6ZKq4K_Ldw4jWouW5MJnUHiUFZFkbSx8bUOJlQPw5Bg3iyCYah8sjjJjv (accessed on 25 January 2026).
- Xie, H.; Huang, Y.; Choi, Y.; Shi, J. Evaluating the Sustainable Intensification of Cultivated Land Use Based on Emergy Analysis. Technol. Forecast. Soc. Change 2021, 165, 120449. [Google Scholar] [CrossRef]
- Zhang, Q.; Yue, D.; Fang, M.; Yu, Q.; Huang, Y.; Su, K.; Ma, H.; Wang, Y. Study on Sustainability of Land Resources in Dengkou County Based on Emergy Analysis. J. Clean. Prod. 2018, 171, 580–591. [Google Scholar] [CrossRef]





| Element | Polytunnel | Solar Greenhouse | Glass Greenhouse |
|---|---|---|---|
| Transformity (TRA, sej/J) | 3.65 × 105 ± 5.20 × 103 c | 4.62 × 105 ± 1.36 × 103 b | 1.31 × 106 ± 7.00 × 104 a |
| Emergy yield ratio (EYR) | 1.14 ± 0.00 a | 1.04 ± 0.00 b | 1.01 ± 0.00 c |
| Environmental loading ratio (ELR) | 20.32 ± 0.19 c | 45.9 ± 0.24 b | 171.00 ± 6.00 a |
| Emergy sustainability index (ESI) | 0.06 ± 0.00 a | 0.02 ± 0.00 b | 0.01 ± 0.00 c |
| Emergy self-sufficiency ratio (ESR) | 0.12 ± 0.00 a | 0.04 ± 0.00 b | 0.01 ± 0.00 c |
| Emergy investment ratio (EIR) | 7.33 ± 0.13 c | 23.51 ± 0.11 b | 175.50 ± 9.50 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, L.; Yu, H.; Ikram, S.; Miao, T.; Li, Q.; Jiang, W. Emergy and Environmental Assessment of Various Greenhouse Cultivation Systems. Agronomy 2026, 16, 325. https://doi.org/10.3390/agronomy16030325
Zhang L, Yu H, Ikram S, Miao T, Li Q, Jiang W. Emergy and Environmental Assessment of Various Greenhouse Cultivation Systems. Agronomy. 2026; 16(3):325. https://doi.org/10.3390/agronomy16030325
Chicago/Turabian StyleZhang, Lifang, Hongjun Yu, Sufian Ikram, Tiantian Miao, Qiang Li, and Weijie Jiang. 2026. "Emergy and Environmental Assessment of Various Greenhouse Cultivation Systems" Agronomy 16, no. 3: 325. https://doi.org/10.3390/agronomy16030325
APA StyleZhang, L., Yu, H., Ikram, S., Miao, T., Li, Q., & Jiang, W. (2026). Emergy and Environmental Assessment of Various Greenhouse Cultivation Systems. Agronomy, 16(3), 325. https://doi.org/10.3390/agronomy16030325

