Spring- and Summer Heat Waves Caused Opposite Effects on Soil Respiration in a Eurasian Meadow Steppe
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. HWs and Mowing Treatment
2.4. Rs, Ts and SWC Measurement
2.5. Biomass Measurement (Above and Underground)
2.6. Statistical Analysis
3. Results
3.1. Changes in HWs on Rs and Its Components
3.2. Rs Composition Changes Under Different HWs Treatment Conditions
3.3. Correlation of Rs, Rh, Ra with Ts and SWC Under Different HWs Treatments
3.4. Effects of Different Treatments of Biomass on Ra
4. Discussion
4.1. Response of Rs, Rh and Ra to HWs
4.2. Response of Rs, Rh and Ra to Mowing
4.3. Influence of HWs on the Ratio of Rh and Ra
4.4. ANPP and BNPP Response to Ra
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ANPP | Above-ground net primary production |
| BNPP | Below-ground net primary production |
| Control | No heat waves no mowing |
| ER | Ecosystem respiration |
| GEP | Gross ecosystem productivity |
| HWs | Heat waves |
| HWsp | Spring heat waves without mowing |
| HWsp × M | Spring heat waves plus mowing |
| HWsu | Summer heat waves without mowing |
| HWsu × M | Summer heat waves plus mowing |
| M | Mowing |
| NEE | Net ecosystem exchange |
| OTC | Open-top chamber |
| PVC | Polyvinyl chloride |
| Ra | Autotrophic respiration |
| Rh | Heterotrophic respiration |
| Rs | Soil respiration |
| SWC | Soil water content |
| Ts | Soil temperature |
References
- De Boeck, H.J.; Bassin, S.; Verlinden, M.; Zeiter, M.; Hiltbrunner, E. Simulated heat waves affected alpine grassland only in combination with drought. New Phytol. 2016, 209, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; He, L.; Zhang, H.; Urrutia-Cordero, P.; Ekvall, M.K.; Hollander, J.; Hansson, L.-A. Climate warming and heat waves affect reproductive strategies and interactions between submerged macrophytes. Glob. Change Biol. 2017, 23, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Sippel, S.; Zscheischler, J.; Reichstein, M. Ecosystem impacts of climate extremes crucially depend on the timing. Proc. Natl. Acad. Sci. USA 2016, 113, 5768–5770. [Google Scholar] [CrossRef]
- Cremonese, E.; Filippa, G.; Galvagno, M.; Siniscalco, C.; Oddi, L.; Morra di Cella, U.; Migliavacca, M. Heat wave hinders green wave: The impact of climate extreme on the phenology of a mountain grassland. Agric. For. Meteorol. 2017, 247, 320–330. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Van der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 2015, 21, 2861. [Google Scholar] [CrossRef]
- Qu, L.; Chen, J.; Dong, G.; Shao, C. Heavy mowing enhances the effects of heat waves on grassland carbon and water fluxes. Sci. Total Environ. 2018, 627, 561–570. [Google Scholar] [CrossRef]
- Yu, Q.; Xu, C.; Wu, H.; Ke, Y.; Zuo, X.; Luo, W.; Ren, H.; Gu, Q.; Wang, H.; Ma, W. Contrasting drought sensitivity of Eurasian and North American grasslands. Nature 2025, 639, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Susan, T. Carbon respired by terrestrial ecosystems—Recent progress and challenges. Glob. Change Biol. 2006, 12, 141–153. [Google Scholar]
- Tatarinov, F.; Rotenberg, E.; Maseyk, K.; Ogee, J.; Klein, T.; Yakir, D. Resilience to seasonal heat wave episodes in a Mediterranean pine forest. New Phytol. 2016, 210, 485–496. [Google Scholar] [CrossRef]
- Wan, S.; Hui, D.; Wallace, L.; Luo, Y. Direct and indirect effects of experimental warming on ecosystem carbon processes in a tallgrass prairie. Glob. Biogeochem. Cycles 2005, 19, GB2014. [Google Scholar] [CrossRef]
- Jentsch, A.; Kreyling, J.; Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 2007, 5, 365–374. [Google Scholar] [CrossRef]
- Legesse, T.; Dong, G.; Dong, X.; Qu, L.; Chen, B.; Daba, N.A.; Sorecha, E.M.; Zhu, W.; Lei, T.; Shao, C. The extreme wet and large precipitation size increase carbon uptake in Eurasian meadow steppes: Evidence from natural and manipulated precipitation experiments. Environ. Res. 2023, 237, 117029. [Google Scholar] [CrossRef]
- Wolf, S.; Keenan, T.F.; Fisher, J.B.; Baldocchi, D.D.; Desai, A.R.; Richardson, A.D.; Scott, R.L.; Law, B.E.; Litvak, M.E.; Brunsell, N.A. Warm spring reduced carbon cycle impact of the 2012 US summer drought. Proc. Natl. Acad. Sci. USA 2016, 113, 5880–5885. [Google Scholar] [CrossRef]
- Legesse, T.G.; Qu, L.; Dong, G.; Dong, X.; Ge, T.; Daba, N.A.; Tadesse, K.A.; Sorecha, E.M.; Tong, Q.; Yan, Y.; et al. Extreme wet precipitation and mowing stimulate soil respiration in the Eurasian meadow steppe. Sci. Total Environ. 2022, 851, 158130. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef]
- Ohlert, T.; Smith, M.D.; Collins, S.L.; Knapp, A.K.; Dukes, J.S.; Sala, O.; Wilkins, K.D.; Munson, S.M.; Anderson, M.I.; Avolio, M.L. Drought intensity and duration interact to magnify losses in primary productivity. Science 2025, 390, 284–289. [Google Scholar] [CrossRef]
- Hoover, D.L.; Knapp, A.K.; Smith, M.D. The immediate and prolonged effects of climate extremes on soil respiration in a mesic grassland. J. Geophys. Res. Biogeosciences 2016, 121, 1034–1044. [Google Scholar] [CrossRef]
- Shao, C.; Chen, J.; Li, L.; Zhang, L. Ecosystem responses to mowing manipulations in an arid Inner Mongolia steppe: An energy perspective. J. Arid. Environ. 2012, 82, 1–10. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Zhang, K.; Shao, C.; Zhang, A.; Chen, Y.; Hou, L. Soil fertility assessment and spatial heterogeneity of the natural grasslands in the Tibetan Plateau using a novel index. Agronomy 2025, 15, 2743. [Google Scholar] [CrossRef]
- Wu, J.; Xu, J.; Wang, L. The physiological response of anatomical structures and physiological indexes of two potentilla species to drought stress. Acta Agrestia Sin. 2015, 23, 125–129. [Google Scholar]
- Wang, D.; Heckathorn, S.A.; Mainali, K.; Tripathee, R. Timing effects of heat-stress on plant ecophysiological characteristics and growth. Front. Plant Sci. 2016, 7, 1629. [Google Scholar] [CrossRef] [PubMed]
- Bauweraerts, I.; Wertin, T.M.; Ameye, M.; McGuire, M.A.; Teskey, R.O.; Steppe, K. The effect of heat waves, elevated CO2 and low soil water availability on northern red oak (Quercus rubra L.) seedlings. Glob. Change Biol. 2013, 19, 517–528. [Google Scholar] [CrossRef]
- Li, Y.; Xu, M.; Zou, X. Heterotrophic Soil Respiration in Relation to Environmental Factors and Microbial Biomass in Two Wet Tropical Forests. Plant Soil 2006, 281, 193–201. [Google Scholar] [CrossRef]
- Tucker, C.L.; Reed, S.C. Low soil moisture during hot periods drives apparent negative temperature sensitivity of soil respiration in a dryland ecosystem: A multi-model comparison. Biogeochemistry 2016, 128, 155–169. [Google Scholar] [CrossRef]
- Wagle, P.; Kakani, V.G. Confounding Effects of Soil Moisture on the Relationship Between Ecosystem Respiration and Soil Temperature in Switchgrass. BioEnergy Res. 2014, 7, 789–798. [Google Scholar] [CrossRef]
- Cable, J.M.; Ogle, K.; Lucas, R.W.; Huxman, T.E.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Ewers, B.E.; Pendall, E.; Welker, J.M.; et al. The temperature responses of soil respiration in deserts: A seven desert synthesis. Biogeochemistry 2010, 103, 71–90. [Google Scholar] [CrossRef]
- Carbone, M.S.; Still, C.J.; Ambrose, A.R.; Dawson, T.E.; Williams, A.P.; Boot, C.M.; Schaeffer, S.M.; Schimel, J.P. Seasonal and episodic moisture controls on plant and microbial contributions to soil respiration. Oecologia 2011, 167, 265–278. [Google Scholar] [CrossRef]
- Cusack, D.F.; Ashdown, D.; Dietterich, L.H.; Neupane, A.; Ciochina, M.; Turner, B.L. Seasonal changes in soil respiration linked to soil moisture and phosphorus availability along a tropical rainfall gradient. Biogeochemistry 2019, 145, 235–254. [Google Scholar] [CrossRef]
- Li, W.; Chen, S.; Zhang, B.; Tan, X.; Wang, S.; You, C. Partitioning of soil respiration components and evaluating the mycorrhizal contribution to soil respiration in a semiarid grassland. Chin. J. Plant Ecol. 2018, 042, 850–862. [Google Scholar] [CrossRef]






| HWs (Time/10 yr) | Mean HWs Length (Day) | Max HWs Length (Day) | Times Per Month | |||
|---|---|---|---|---|---|---|
| June | July | August | ||||
| 1978–1987 | 4 | 8 | 10 | 2 | 2 | - |
| 1988–1997 | 6 | 6 | 9 | 1 | 4 | 1 |
| 1998–2007 | 15 | 7 | 10 | 3 | 8 | 4 |
| 2008–2017 | 15 | 7 | 12 | 6 | 5 | 4 |
| Mean | 10 | 7 | 10 | 3.0 | 4.8 | 2.3 |
| Total | 40 | 12 | 19 | 9 | ||
| Treatment | Control | M | HWsp | HWsp × M | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| □ | Rh/ Rs | Ra/ Rs | Rh/ Ra | Rh/ Rs | Ra/ Rs | Rh/ Ra | Rh/ Rs | Ra/ Rs | Rh/Ra | Rh/ Rs | Ra/ Rs | Rh/ Ra |
| Before HWs SE | 65.38 ± 1.51 | 34.62 ± 1.51 | 1.90 ± 0.13 | 63.9 ± 3.95 | 36.0 ± 3.95 | 1.86 ± 0.28 | 57.26 ± 3.67 | 42.74 ± 3.67 | 1.39 ± 0.19 | 68.92 ± 1.45 | 31.08 ± 1.45 | 2.24 ± 0.16 |
| During HWs SE | 68.13 ± 2.04 | 31.87 ± 2.04 | 2.18 ± 0.22 | 63.48 ± 3.65 | 36.52 ± 3.65 | 1.83 ± 0.30 | 72.27 ± 3.84 | 27.73 ± 3.84 | 2.79 ± 0.45 | 68.89 ± 2.79 | 31.11 ± 2.79 | 2.30 ± 0.32 |
| After HWs SE | 77.45 ± 0.10 | 22.55 ± 0.10 | 4.12 ± 0.04 | 69.46 ± 3.56 | 30.54 ± 3.56 | 2.40 ± 0.34 | 76.65 ± 1.85 | 23.35 ± 1.85 | 3.37 ± 0.38 | 69.08 ± 1.95 | 30.92 ± 1.95 | 2.28 ± 0.22 |
| Treatment | Control | M | HWsu | HWsu × M | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| □ | Rh/Rs | Ra/Rs | Rh/Ra | Rh/Rs | Ra/Rs | Rh/Ra | Rh/Rs | Ra/Rs | Rh/Ra | Rh/Rs | Ra/Rs | Rh/Ra |
| Before HWs, 2018 SE | 70.17 ± 4.08 | 29.83 ± 4.08 | 2.35 ± 0.34 | 84.75 ± 3.94 | 15.25 ± 3.94 | 5.56 ± 0.27 | 73.12 ± 5.77 | 26.88 ± 5.77 | 2.72 ± 0.48 | 73.63 ± 5.56 | 26.37 ± 5.56 | 2.10 ± 0.45 |
| During HWs, 2018 SE | 54.66 ± 2.07 | 45.34 ± 2.07 | 1.22 ± 0.09 | 64.07 ± 2.47 | 35.93 ± 2.47 | 1.84 ± 0.19 | 65.28 ± 3.07 | 34.72 ± 3.07 | 1.96 ± 0.23 | 62.65 ± 5.51 | 37.35 ± 5.51 | 1.90 ± 0.37 |
| After HWs, 2018 SE | 64.52 ± 1.27 | 35.48 ± 1.27 | 1.83 ± 0.10 | 73.47 ± 2.10 | 26.53 ± 2.10 | 2.87 ± 0.31 | 69.43 ± 3.68 | 30.57 ± 3.68 | 2.48 ± 0.45 | 67.37 ± 2.16 | 32.63 ± 2.16 | 2.12 ± 0.23 |
| Before HWs, 2019 SE | 66.63 ± 0.62 | 33.37 ± 0.62 | 2.00 ± 0.06 | 67.91 ± 0.84 | 32.09 ± 0.84 | 2.13 ± 0.08 | 72.65 ± 2.66 | 27.35 ± 2.66 | 2.80 ± 0.37 | 70.80 ± 0.24 | 29.20 ± 0.24 | 2.43 ± 0.03 |
| During HWs, 2019 SE | 54.79 ± 4.15 | 45.21 ± 4.15 | 1.27 ± 0.21 | 57.24 ± 1.77 | 42.76 ± 1.77 | 1.35 ± 0.09 | 61.69 ± 1.41 | 38.31 ± 1.41 | 1.62 ± 0.10 | 68.72 ± 3.41 | 31.28 ± 3.41 | 2.36 ± 0.37 |
| After HWs, 2019 SE | 68.32 ± 0.85 | 31.68 ± 0.85 | 2.16 ± 0.08 | 70.73 ± 2.11 | 29.27 ± 2.11 | 2.49 ± 0.27 | 72.89 ± 1.47 | 27.11 ± 1.47 | 2.74 ± 0.22 | 66.76 ± 2.35 | 33.24 ± 2.35 | 2.01 ± 0.17 |
| Rs | Related Index (R2) | Rh | Related Index (R2) | Ra | Related Index (R2) | |||
|---|---|---|---|---|---|---|---|---|
| Ts | SWC | Ts | SWC | Ts | SWC | |||
| Control | 0.487 * | 0.228 | Control | 0.260 | 0.115 | Control | 0.556 ** | 0.267 |
| M | 0.613 ** | 0.215 | M | 0.422 * | 0.109 | M | 0.559 ** | 0.237 |
| HWsu | 0.629 ** | 0.231 | HWsu | 0.575 ** | 0.173 | HWsu | 0.564 ** | 0.249 |
| HWsu × M | 0.771 ** | 0.252 | HWsu × M | 0.770 ** | 0.146 | HWsu × M | 0.526 ** | 0.408 |
| HWsp | 0.159 | 0.957 ** | HWsp | 0.308 | 0.909 ** | HWsp | 0.221 | 0.816 ** |
| HWsp × M | 0.305 | 0.820 ** | HWsp × M | 0.250 | 0.838 ** | HWsp × M | 0.420 | 0.692 * |
| Ra | Related Index (R2) | |||||
|---|---|---|---|---|---|---|
| Treatment Biomass | Control | M | HWsu | HWsu × M | HWsp | HWsp × M |
| ANPP | 0.716 ** | 0.521 | 0.906 * | 0.403 | 0.489 | 0.408 |
| BNPP | 0.918 * | 0.795 | 0.995 ** | 0.822 * | 0.698 | 0.989 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Shao, Y.; Tong, Q.; Legesse, T.G.; Shao, C.; Zhang, X. Spring- and Summer Heat Waves Caused Opposite Effects on Soil Respiration in a Eurasian Meadow Steppe. Agronomy 2026, 16, 319. https://doi.org/10.3390/agronomy16030319
Shao Y, Tong Q, Legesse TG, Shao C, Zhang X. Spring- and Summer Heat Waves Caused Opposite Effects on Soil Respiration in a Eurasian Meadow Steppe. Agronomy. 2026; 16(3):319. https://doi.org/10.3390/agronomy16030319
Chicago/Turabian StyleShao, Yang, Qi Tong, Tsegaye Gemechu Legesse, Changliang Shao, and Xiaoguang Zhang. 2026. "Spring- and Summer Heat Waves Caused Opposite Effects on Soil Respiration in a Eurasian Meadow Steppe" Agronomy 16, no. 3: 319. https://doi.org/10.3390/agronomy16030319
APA StyleShao, Y., Tong, Q., Legesse, T. G., Shao, C., & Zhang, X. (2026). Spring- and Summer Heat Waves Caused Opposite Effects on Soil Respiration in a Eurasian Meadow Steppe. Agronomy, 16(3), 319. https://doi.org/10.3390/agronomy16030319
