Accurate Estimation of Spring Maize Aboveground Biomass in Arid Regions Based on Integrated UAV Remote Sensing Feature Selection
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Experimental Design
2.3. Data Collection and Preparation
2.3.1. Measurement of Spring Maize Aboveground Biomass (AGB)
2.3.2. UAV Multispectral Data Collection and Preprocessing
2.4. Feature Extraction Methods
2.4.1. Vegetation Index Extraction
2.4.2. Texture Feature Extraction
2.5. Feature Variable Selection and Model Development
2.5.1. Feature Selection Based on Elastic Net
2.5.2. Feature Selection Based on Random Forest
2.5.3. Model Development and Modeling Approaches
2.5.4. Model Accuracy Evaluation Metrics
3. Results
3.1. Temporal Dynamics of Spring Maize AGB Under Subsurface Drip Irrigation Conditions
3.2. Feature Variable Selection Based on Elastic Net (ENCV)
3.3. Elastic Net-Random Forest Fusion Feature Selection Approach
3.4. Fusion Feature Selection Approach That Integrates Elastic Net with Random Forest
3.5. Development and Accuracy Evaluation of Spring Maize AGB Estimation Models
3.6. Application of the Optimal Spring Maize AGB Estimation Model
4. Discussion
4.1. Influence of the Integrated Feature Selection Strategy on the Accuracy of Spring Maize AGB Estimation
4.2. Impact of Machine Learning Models on AGB Estimation
4.3. Spatiotemporal Dynamics and Nitrogen Response
4.4. Implications for the Development of Precision Agriculture in Arid Areas
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xia, Y.; Wang, B.; Zhu, L.; Wu, W.; Sun, S.; Zhu, Z.; Li, X.; Weng, J.; Duan, C. Identification of a Fusarium Ear Rot Resistance Gene in Maize by QTL Mapping and RNA Sequencing. Front. Plant Sci. 2022, 13, 954546. [Google Scholar] [CrossRef]
- Yin, Q.; Yu, X.; Li, Z.; Du, Y.; Ai, Z.; Qian, L.; Huo, X.; Fan, K.; Wang, W.; Hu, X. Estimating Summer Maize Biomass by Integrating UAV Multispectral Imagery with Crop Physiological Parameters. Plants 2024, 13, 3070. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, W.; Zhang, D.; Zheng, Y.; Xu, Y.; Liu, B.; Li, Q. Mechanism of [CO2] Enrichment Alleviated Drought Stress in the Roots of Cucumber Seedlings Revealed via Proteomic and Biochemical Analysis. Int. J. Mol. Sci. 2022, 23, 14911. [Google Scholar] [CrossRef]
- Zhao, Z.; Shi, F.; Guan, F. Effects of Plastic Mulching on Soil CO2 Efflux in a Cotton Field in Northwestern China. Sci. Rep. 2022, 12, 4969. [Google Scholar] [CrossRef]
- Adeleke, A.A. Technological Advancements in Cotton Agronomy: A Review and Prospects. Technol. Agron. 2024, 4, e008. [Google Scholar] [CrossRef]
- Feng, L.; Dai, J.; Tian, L.; Zhang, H.; Li, W.; Dong, H. Review of the Technology for High-Yielding and Efficient Cotton Cultivation in the Northwest Inland Cotton-Growing Region of China. Field Crops Res. 2017, 208, 18–26. [Google Scholar] [CrossRef]
- Fan, Y.; Yuan, Y.; Yuan, Y.; Duan, W.; Gao, Z. Research Progress on the Impact of Climate Change on Wheat Production in China. PeerJ 2025, 13, e18569. [Google Scholar] [CrossRef] [PubMed]
- Yang, X. Mapping Desert Shrub Aboveground Biomass in the Junggar Basin, Xinjiang, China Using Quantile Regression Forest (QRF). PeerJ 2025, 13, e19099. [Google Scholar] [CrossRef] [PubMed]
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of Ensemble Learning to Predict Wheat Grain Yield Based on UAV-Multispectral Reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Guo, F.; Feng, Q.; Yang, S.; Yang, W. Estimation of Potato Canopy Leaf Water Content in Various Growth Stages Using UAV Hyperspectral Remote Sensing and Machine Learning. Front. Plant Sci. 2024, 15, 1458589. [Google Scholar] [CrossRef]
- Wang, Z.; Ding, J.; Tan, J.; Liu, J.; Zhang, T.; Cai, W.; Meng, S. UAV Hyperspectral Analysis of Secondary Salinization in Arid Oasis Cotton Fields: Effects of FOD Feature Selection and SOA-RF. Front. Plant Sci. 2024, 15, 1358965. [Google Scholar] [CrossRef]
- Yang, M.; Hassan, M.A.; Xu, K.; Zheng, C.; Rasheed, A.; Zhang, Y.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Assessment of Water and Nitrogen Use Efficiencies Through UAV-Based Multispectral Phenotyping in Winter Wheat. Front. Plant Sci. 2020, 11, 927. [Google Scholar] [CrossRef]
- Cui, J.; Zhang, L.; Gao, L.; Bai, C.; Yang, L. Cherry-Net: Real-Time Segmentation Algorithm of Cherry Maturity Based on Improved PIDNet. Front. Plant Sci. 2025, 16, 1607205. [Google Scholar] [CrossRef]
- Yue, J.; Tian, J.; Philpot, W.; Tian, Q.; Feng, H.; Fu, Y. VNAI-NDVI-Space and Polar Coordinate Method for Assessing Crop Leaf Chlorophyll Content and Fractional Cover. Comput. Electron. Agric. 2023, 207, 107758. [Google Scholar] [CrossRef]
- Luo, S.; Jiang, X.; He, Y.; Li, J.; Jiao, W.; Zhang, S.; Xu, F.; Han, Z.; Sun, J.; Yang, J.; et al. Multi-Dimensional Variables and Feature Parameter Selection for Aboveground Biomass Estimation of Potato Based on UAV Multispectral Imagery. Front. Plant Sci. 2022, 13, 948249. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Yu, S.; Ma, T.; Ding, J.; Chen, K.; Zeng, G.; Xie, A.; He, P.; Peng, S.; Zhang, M. Improving the Estimation of Rice Above-Ground Biomass Based on Spatio-Temporal UAV Imagery and Phenological Stages. Front. Plant Sci. 2024, 15, 1328834. [Google Scholar] [CrossRef] [PubMed]
- Zhai, W.; Li, C.; Cheng, Q.; Mao, B.; Li, Z.; Li, Y.; Ding, F.; Qin, S.; Fei, S.; Chen, Z. Enhancing Wheat Above-Ground Biomass Estimation Using UAV RGB Images and Machine Learning: Multi-Feature Combinations, Flight Height, and Algorithm Implications. Remote Sens. 2023, 15, 3653. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Aboveground Mangrove Biomass Estimation in Beibu Gulf Using Machine Learning and UAV Remote Sensing. Sci. Total Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Cao, C.; Wang, T.; Gao, M.; Li, Y.; Li, D.; Zhang, H. Hyperspectral Inversion of Nitrogen Content in Maize Leaves Based on Different Dimensionality Reduction Algorithms. Comput. Electron. Agric. 2021, 190, 106461. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y. Emotion Recognition Based on Multimodal Physiological Electrical Signals. Front. Neurosci. 2025, 19, 1512799. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Zhao, D.; Cao, Q.; Yu, F.; Cao, Y.; Feng, S.; Xu, T. High-Throughput Method for Improving Rice AGB Estimation Based on UAV Multi-Source Remote Sensing Image Feature Fusion and Ensemble Learning. Front. Plant Sci. 2025, 16, 1576212. [Google Scholar] [CrossRef]
- Veneros, J.; Chavez, S.; Oliva, M.; Arellanos, E.; Maicelo, J.L.; Garcia, L. Comparing Six Vegetation Indexes between Aquatic Ecosystems Using a Multispectral Camera and a Parrot Disco-Pro Ag Drone, the ArcGIS, and the Family Error Rate: A Case Study of the Peruvian Jalca. Water 2023, 15, 3103. [Google Scholar] [CrossRef]
- Bannari, A.; Mohamed, A.M.A.; Peddle, D.R. Bio-Physiological Spectral Indices Retrieval and Statistical Analysis for Red Palm Weevil Stress-Attack Prediction Using Worldview-3 Data. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: New York, NY, USA, 2016; pp. 3512–3515. [Google Scholar] [CrossRef]
- Peng, X.; Han, W.; Ao, J.; Wang, Y. Assimilation of LAI Derived from UAV Multispectral Data into the SAFY Model to Estimate Maize Yield. Remote Sens. 2021, 13, 1094. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Chen, A.; Orlov-Levin, V.; Meron, M. Applying High-Resolution Visible-Channel Aerial Imaging of Crop Canopy to Precision Irrigation Management. Agric. Water Manag. 2019, 216, 196–205. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Cao, Q.; Miao, Y.; Feng, G.; Gao, X.; Li, F.; Liu, B.; Yue, S.; Cheng, S.; Ustin, S.L.; Khosla, R. Active Canopy Sensing of Winter Wheat Nitrogen Status: An Evaluation of Two Sensor Systems. Comput. Electron. Agric. 2015, 112, 54–67. [Google Scholar] [CrossRef]
- Pei, S.; Zeng, H.; Dai, Y.; Bai, W.; Fan, J. Nitrogen Nutrition Diagnosis for Cotton under Mulched Drip Irrigation Using Unmanned Aerial Vehicle Multispectral Images. J. Integr. Agric. 2023, 22, 2536–2552. [Google Scholar] [CrossRef]
- Pokhrel, A.; Virk, S.; Snider, J.L.; Vellidis, G.; Hand, L.C.; Sintim, H.Y.; Parkash, V.; Chalise, D.P.; Lee, J.M.; Byers, C. Estimating Yield-Contributing Physiological Parameters of Cotton Using UAV-Based Imagery. Front. Plant Sci. 2023, 14, 1248152. [Google Scholar] [CrossRef]
- Li, T.; Wang, H.; Cui, J.; Wang, W.; Li, W.; Jiang, M.; Shi, X.; Song, J.; Wang, J.; Lv, X.; et al. Improving the Accuracy of Cotton Seedling Emergence Rate Estimation by Fusing UAV-Based Multispectral Vegetation Indices. Front. Plant Sci. 2024, 15, 1333089. [Google Scholar] [CrossRef]
- Fan, X.; Gao, P.; Zhang, M.; Cang, H.; Zhang, L.; Zhang, Z.; Wang, J.; Lv, X.; Zhang, Q.; Ma, L. The Fusion of Vegetation Indices Increases the Accuracy of Cotton Leaf Area Prediction. Front. Plant Sci. 2024, 15, 1357193. [Google Scholar] [CrossRef]
- Barzin, R.; Lotfi, H.; Varco, J.J.; Bora, G.C. Machine Learning in Evaluating Multispectral Active Canopy Sensor for Prediction of Corn Leaf Nitrogen Concentration and Yield. Remote Sens. 2022, 14, 120. [Google Scholar] [CrossRef]
- Song, X.; Xu, D.-Y.; Huang, S.-M.; Huang, C.-C.; Zhang, S.-Q.; Guo, D.-D.; Zhang, K.-K.; Yue, K. Nitrogen content inversion of wheat canopy leaf based on ground spectral reflectance data. Ying Yong Sheng Tai Xue Bao 2020, 31, 1636–1644. [Google Scholar] [CrossRef]
- Farella, M.M.; Barnes, M.L.; Breshears, D.D.; Mitchell, J.; van Leeuwen, W.J.D.; Gallery, R.E. Evaluation of Vegetation Indices and Imaging Spectroscopy to Estimate Foliar Nitrogen across Disparate Biomes. Ecosphere 2022, 13, e3992. [Google Scholar] [CrossRef]
- Yang, K.; Gong, Y.; Fang, S.; Duan, B.; Yuan, N.; Peng, Y.; Wu, X.; Zhu, R. Combining Spectral and Texture Features of UAV Images for the Remote Estimation of Rice LAI throughout the Entire Growing Season. Remote Sens. 2021, 13, 3001. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, X.; Meng, H.; Miao, H.; Jiang, S.; Chang, Q. UAV Hyperspectral Data Combined with Machine Learning for Winter Wheat Canopy SPAD Values Estimation. Remote Sens. 2023, 15, 4658. [Google Scholar] [CrossRef]
- Avagyan, V.; Boer, M.P.; Solin, J.; van Dijk, A.D.J.; Bustos-Korts, D.; van Rossum, B.-J.; Ramakers, J.J.C.; van Eeuwijk, F.; Kruijer, W. Penalized Factorial Regression as a Flexible and Computationally Attractive Reaction Norm Model for Prediction in the Presence of GxE. Theor. Appl. Genet. 2025, 138, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, M.; He, S.; Xu, X.; He, L.; Wang, L.; Gao, Y.; Tang, F.; Gong, T.; Wang, W.; et al. Estimation of Soybean Yield Based on High-Throughput Phenotyping and Machine Learning. Front. Plant Sci. 2024, 15, 1395760. [Google Scholar] [CrossRef] [PubMed]
- Nagy, A.; Szabó, A.; Elbeltagi, A.; Nxumalo, G.S.; Bódi, E.B.; Tamás, J. Hyperspectral Indices Data Fusion-Based Machine Learning Enhanced by MRMR Algorithm for Estimating Maize Chlorophyll Content. Front. Plant Sci. 2024, 15, 1419316. [Google Scholar] [CrossRef]
- Burglewski, N.; Srinivasagan, S.; Ketterings, Q.; van Aardt, J. Spatial and Spectral Dependencies of Maize Yield Estimation Using Remote Sensing. Sensors 2024, 24, 3958. [Google Scholar] [CrossRef]
- Kenduiywo, B.K.; Miller, S. Seasonal Maize Yield Forecasting in South and East African Countries Using Hybrid Earth Observation Models. Heliyon 2024, 10, e33449. [Google Scholar] [CrossRef]
- Huang, J.; Cheng, C.-Y.; Brooks, M.D.; Jeffers, T.L.; Doner, N.M.; Shih, H.-J.; Frangos, S.; Katari, M.S.; Coruzzi, G.M. Model-to-Crop Conserved NUE Regulons Enhance Machine Learning Predictions of Nitrogen Use Efficiency. Plant Cell 2025, 37, koaf093. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tan, S.; Jia, X.; Qi, L.; Liu, S.; Lu, H.; Wang, C.; Liu, W.; Zhao, X.; He, L.; et al. Estimating Relative Chlorophyll Content in Rice Leaves Using Unmanned Aerial Vehicle Multi-Spectral Images and Spectral-Textural Analysis. Agronomy 2023, 13, 1541. [Google Scholar] [CrossRef]
- Berhane, A.; Abrha, B.; Worku, W.; Hadgu, G. Modeling the Response of Sesame (Sesamum indicum L.) to Different Soil Fertility Levels under Rain-Fed Conditions in the Semi-Arid Areas of Western Tigray, Ethiopia. Heliyon 2024, 10, e36084. [Google Scholar] [CrossRef] [PubMed]
- Karim, M.R.; Ahmed, S.; Reza, M.N.; Lee, K.-H.; Sung, J.; Chung, S.-O. Geometric Feature Characterization of Apple Trees from 3D LiDAR Point Cloud Data. J. Imaging 2025, 11, 5. [Google Scholar] [CrossRef] [PubMed]
- Ruwanpathirana, P.P.; Sakai, K.; Jayasinghe, G.Y.; Nakandakari, T.; Yuge, K.; Wijekoon, W.M.C.J.; Priyankara, A.C.P.; Samaraweera, M.D.S.; Madushanka, P.L.A. Evaluation of Sugarcane Crop Growth Monitoring Using Vegetation Indices Derived from RGB-Based UAV Images and Machine Learning Models. Agronomy 2024, 14, 2059. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, L.; Zhang, Q.; Huang, C.; Yi, X.; Chen, X.; Hou, T.; Lv, X.; Zhang, Z. Cotton Yield Estimation Based on Vegetation Indices and Texture Features Derived From RGB Image. Front. Plant Sci. 2022, 13, 925986. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, L.; Meng, R.; Zhao, F.; Lv, Z.; Xu, B.; Zeng, L.; Yu, X.; Peng, S. An Improved Approach to Estimate Ratoon Rice Aboveground Biomass by Integrating UAV-Based Spectral, Textural and Structural Features. Precis. Agric. 2022, 23, 1276–1301. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-Destructive Chlorophyll Assessment in Higher Plant Leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Lee, H.; Wang, J.; Leblon, B. Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn. Remote Sens. 2020, 12, 2071. [Google Scholar] [CrossRef]
- Manu, M.; Onete, M. Satellite Remote Sensing—A Modern Tool for Monitoring Mites (Acari). Anim. Taxon. Ecol. 2025, 71, 97–116. [Google Scholar] [CrossRef]
- Li, X.; Zhang, M.; Long, J.; Lin, H. A Novel Method for Estimating Spatial Distribution of Forest Above-Ground Biomass Based on Multispectral Fusion Data and Ensemble Learning Algorithm. Remote Sens. 2021, 13, 3910. [Google Scholar] [CrossRef]
- Fageria, N.K. Nitrogen Harvest Index and Its Association with Crop Yields. J. Plant Nutr. 2014, 37, 795–810. [Google Scholar] [CrossRef]
- Biswal, S.; Pathak, N.; Chatterjee, C.; Mailapalli, D.R. Estimation of Aboveground Biomass from Spectral and Textural Characteristics of Paddy Crop Using UAV-Multispectral Images and Machine Learning Techniques. Geocarto Int. 2024, 39, 2364725. [Google Scholar] [CrossRef]












| Fertilizer | Urea | Ammonium Phosphate | Potassium Sulfate | ||
|---|---|---|---|---|---|
| Fertilizer application time | 2024 Year | 6–12 | 12.5% | 12.5% | 15.0% |
| 6–22 | 12.5% | 12.5% | 15.0% | ||
| 6–28 | 12.5% | 12.5% | 15.0% | ||
| 7–06 | 12.5% | 12.5% | 22.0% | ||
| 7–15 | 20.0% | 20.0% | 22.0% | ||
| 7–25 | 20.0% | 20.0% | 11.0% | ||
| 8–02 | 10.0% | 10.0% | 0 | ||
| 2025 Year | 6–15 | 12.5% | 12.5% | 15.0% | |
| 6–22 | 12.5% | 12.5% | 15.0% | ||
| 7–01 | 12.5% | 12.5% | 15.0% | ||
| 7–07 | 12.5% | 12.5% | 22.0% | ||
| 7–14 | 20.0% | 20.0% | 22.0% | ||
| 7–21 | 20.0% | 20.0% | 11.0% | ||
| 8–01 | 10.0% | 10.0% | 0 | ||
| Band | Band Center/nm | Band Width/nm |
|---|---|---|
| Blue | 450 | 16 |
| Green | 560 | 16 |
| Red | 650 | 16 |
| Near-Infrared | 840 | 26 |
| Red-Edge | 730 | 16 |
| Vegetation Indices | Equation | Reference |
|---|---|---|
| Chlorophyll Index (LCI) | LCI = (NIR − RE)/(NIR + R) | [22] |
| Structure-Insensitive Pigment Index (SIPI) | SIPI = (NIR − B)/(NIR − R) | [23] |
| Enhanced Vegetation Index (EVI) | EVI = 2.5 × [(NIR − R)/(NIR + 6R − 7.5B + 1)] | [24] |
| Transformed Vegetation Index (TVI) | TVI = (NDVI + 0.5)1/2 | [25] |
| Green-Red Vegetation Index (GRVI) | GRVI = (G − R)/(G + R) | [26] |
| Green Normalized Difference Vegetation Index (GNDVI) | GNDVI = (NIR − G)/(NIR + G) | [27] |
| Green Chlorophyll Index (Clg) | Clg = (NIR/G) − 1 | [28] |
| Green-Red Difference Vegetation Index (GRDVI) | GRDVI = G − R | [29] |
| Normalized Difference Vegetation Index (NDVI) | NDVI = (NIR − R)/(NIR + R) | [30] |
| Ratio Vegetation Index (RVI) | RVI = NIR/R | [31] |
| Optimized Soil-Adjusted Vegetation Index (OSAVI) | OSAVI = 1.16 × [(NIR − R)/(NIR + R + 0.16)] | [32] |
| Modified Simple Ratio Index (MSR) | MSR = [(NIR/R) − 1]/[(NIR/R + 1)0.5] | [33] |
| Red Edge Ratio Vegetation Index (RERVI) | RERVI= NIR/RE | [34] |
| Red Edge Normalized Difference Index (NDRE) | NDRE = (NIR − RE)/(NIR + RE) | [35] |
| Red Edge Chlorophyll (Clre) | Clre = (NIR/RE) − 1 | [36] |
| Red Edge Green-Light Difference Vegetation Index (REGDVI) | REGDVI = RE − G | [29] |
| Year | Descriptive Statistics | Jointing Stage | Tasseling Stage | Filling Stage | Maturity Stage | Whole Growth Stage |
|---|---|---|---|---|---|---|
| 2024 | Sample size | 24 | 24 | 24 | 24 | 96 |
| Maximum (kg ha−1) | 5761.8 | 11,300.4 | 25,781.4 | 30,063.6 | 30,063.6 | |
| Minimum (kg ha−1) | 3165.75 | 2243.25 | 7731.75 | 14,498.1 | 2243.25 | |
| Average (kg ha−1) | 4146.68 | 5708.10 | 14,080.81 | 20,011.85 | 10,986.86 | |
| Standard Deviation (kg ha−1) | 652.91 | 2279.38 | 4527.73 | 4455.55 | 7279.13 | |
| Coefficient of Variation (%) | 0.157 | 0.399 | 0.322 | 0.223 | 0.663 | |
| 2025 | Sample size | 24 | 24 | 24 | 24 | 96 |
| Maximum (kg ha−1) | 7490.34 | 11,639.41 | 28,015.26 | 33,972.48 | 33,972.48 | |
| Minimum (kg ha−1) | 2690.89 | 1906.76 | 7345.16 | 11,612.48 | 1906.76 | |
| Average (kg ha−1) | 4233.67 | 5815.83 | 14,397.33 | 20,426.23 | 11,218.26 | |
| Standard Deviation (kg ha−1) | 986.19 | 2475.18 | 5282.75 | 5628.53 | 7734.09 | |
| Coefficient of Variation (%) | 0.233 | 0.426 | 0.367 | 0.276 | 0.689 |
| Modeling Factors | Model Categories | Training Set | Test Set | ||||
|---|---|---|---|---|---|---|---|
| R2 | RMSE (kg ha−1) | MAE (kg ha−1) | R2 | RMSE (kg ha−1) | MAE (kg ha−1) | ||
| Vegetation Indices Features | ENR | 0.700 | 4084.611 | 3098.352 | 0.651 | 4440.405 | 3498.821 |
| GBDT | 0.823 | 3131.846 | 2346.961 | 0.657 | 4403.592 | 3260.089 | |
| GPR | 0.743 | 3777.784 | 2720.367 | 0.725 | 3940.155 | 2800.345 | |
| PLSR | 0.701 | 4076.726 | 3083.773 | 0.641 | 4504.870 | 3519.231 | |
| RF | 0.754 | 3698.609 | 2676.774 | 0.724 | 3950.902 | 2885.948 | |
| XGB | 0.866 | 2727.619 | 2024.646 | 0.639 | 4515.209 | 3179.187 | |
| Texture Features | ENR | 0.440 | 5580.180 | 4366.940 | 0.483 | 5406.969 | 4102.761 |
| GBDT | 0.987 | 842.794 | 626.470 | 0.437 | 5643.684 | 3926.653 | |
| GPR | 0.858 | 2805.947 | 1785.787 | 0.841 | 2998.208 | 1723.186 | |
| PLSR | 0.444 | 5555.895 | 4350.518 | 0.441 | 5624.176 | 4244.419 | |
| RF | 0.691 | 4141.377 | 3105.112 | 0.618 | 4649.175 | 3488.212 | |
| XGB | 0.842 | 2965.300 | 2150.456 | 0.571 | 4925.190 | 3567.022 | |
| Fused Features | ENR | 0.657 | 4367.978 | 3298.852 | 0.640 | 4512.148 | 3141.499 |
| GBDT | 0.845 | 2934.572 | 2097.838 | 0.665 | 4353.928 | 3163.271 | |
| GPR | 0.885 | 2522.589 | 1572.818 | 0.852 | 2890.735 | 1676.697 | |
| PLSR | 0.712 | 4002.036 | 3072.776 | 0.606 | 4720.252 | 3739.125 | |
| RF | 0.749 | 3736.047 | 2673.898 | 0.726 | 3937.453 | 2828.673 | |
| XGB | 0.986 | 889.438 | 628.806 | 0.691 | 4182.353 | 2811.144 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, F.; Guo, Y.; Ma, Y.; Lv, N.; Gao, Z.; Wang, G.; Zhang, Z.; Shi, L.; Zhao, C. Accurate Estimation of Spring Maize Aboveground Biomass in Arid Regions Based on Integrated UAV Remote Sensing Feature Selection. Agronomy 2026, 16, 219. https://doi.org/10.3390/agronomy16020219
Li F, Guo Y, Ma Y, Lv N, Gao Z, Wang G, Zhang Z, Shi L, Zhao C. Accurate Estimation of Spring Maize Aboveground Biomass in Arid Regions Based on Integrated UAV Remote Sensing Feature Selection. Agronomy. 2026; 16(2):219. https://doi.org/10.3390/agronomy16020219
Chicago/Turabian StyleLi, Fengxiu, Yanzhao Guo, Yingjie Ma, Ning Lv, Zhijian Gao, Guodong Wang, Zhitao Zhang, Lei Shi, and Chongqi Zhao. 2026. "Accurate Estimation of Spring Maize Aboveground Biomass in Arid Regions Based on Integrated UAV Remote Sensing Feature Selection" Agronomy 16, no. 2: 219. https://doi.org/10.3390/agronomy16020219
APA StyleLi, F., Guo, Y., Ma, Y., Lv, N., Gao, Z., Wang, G., Zhang, Z., Shi, L., & Zhao, C. (2026). Accurate Estimation of Spring Maize Aboveground Biomass in Arid Regions Based on Integrated UAV Remote Sensing Feature Selection. Agronomy, 16(2), 219. https://doi.org/10.3390/agronomy16020219
