Hyperspectral Yield Estimation of Winter Wheat Based on Information Fusion of Critical Growth Stages
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Acquisition
2.2.1. Canopy Hyperspectral Acquisition
2.2.2. Determination of Winter Wheat Yield and Yield Components
2.3. Data Analysis Method
2.4. Feature Extraction and Analyses
2.4.1. Vegetation Indices
2.4.2. Spectral Characteristic Bands Were Selected Based on SPA
2.4.3. Recursive Feature Elimination
2.5. Modeling Method
- (1)
- Support vector regression
- (2)
- Gaussian process regression
- (3)
- Random forest
- (4)
- Deep forest
2.6. Model Validation and Evaluation
3. Results
3.1. Descriptive Statistical Analysis
3.2. Optimal Feature Extraction Results
3.2.1. Correlation of VIs with Yield
3.2.2. Characteristic Band Screening
3.2.3. Spectral Characteristics and Characteristic Band Sorting Based on RFE
3.3. Evaluation of Winter Wheat Yield Prediction Model
4. Discussion
4.1. Winter Wheat Yield Under Different Irrigation
4.2. The Strong Correlation Between Vegetation Index
4.3. Yield and the Difference in Growth Period in Characteristic Band
4.4. Feature Fusion and Deep Forest Model to Optimize Crop Yield Estimation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| MTCI | Meris Terrestrial Chlorophyll Index |
| PSRI | Plant Senescence Reflectance Index |
| PRI | Photochemical Reflectance Index |
| TCARI | Transformed Chlorophyll Absorption Reflectance Index |
| CARI | Chlorophyll Absorption Ratio Index |
| NDVI | Normalized Difference Vegetation Index |
| GNDVI | green normalized difference vegetation index |
| MSAVI | Modified Soil-Adjusted Vegetation Index |
| VARI | Visible Atmospherically Resistant Index |
| RVI | Ratio Vegetation Index |
| GRVI | Green-Red Vegetation Index |
| CRI | Carotenoid Reflectance Index |
| ARVI | Atmospherically Resistant Vegetation Index |
| SR | Simple Ratio |
| TVI | Triangular Vegetation Index |
| RDVI | Renormalized Difference Vegetation Index |
| EVI | Enhanced Vegetation Index |
| MSR | Modified Simple Ratio |
| VIs | Vegetation Indices |
| SPA | Successive Projections Algorithm |
| RFE | Recursive Feature Elimination |
| SPXY | Sample Set Partitioning Based on Joint X-Y Distances |
| SVR | Support Vector Regression |
| GPR | Gaussian Process Regression |
| RF | Random Forest |
| DF | Deep Forest |
| UAV | Unmanned Aerial Vehicle |
| ANN | Artificial Neural Networks |
References
- Fei, S.; Hassan, M.A.; He, Z.; Chen, Z.; Shu, M.; Wang, J.; Li, C.; Xiao, Y. Assessment of ensemble learning to predict wheat grain yield based on UAV-multispectral reflectance. Remote Sens. 2021, 13, 2338. [Google Scholar] [CrossRef]
- Van Dijk, M.; Morley, T.; Rau, M.L.; Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2021, 2, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tian, Y.; Yao, X.; Zhu, Y.; Cao, W. Predicting grain yield and protein content in wheat by fusing multi-sensor and multi-temporal remote-sensing images. Field Crops Res. 2014, 164, 178–188. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Li, Z.; Zhou, C.; Xu, K. Mapping winter-wheat biomass and grain yield based on a crop model and UAV remote sensing. Int. J. Remote Sens. 2021, 42, 1577–1601. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Sishodia, R.P.; Ray, R.L.; Singh, S.K. Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sens. 2020, 12, 3136. [Google Scholar] [CrossRef]
- Tao, H.; Feng, H.; Xu, L.; Miao, M.; Yang, G.; Yang, X.; Fan, L. Estimation of the Yield and Plant Height of Winter Wheat Using UAV-Based Hyperspectral Images. Sensors 2020, 20, 1231. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Z.; Cheng, Q.; Duan, F.; Sui, R.; Huang, X.; Xu, H. UAV-Based Hyperspectral and Ensemble Machine Learning for Predicting Yield in Winter Wheat. Agronomy 2022, 12, 202. [Google Scholar] [CrossRef]
- Thenkabail, P.S.; Smith, R.B.; De Pauw, E. Hyperspectral Vegetation Indices and Their Relationships with Agricultural Crop Characteristics. Remote Sens. Environ. 2000, 71, 158–182. [Google Scholar] [CrossRef]
- Mutanga, O.; Skidmore, A.K. Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int. J. Remote Sens. 2004, 25, 3999–4014. [Google Scholar] [CrossRef]
- Wu, R.; Fan, Y.; Zhang, L.; Yuan, D.; Gao, G. Wheat Yield Estimation Study Using Hyperspectral Vegetation Indices. Appl. Sci. 2024, 14, 4245. [Google Scholar] [CrossRef]
- Ranđelović, P.; Đorđević, V.; Miladinović, J.; Bukonja, S.; Ćeran, M.; Đukić, V.; Vasiljević, M. Soybean Yield Prediction with High-Throughput Phenotyping Data and Machine Learning. Agriculture 2026, 16, 22. [Google Scholar] [CrossRef]
- Feng, H.; Tao, H.; Fan, Y.; Liu, Y.; Li, Z.; Yang, G.; Zhao, C. Comparison of Winter Wheat Yield Estimation Based on Near-Surface Hyperspectral and UAV Hyperspectral Remote Sensing Data. Remote Sens. 2022, 14, 4158. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef]
- Luo, S.; He, Y.; Li, Q.; Jiao, W.; Zhu, Y.; Zhao, X. Nondestructive estimation of potato yield using relative variables derived from multi-period LAI and hyperspectral data based on weighted growth stage. Plant Methods 2020, 16, 150. [Google Scholar] [CrossRef]
- Zhang, Y.; Qin, Q.; Ren, H.; Sun, Y.; Li, M.; Zhang, T.; Ren, S. Optimal Hyperspectral Characteristics Determination for Winter Wheat Yield Prediction. Remote Sens. 2018, 10, 2015. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, J.; Wang, B.; De Leon, N.; Kaeppler, S.M.; Lima, D.C.; Zhang, Z. Estimation of Maize Yield and Flowering Time Using Multi-Temporal UAV-Based Hyperspectral Data. Remote Sens. 2022, 14, 3052. [Google Scholar] [CrossRef]
- Tan, S.; Pei, J.; Zou, Y.; Fang, H.; Wang, T.; Huang, J. Improving rice yield prediction with multi-modal UAV data: Hyperspectral, thermal, and LiDAR integration. Geo Spat. Inf. Sci. 2025, 1–20. [Google Scholar] [CrossRef]
- Bian, C.; Shi, H.; Wu, S.; Zhang, K.; Wei, M.; Zhao, Y.; Sun, Y.; Zhuang, H.; Zhang, X.; Chen, S. Prediction of Field-Scale Wheat Yield Using Machine Learning Method and Multi-Spectral UAV Data. Remote Sens. 2022, 14, 1474. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, L.; Liu, B.; Wu, Y.; Ma, J.; Zhang, W.; Wang, B.; Chen, Z. Estimation of Winter Wheat Yield Using Multiple Temporal Vegetation Indices Derived from UAV-Based Multispectral and Hyperspectral Imagery. Remote Sens. 2023, 15, 4800. [Google Scholar] [CrossRef]
- Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Feng, J. Deep forest. Natl. Sci. Rev. 2019, 6, 74–86. [Google Scholar] [CrossRef]
- Shen, Y.; Mercatoris, B.; Cao, Z.; Kwan, P.; Guo, L.; Yao, H.; Cheng, Q. Improving Wheat Yield Prediction Accuracy Using LSTM-RF Framework Based on UAV Thermal Infrared and Multispectral Imagery. Agriculture 2022, 12, 892. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 56. [Google Scholar]
- Li, C.; Li, X.; Meng, X.; Xiao, Z.; Wu, X.; Wang, X.; Ren, L.; Li, Y.; Zhao, C.; Yang, C. Hyperspectral Estimation of Nitrogen Content in Wheat Based on Fractional Difference and Continuous Wavelet Transform. Agriculture 2023, 13, 1017. [Google Scholar] [CrossRef]
- Galvão, R.K.H.; Araujo, M.C.U.; José, G.E.; Pontes, M.J.C.; Silva, E.C.; Saldanha, T.C.B. A method for calibration and validation subset partitioning. Talanta 2005, 67, 736–740. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Bai, Y.; Liang, Z.; Guo, X.; Zhao, Y.; Feng, M.; Xiao, L.; Song, X.; Zhang, M.; et al. Ensemble Learning-Driven and UAV Multispectral Analysis for Estimating the Leaf Nitrogen Content in Winter Wheat. Agronomy 2025, 15, 1621. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P.J. The MERIS terrestrial chlorophyll index. Int. J. Remote Sens. 2004, 25, 5403–5413. [Google Scholar] [CrossRef]
- Prasad, N.; Semwal, M.; Kalra, A. Hyperspectral vegetation indices offer insights for determining economically optimal time of harvest in Mentha arvensis. Ind. Crops Prod. 2022, 180, 114753. [Google Scholar] [CrossRef]
- Gamon, J.A.; Penuelas, J.; Field, C.B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ. 1992, 41, 35–44. [Google Scholar] [CrossRef]
- Cogato, A.; Meggio, F.; Collins, C.; Marinello, F. Medium-Resolution Multispectral Data from Sentinel-2 to Assess the Damage and the Recovery Time of Late Frost on Vineyards. Remote Sens. 2020, 12, 1896. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Qi, J.; Huete, A.R.; Cabot, F.; Chehbouni, A. Bidirectional properties and utilizations of high-resolution spectra from a semiarid watershed. Water Resour. Res. 1994, 30, 1271–1279. [Google Scholar] [CrossRef]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods 2019, 15, 10. [Google Scholar] [CrossRef]
- Houborg, R.; Mccabe, M.F. Daily Retrieval of NDVI and LAI at 3 m Resolution via the Fusion of CubeSat, Landsat, and MODIS Data. Remote Sens. 2018, 10, 890. [Google Scholar] [CrossRef]
- Verger, A.; Filella, I.; Baret, F.; Peñuelas, J. Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens. Environ. 2016, 178, 1–14. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Fan, Y.; Feng, H.; Yue, J.; Liu, Y.; Jin, X.; Xu, X.; Song, X.; Ma, Y.; Yang, G. Comparison of different dimensional spectral indices for estimating nitrogen content of potato plants over multiple growth periods. Remote Sens. 2023, 15, 602. [Google Scholar] [CrossRef]
- Gao, C.; Li, H.; Wang, J.; Zhang, X.; Huang, K.; Song, X.; Yang, W.; Feng, M.; Xiao, L.; Zhao, Y.; et al. Combined use of spectral resampling and machine learning algorithms to estimate soybean leaf chlorophyll. Comput. Electron. Agric. 2024, 218, 108675. [Google Scholar] [CrossRef]
- Liang, L.; Huang, T.; Di, L.; Geng, D.; Yan, J.; Wang, S.; Wang, L.; Li, L.; Chen, B.; Kang, J. Influence of Different Bandwidths on LAI Estimation Using Vegetation Indices. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 1494–1502. [Google Scholar] [CrossRef]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q.; Trung, N.H. A comparative analysis of multitemporal MODIS EVI and NDVI data for large-scale rice yield estimation. Agric. For. Meteorol. 2014, 197, 52–64. [Google Scholar] [CrossRef]
- Li, Z.; Li, Z.; Fairbairn, D.; Li, N.; Xu, B.; Feng, H.; Yang, G. Multi-LUTs method for canopy nitrogen density estimation in winter wheat by field and UAV hyperspectral. Comput. Electron. Agric. 2019, 162, 174–182. [Google Scholar] [CrossRef]
- Araújo, M.C.U.; Saldanha, T.C.B.; Galvão, R.K.H.; Yoneyama, T.; Chame, H.C.; Visani, V. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemom. Intell. Lab. Syst. 2001, 57, 65–73. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Drucker, H.; Burges, C.J.; Kaufman, L.; Smola, A.; Vapnik, V. Support vector regression machines. Adv. Neural Inf. Process. Syst. 1996, 9, 155–161. [Google Scholar]
- Williams, C.K.; Rasmussen, C.E. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006; Volume 2. [Google Scholar]
- Verrelst, J.; Muñoz, J.; Alonso, L.; Delegido, J.; Rivera, J.P.; Camps-Valls, G.; Moreno, J. Machine learning regression algorithms for biophysical parameter retrieval: Opportunities for Sentinel-2 and -3. Remote Sens. Environ. 2012, 118, 127–139. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, C.; Li, H.; Li, S.; Lu, J. Spectral Index Optimization and Machine Learning for Hyperspectral Inversion of Maize Nitrogen Content. Agronomy 2025, 15, 2485. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Wu, Z.; Li, D.; Zou, L.; Zhao, H. Multi-granularity awareness via cross fusion for few-shot learning. Inf. Sci. 2025, 714, 122209. [Google Scholar] [CrossRef]
- Li, C.; Wang, Y.; Ma, C.; Chen, W.; Li, Y.; Li, J.; Ding, F.; Xiao, Z. Improvement of Wheat Grain Yield Prediction Model Performance Based on Stacking Technique. Appl. Sci. 2021, 11, 12164. [Google Scholar] [CrossRef]
- Xi, Y.; Wang, D.; Weiner, J.; Du, Y.-L.; Li, F.-M. Time to Onset of Flowering, Water Use, and Yield in Wheat. Agronomy 2023, 13, 1217. [Google Scholar] [CrossRef]
- Basheir, S.M.O.; Hong, Y.; Lv, C.; Xu, H.; Zhu, J.; Guo, B.; Wang, F.; Xu, R. Identification of Wheat Germplasm Resistance to Late Sowing. Agronomy 2023, 13, 1010. [Google Scholar] [CrossRef]
- Sun, Q.; Jiao, Q.; Qian, X.; Liu, L.; Liu, X.; Dai, H. Improving the Retrieval of Crop Canopy Chlorophyll Content Using Vegetation Index Combinations. Remote Sens. 2021, 13, 470. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, B.; Dai, M.; Jing, C.; Ma, K.; Tang, B.; Li, K.; Dang, H.; Gu, L.; Zhen, W.; et al. Accurate irrigation decision-making of winter wheat at the filling stage based on UAV hyperspectral inversion of leaf water content. Agric. Water Manag. 2024, 306, 109171. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Song, X.; Li, Z.; Xu, X.; Feng, H.; Zhao, C. Improved Estimation of Winter Wheat Aboveground Biomass Using Multiscale Textures Extracted from UAV-Based Digital Images and Hyperspectral Feature Analysis. Remote Sens. 2021, 13, 581. [Google Scholar] [CrossRef]
- Mu, C.; Liu, Y.; Liu, Y. Hyperspectral Image Spectral–Spatial Classification Method Based on Deep Adaptive Feature Fusion. Remote Sens. 2021, 13, 746. [Google Scholar] [CrossRef]
- Datta, D.; Mallick, P.K.; Reddy, A.V.N.; Mohammed, M.A.; Jaber, M.M.; Alghawli, A.S.; Al-Qaness, M.A.A. A Hybrid Classification of Imbalanced Hyperspectral Images Using ADASYN and Enhanced Deep Subsampled Multi-Grained Cascaded Forest. Remote Sens. 2022, 14, 4853. [Google Scholar] [CrossRef]
- Han, J.; Zhang, Z.; Cao, J.; Luo, Y.; Zhang, L.; Li, Z.; Zhang, J. Prediction of Winter Wheat Yield Based on Multi-Source Data and Machine Learning in China. Remote Sens. 2020, 12, 236. [Google Scholar] [CrossRef]









| Vegetation Index | Computing Formula | Document | |
|---|---|---|---|
| MTCI | Meris Terrestrial Chlorophyll Index | [29] | |
| PSRI | Plant Senescence Reflectance Index | [30] | |
| PRI | Photochemical Reflectance Index | [31] | |
| TCARI | Transformed Chlorophyll Absorption Reflectance Index | [32] | |
| CARI | Chlorophyll Absorption Ratio Index | [32] | |
| NDVI | Normalized Difference Vegetation Index | [33] | |
| GNDVI | Green normalized difference vegetation index | [33] | |
| MSAVI | Modified Soil-Adjusted Vegetation Index | [34] | |
| VARI | Visible Atmospherically Resistant Index | [35] | |
| RVI | Ratio Vegetation Index | [35] | |
| GRVI | Green-Red Vegetation Index | [36] | |
| CRI | Carotenoid Reflectance Index | [37] | |
| ARVI | Atmospherically Resistant Vegetation Index | [38] | |
| SR | Simple Ratio | [39] | |
| TVI | Triangular Vegetation Index | [40] | |
| RDVI | Renormalized Difference Vegetation Index | [41] | |
| EVI | Enhanced Vegetation Index | [42] | |
| MSR | Modified Simple Ratio | [43] | |
| Period | Feature Type | Machine Learning Model | R2 | RMSE/(kg·hm−2) | rRMSE/% |
|---|---|---|---|---|---|
| Flowering period | Vegetation index | SVR | 0.302 | 1606.100 | 32.20% |
| GPR | 0.314 | 1592.700 | 31.93% | ||
| RF | 0.385 | 1507.405 | 30.22% | ||
| DF | 0.414 | 1472.156 | 29.52% | ||
| Feature band | SVR | 0.403 | 1202.851 | 26.71% | |
| GPR | 0.599 | 831.530 | 19.40% | ||
| RF | 0.329 | 1274.876 | 28.81% | ||
| DF | 0.575 | 856.300 | 19.38% | ||
| Vegetation index + Characteristic band | SVR | 0.517 | 1194.800 | 26.55% | |
| GPR | 0.652 | 1014.900 | 20.90% | ||
| RF | 0.582 | 1111.920 | 23.17% | ||
| DF | 0.673 | 983.669 | 19.46% | ||
| Filling period | Vegetation index | SVR | 0.704 | 845.420 | 18.60% |
| GPR | 0.693 | 860.419 | 18.89% | ||
| RF | 0.684 | 873.422 | 19.15% | ||
| DF | 0.729 | 808.270 | 18.07% | ||
| Feature band | SVR | 0.736 | 898.900 | 17.93% | |
| GPR | 0.708 | 1004.927 | 19.80% | ||
| RF | 0.685 | 1043.639 | 20.56% | ||
| DF | 0.728 | 967.520 | 19.06% | ||
| Vegetation index + Characteristic band | SVR | 0.696 | 760.140 | 19.21% | |
| GPR | 0.742 | 701.410 | 17.73% | ||
| RF | 0.709 | 743.604 | 18.79% | ||
| DF | 0.735 | 710.201 | 17.95% | ||
| Flowering period + Filling period | Vegetation index | SVR | 0.736 | 716.780 | 17.03% |
| GPR | 0.706 | 752.570 | 18.30% | ||
| RF | 0.670 | 797.353 | 19.38% | ||
| DF | 0.730 | 721.229 | 17.53% | ||
| Feature band | SVR | 0.652 | 1048.853 | 22.98% | |
| GPR | 0.668 | 1024.700 | 22.45% | ||
| RF | 0.646 | 1058.113 | 23.19% | ||
| DF | 0.760 | 872.010 | 19.11% | ||
| Vegetation index + Characteristic band | SVR | 0.738 | 710.084 | 17.35% | |
| GPR | 0.769 | 667.440 | 16.31% | ||
| RF | 0.725 | 727.100 | 17.76% | ||
| DF | 0.786 | 641.470 | 15.67% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wang, X.; Wang, Y.; Wu, H.; Kang, C.; Sun, J.; Gao, X.; Feng, M.; Zhao, Y.; Xiao, L. Hyperspectral Yield Estimation of Winter Wheat Based on Information Fusion of Critical Growth Stages. Agronomy 2026, 16, 186. https://doi.org/10.3390/agronomy16020186
Wang X, Wang Y, Wu H, Kang C, Sun J, Gao X, Feng M, Zhao Y, Xiao L. Hyperspectral Yield Estimation of Winter Wheat Based on Information Fusion of Critical Growth Stages. Agronomy. 2026; 16(2):186. https://doi.org/10.3390/agronomy16020186
Chicago/Turabian StyleWang, Xuebing, Yufei Wang, Haoyong Wu, Chenhai Kang, Jiang Sun, Xianjie Gao, Meichen Feng, Yu Zhao, and Lujie Xiao. 2026. "Hyperspectral Yield Estimation of Winter Wheat Based on Information Fusion of Critical Growth Stages" Agronomy 16, no. 2: 186. https://doi.org/10.3390/agronomy16020186
APA StyleWang, X., Wang, Y., Wu, H., Kang, C., Sun, J., Gao, X., Feng, M., Zhao, Y., & Xiao, L. (2026). Hyperspectral Yield Estimation of Winter Wheat Based on Information Fusion of Critical Growth Stages. Agronomy, 16(2), 186. https://doi.org/10.3390/agronomy16020186

