Spring Frost Stress Resistance Under the Effects of Different Rootstock–Scion Grafting Combinations and Own-Rooted Vines
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Design
2.2. Determination of Relative Electrical Conductivity (REL), Chlorophyll Fluorescence, and Chlorophyll Content
2.3. Determination of Malondialdehyde (MDA) Content, Soluble Sugar Content, and Proline Content
2.4. Determination of Hydrogen Peroxide and Antioxidant Enzyme Activities
2.5. Determination of the Expression Levels of VvCBF-Related Genes in Leaves
2.6. Date Analyses
3. Results
3.1. Effects of Frost Stress on Photosynthetic Parameters
3.2. Cell Membrane Stability in Response to Frost Stress
3.3. Effects of Frost Stress on the Osmotic Adjustment Substances in the Leaves
3.4. Effects of Frost Stress on Reactive Oxygen Species and Antioxidant Enzyme Activities
3.5. Effects of Rootstocks on CBF-Related Genes in the Leaves of ‘Cabernet Sauvignon’ and ‘Chardonnay’
3.6. Heatmap
4. Discussion
4.1. Variation in Stress Adaptation Among Grapevine Cultivars
4.2. Rootstocks Improved the Frost Stress Resistance of Scion
4.3. Impact of Scion on the Tolerance of Rootstock and Practical Rootstock Selection
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABA | Abscisic acid |
| APX | Ascorbate peroxidase |
| CAT | Catalase |
| CBFs | C-repeat binding factors |
| MDA | Malondialdehyde |
| POD | Peroxidase |
| SA | Salicylic acid |
| ROS | Reactive oxygen species |
| SOD | Superoxide dismutase |
References
- Yang, Y.; Zhang, L.; Chen, Y.Y.; Zhai, Y.J.; Li, H.Y. Study on the temporal regularity of spring frost in wine grape planting areas of the eastern foot of Helan Mountain, Ningxia. J. Nat. Disasters 2017, 26, 84–90. [Google Scholar]
- Chen, W.P.; Zhang, X.Y.; Cui, P.; Feng, Y.B.; Su, L.; Li, R.P.; Lou, S.H.; Xu, Z.H. Investigation on late spring frost of wine grapes in the eastern foot of Helan Mountain in 2020. Ningxia J. Agric. For. Sci. Technol. 2020, 61, 51–53. [Google Scholar]
- Del Zozzo, F.; Canavera, G.; Pagani, S.; Gatti, M.; Poni, S.; Frioni, T. Post-spring frost canopy recovery, vine balance, and fruit composition in cv. barbera grapevines. Aust. J. Grape Wine Res. 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Terpou, A.; Arvaniti, O.S.; Afratis, N.; Athanasiou, G.; Binard, F.; Zahariadis, T. Sustainable solutions for mitigating spring frost effects on grape and wine quality: Facilitating digital transactions in the viniculture sector. Sustain. Food Technol. 2024, 2, 967–975. [Google Scholar] [CrossRef]
- Sun, Y.; Li, M.M.; Han, B.; Yin, Y.G.; Zhao, S.J.; Guo, Z.J. Identification and comprehensive evaluation of cold resistance of roots in six grape varieties. North. Hortic. 2021, 30–37. [Google Scholar]
- Sanderson, M.G.; Teixeira, M.; Fontes, N.; Silva, S.; Graça, A. Climate impacts on vines in the upper Douro valley: Cold air pooling and unprecedented rainfall. BIO Web Conf. 2023, 68, 01035. [Google Scholar] [CrossRef]
- Jahed, K.R.; Saini, A.K.; Sherif, S.M. Coping with the cold: Unveiling cryoprotectants, molecular signaling pathways, and strategies for cold stress resilience. Front. Plant Sci. 2023, 14, 1246093. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, W.K.; Gao, X.T.; He, L.; Yang, X.H.; He, F.; Wang, J. Rootstock-mediated effects on Cabernet Sauvignon performance: Vine growth, berry ripening, flavonoids, and aromatic profiles. Int. J. Mol. Sci. 2019, 20, 401. [Google Scholar] [CrossRef]
- Ershadi, A.; Karimi, R.; Mahdei, K.N. Freezing tolerance and its relationship with soluble carbohydrates, proline and water content in 12 grapevine cultivars. Acta Physiol. Plant 2016, 38, 2. [Google Scholar] [CrossRef]
- Chai, F.; Liu, W.; Xiang, Y.; Meng, X.; Sun, X.; Cheng, C.; Li, S. Comparative metabolic profiling of Vitis amurensis and Vitis vinifera during cold acclimation. Hortic. Res. 2019, 6, 8–12. [Google Scholar] [CrossRef]
- Cindric, P.; Korac, N. Frost Resistance of Grapevine Cultivars of Different Origin. Vitis 1990, 29, 340–351. [Google Scholar]
- Warschefsky, E.J.; Klein, L.L.; Frank, M.H.; Chitwood, D.H.; Londo, J.P.; von Wettberg, E.J.; Miller, A.J. Rootstocks: Diversity, domestication, and impacts on shoot phenotypes. Trends Plant Sci. 2016, 21, 418–437. [Google Scholar] [CrossRef]
- Zhao, B.L.; Li, X.Y.; Zhang, L.J. Study on cold resistance differences of shoots between Cabernet Sauvignon and Flame Seedless grapes with different rootstocks. Sino-Overseas Grapevine Wine 2014, 6–11. [Google Scholar]
- Mauro, R.P.; Pérez-Alfocea, F.; Cookson, S.J.; Ollat, N.; Vitale, A. Physiological and molecular aspects of plant rootstock-scion interactions. Front. Plant Sci. 2022, 13, 852518. [Google Scholar] [CrossRef]
- Yıldırım, K.; Yağcı, A.; Sucu, S.; Tunç, S. Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol. Biochem. 2018, 127, 256–268. [Google Scholar] [CrossRef] [PubMed]
- Chitarra, W.; Perrone, I.; Avanzato, C.G.; Minio, A.; Boccacci, P.; Santini, D.; Gilardi, G.; Siciliano, I.; Gullino, M.L.; Delledonne, M.; et al. Grapevine grafting: Scion transcript profiling and defense-related metabolites induced by rootstocks. Front. Plant Sci. 2017, 8, 654. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.; Zhang, T.; Liu, J.; Sun, X.; Sun, X.; Wang, W.; Zheng, C. Interactions between rootstock and scion during grafting and their molecular regulation mechanism. Sci. Hortic. 2023, 308, 111554. [Google Scholar] [CrossRef]
- Jiao, S.; Zeng, F.; Huang, Y.; Zhang, L.; Mao, J.; Chen, B. Physiological, biochemical and molecular responses associated with drought tolerance in grafted grapevine. BMC Plant Biol. 2023, 23, 110. [Google Scholar] [CrossRef]
- Provost, C.; Campbell, A.; Dumont, F. Rootstocks impact yield, fruit composition, nutrient deficiencies, and winter survival of hybrid cultivars in eastern Canada. Horticulturae 2021, 7, 237. [Google Scholar] [CrossRef]
- Sabbatini, P.; Howell, G.S. Rootstock Scion Interaction and Effects on Vine Vigor, Phenology, and Cold Hardiness of Interspecific Hybrid Grape Cultivars (Vitis spp.). Int. J. Fruit. Sci. 2013, 13, 466–477. [Google Scholar] [CrossRef]
- Hebert-Hache, A.; Inglis, D.; Kemp, B.; Willwerth, J.J. Clone and rootstock interactions influence the cold hardiness of vitis vinifera cvs. riesling and sauvignon blanc. Am. J. Enol. Vitic. 2021, 72, 126–136. [Google Scholar] [CrossRef]
- Graff, E.; Montague, T.; Kar, S. Secondary Bud Growth and Fruitfulness of Vitis vinifera L. ‘Grenache’ Grafted to Three Different Rootstocks and Grown within the Texas High Plains AVA. Int. J. Fruit. Sci. 2022, 22, 64–77. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, M.; Wu, L.; Wang, H.; Liang, Y.; Wang, X.; Xi, Z. Screening of efficient antifreeze agents to prevent low-temperature stress in vines. Agronomy 2024, 15, 48. [Google Scholar] [CrossRef]
- Su, W.Z.; Li, G.X.; Zhu, Q.L.; Zhang, Y.; Wang, Q.; Wu, C.J. Effects of phthalic acid on seed germination and seedling growth of pepper. North. Hortic. 2021, 24, 8–15. [Google Scholar]
- Monteiro, A.; Pereira, S.; Bernardo, S.; Gómez-Cadenas, A.; Moutinho-Pereira, J.; Dinis, L.T. Biochemical analysis of three red grapevine varieties during three phenological periods grown under Mediterranean climate conditions. Plant Biol. 2024, 26, 855–867. [Google Scholar] [CrossRef]
- Madebo, M.P.; Li, W.A.; Zheng, Y.H.; Peng, J.I. Melatonin treatment induces chilling tolerance by regulating the contents of polyamine, γ-aminobutyric acid, and proline in cucumber fruit. J. Integr. Agric. 2021, 20, 3060–3074. [Google Scholar] [CrossRef]
- Fang, X.; Lin, Y.L.; Chen, C.; Pervaiz, T.; Wang, X.; Luo, H.F.; Fang, J.G.; Shangguan, L.F. Whole genome identification of CBF gene families and expression analysis in Vitis vinifera L. Czech J. Genet. Plant Breed 2023, 59, 119–132. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.; Wang, X.; Xi, Z. An AP2/ERF transcription factor VvERF63 positively regulates cold tolerance in Arabidopsis and grape leaves. Environ. Exp. Bot. 2023, 205, 105124. [Google Scholar] [CrossRef]
- Huang, H.; Yan, L.; Lü, Y.; Ding, X.Y.; Cai, J.S.; Cheng, Y.; Zhang, X.K.; Zou, X.L. Evaluation and material screening of low-temperature tolerance during germination stage in Brassica napus. Chin. J. Oil Crop Sci. 2019, 41, 723–734. [Google Scholar]
- Baltazar, M.; Castro, I.; Gonçalves, B. Adaptation to Climate Change in Viticulture: The Role of Varietal Selection—A Review. Plants 2025, 14, 104. [Google Scholar] [CrossRef]
- Anjum, N.A.; Sharma, P.; Gill, S.S.; Hasanuzzaman, M.; Khan, E.A.; Kachhap, K.; Mohamed, A.A.; Thangavel, P.; Devi, G.D.; Vasudhevan, P.; et al. Catalase and ascorbate peroxidase—Representative H2O2-detoxifying heme enzymes in plants. Environ. Sci. Pollut. Res. 2016, 23, 19002–19029. [Google Scholar] [CrossRef]
- Chang, Q.; Zhu, Y.F.; Gao, B.; Hao, Y. Comprehensive evaluation of shoot cold hardiness of 12 grape rootstock varieties. Subtrop. Plant Sci. 2024, 53, 137–142. [Google Scholar]
- Jiang, H.Y.; Lei, T.X.; Li, W.; He, B. Changes in sugar content and cell structure of different tissues of Beta and Cabernet Sauvignon grape under low temperature stress. J. Fruit. Sci. 2015, 32, 604–611. [Google Scholar]
- Cao, J.D.; Chen, B.H.; Wang, L.J.; Mao, J.; Zhao, X. Screening and evaluation of physiological indexes for cold resistance of grape. Acta Bot. Boreal.-Occid. Sin. 2010, 30, 2232–2239. [Google Scholar]
- Song, R.G.; Lu, W.P.; Shen, Y.J.; Jin, R.H.; Li, X.H.; Guo, Z.G.; Liu, J.K.; Lin, X.G. Breeding of ‘Beibinghong’, a new ice wine grape cultivar. Sino-Overseas Grapevine Wine 2008, 19–22. [Google Scholar]
- Wang, F.W.; Liu, Y.; Wu, X.Y.; Li, X.W.; Li, H.Y. Cloning and expression analysis of VaCBF1 transcription factor gene from Vitis amurensis. J. Northwest AF Univ. (Nat. Sci. Ed.) 2013, 41, 86–92. [Google Scholar]
- Zulfiqar, F.; Ashraf, M. Proline alleviates abiotic stress-induced oxidative stress in plants. J. Plant Growth Regul. 2023, 42, 4629–4651. [Google Scholar] [CrossRef]
- Deshmukh, N.A.; Takale, S.R.; Patil, N.M.; Gat, S.D.; Nikumbhe, P.H.; Banerjee, K. Optimizing rootstock choice for enhanced photosynthetic efficiency, antioxidant activity and yield of grapes under semi-arid climate. Appl. Fruit. Sci. 2025, 67, 320. [Google Scholar] [CrossRef]
- Wang, T.; Deng, L.; Huang, S.; Xiong, B.; Ihtisham, M.; Zheng, Z.; Zheng, W.; Qin, Z.; Zhang, M.; Sun, G.; et al. Genetic relationship, SPAD reading, and soluble sugar content as indices for evaluating the graft compatibility of citrus interstocks. Biology 2022, 11, 1639. [Google Scholar] [CrossRef]
- Li, S.C.; Hu, H.Y.; Wang, Z.P. Effects of different rootstocks on growth and photosynthetic characteristics of one-year-old Chardonnay grapevines. Jiangsu Agric. Sci. 2016, 44, 213–215. [Google Scholar]
- Smeekens, S.; Ma, J.; Hanson, J.; Rolland, F. Sugar signals and molecular networks controlling plant growth. Curr. Opin. Plant Biol. 2010, 13, 273–278. [Google Scholar] [CrossRef]
- Rolland, F.; Baena-Gonzalez, E.; Sheen, J. Sugar sensing and signaling in plants: Conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006, 57, 675–709. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.L.; Wang, Z.X.; He, Y.F.; Xue, S.; Zhang, S.Q.; Pei, M.S.; Liu, H.N.; Yu, Y.H.; Guo, D.L. Proline synthesis and catabolism-related genes synergistically regulate proline accumulation in response to abiotic stresses in grapevines. Sci. Hortic. 2022, 305, 111373. [Google Scholar] [CrossRef]
- Albacete, A.; Martínez-Andújar, C.; Martínez-Pérez, A.; Thompson, A.J.; Dodd, I.C.; Pérez-Alfocea, F. Unravelling rootstock × scion interactions to improve food security. J. Exp. Bot. 2015, 66, 2211–2226. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Fan, P.G.; Li, S.H.; Liang, Z.C. Advances in understanding cold tolerance in grapevine. Plant Physiol. 2023, 192, 1733–1746. [Google Scholar] [CrossRef]
- Sallaku, G.; Rewald, B.; Sanden, H.; Balliu, A. Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants. Front. Plant Sci. 2022, 13, 949086. [Google Scholar] [CrossRef]
- Lailheugue, V.; Darriaut, R.; Tran, J.; Morel, M.; Marguerit, E.; Lauvergeat, V. Both the scion and rootstock of grafted grapevines influence the rhizosphere and root endophyte microbiomes, but rootstocks have a greater impact. Environ. Microbiome 2024, 19, 24. [Google Scholar] [CrossRef] [PubMed]
- Vink, S.N.; Dini-Andreote, F.; Höfle, R.; Kicherer, A.; Salles, J.F. Interactive Effects of Scion and Rootstock Genotypes on the Root Microbiome of Grapevines (Vitis spp. L.). Appl. Sci. 2021, 11, 1615. [Google Scholar] [CrossRef]
- Miller, D.P.; Howell, G.S.; Striegler, R.K. Cane and Bud Hardiness of Own-Rooted White Riesling and Scions of White Riesling and Chardonnay Grafted to Selected Rootstocks. Am. J. Enol. Vitic. 1988, 39, 60–66. [Google Scholar] [CrossRef]
- Bascuñán-Godoy, L.; Franck, N.; Zamorano, D.; Sanhueza, C.; Carvajal, D.E.; Ibacache, A. Rootstock effect on irrigated grapevine yield under arid climate conditions are explained by changes in traits related to light absorption of the scion. Sci. Hortic. 2017, 218, 284–292. [Google Scholar] [CrossRef]
- Sun, L.-L.; Du, Y.-P.; Duan, Q.-Y.; Zhai, H. Root temperature regulated frost damage in leaves of the grapevine Vitis vinifera L. Aust. J. Grape Wine Res. 2018, 24, 181–189. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Bieniasz, M.; Błaszczyk, J.; Banach, P. The effect of rootstocks on the growth, yield and fruit quality of hybrid grape varieties in cold climate condition. Hortic. Sci. 2022, 49, 78–88. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Huang, C.; Lu, H.; Zhang, W.; Wang, Y.; Smith, H.; Wang, X.; Wang, X.; Xi, Z. Spring Frost Stress Resistance Under the Effects of Different Rootstock–Scion Grafting Combinations and Own-Rooted Vines. Agronomy 2026, 16, 90. https://doi.org/10.3390/agronomy16010090
Huang C, Lu H, Zhang W, Wang Y, Smith H, Wang X, Wang X, Xi Z. Spring Frost Stress Resistance Under the Effects of Different Rootstock–Scion Grafting Combinations and Own-Rooted Vines. Agronomy. 2026; 16(1):90. https://doi.org/10.3390/agronomy16010090
Chicago/Turabian StyleHuang, Chaowei, Hongda Lu, Wanqing Zhang, Yuting Wang, Harley Smith, Xianhang Wang, Xuefei Wang, and Zhumei Xi. 2026. "Spring Frost Stress Resistance Under the Effects of Different Rootstock–Scion Grafting Combinations and Own-Rooted Vines" Agronomy 16, no. 1: 90. https://doi.org/10.3390/agronomy16010090
APA StyleHuang, C., Lu, H., Zhang, W., Wang, Y., Smith, H., Wang, X., Wang, X., & Xi, Z. (2026). Spring Frost Stress Resistance Under the Effects of Different Rootstock–Scion Grafting Combinations and Own-Rooted Vines. Agronomy, 16(1), 90. https://doi.org/10.3390/agronomy16010090

