Faba Bean–Oat Mixtures Modify Rhizosphere Microbiota and Nutrient–Biomass Regulation on the Qinghai–Tibetan Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Sites and Sampling
2.2. Soil Physicochemical Analyses
2.3. DNA Extraction, Amplification, Sequencing, and Sequence Analysis
2.4. Statistical Analysis
3. Results
3.1. Biomass Reduction and Soil Changes
3.2. Bacterial Communities Under Monoculture and Grass–Legume Mixtures
3.3. Source Tracker Analysis of Microbial Origin in Mixtures
3.4. Analysis of Bacterial Community Stability, Niche, and Assembly Processes Under Monoculture and Mixtures
3.5. Structural Equation Modeling Analysis of the Relationships Between Biomass, Soil Physicochemical Properties, and Bacterial Communities
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bacheva, V.; Madison, I.; Baldwin, M.; Baker, J.; Beilstein, M.; Call, D.F.; Deaver, J.A.; Efimenko, K.; Genzer, J.; Grieger, K.; et al. Transdisciplinary Collaborations for Advancing Sustainable and Resilient Agricultural Systems. Glob. Change Biol. 2025, 31, e70142. [Google Scholar] [CrossRef]
- Makate, C.; Wang, R.; Makate, M.; Mango, N. Crop diversification and livelihoods of smallholder farmers in Zimbabwe: Adaptive management for environmental change. SpringerPlus 2016, 5, 1135. [Google Scholar] [CrossRef]
- Fujiwara, R.; Nashida, H.; Fukushima, M.; Suzuki, N.; Sato, H.; Sanada, Y.; Akiyama, Y. Convolutional Neural Network Models Help Effectively Estimate Legume Coverage in Grass-Legume Mixed Swards. Front. Plant Sci. 2022, 12, 763479. [Google Scholar] [CrossRef]
- Yan, H.; Gu, S.; Li, S.; Shen, W.; Zhou, X.; Yu, H.; Ma, K.; Zhao, Y.; Wang, Y.; Zheng, H.; et al. Grass-legume mixtures enhance forage production via the bacterial community. Agric. Ecosyst. Environ. 2022, 338, 108087. [Google Scholar] [CrossRef]
- Mousa, K.M.; Metwaly, M.M.; Alshehri, M.A.; Sayed, S.M.; Rakha, O.M. Soil pH alters the biological parameters of cowpea aphid Aphis craccivora Koch (Hemiptera: Aphididae) on its host plant Vicia faba. Saudi J. Biol. Sci. 2022, 29, 2926–2932. [Google Scholar] [CrossRef]
- Alemayehu, G.F.; Forsido, S.F.; Tola, Y.B.; Amare, E. Nutritional and Phytochemical Composition and Associated Health Benefits of Oat (Avena sativa) Grains and Oat-Based Fermented Food Products. Sci. World J. 2023, 2013, 2730175. [Google Scholar] [CrossRef] [PubMed]
- Pantigoso, H.A.; Newberger, D.; Vivanco, J.M. The rhizosphere microbiome: Plant-microbial interactions for resource acquisition. J. Appl. Microbiol. 2022, 133, 2864–2876. [Google Scholar] [CrossRef] [PubMed]
- Jiang, P.; Wang, Y.; Zhang, Y.; Fei, J.; Rong, X.; Peng, J.; Yin, L.; Zhou, X.; Luo, G. Enhanced productivity of maize through intercropping is associated with community composition, core species, and network complexity of abundant microbiota in rhizosphere soil. Geoderma 2024, 442, 116786. [Google Scholar] [CrossRef]
- Philippot, L.; Griffiths, B.S.; Langenheder, S. Microbial Community Resilience across Ecosystems and Multiple Disturbances. Microbiol. Mol. Biol. Rev. 2021, 85, e00026-20. [Google Scholar] [CrossRef] [PubMed]
- Muller, E.E. Determining Microbial Niche Breadth in the Environment for Better Ecosystem Fate Predictions. mSystems 2019, 4, e00080-19. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Bao, X.; Xie, H.; Ba, X.; Yu, Y.; Yang, Y.; He, H.; Liang, C.; Zhang, X. Contrasting seasonal effects of legume and grass cover crops as living mulch on the soil microbial community and nutrient metabolic limitations. Agric. Ecosyst. Environ. 2025, 380, 109374. [Google Scholar] [CrossRef]
- Zhang, G.; Chai, J.; Zhao, G.; Zeng, L. Study on the Adaptability of 15 Oat Varieties in Different Ecological Regions. Agronomy 2025, 15, 391. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, X.; Zheng, K.; Gu, S.; Yu, H.; Ma, K.; Zhao, Y.; Wang, Y.; Zheng, H.; Liu, H.; et al. Response of Organic Fertilizer Application to Soil Microorganisms and Forage Biomass in Grass–Legume Mixtures. Agronomy 2023, 13, 481. [Google Scholar] [CrossRef]
- Liu, T.; Wu, X.; Li, H.; Alharbi, H.; Wang, J.; Dang, P.; Chen, X.; Kuzyakov, Y.; Yan, W. Soil organic matter, nitrogen and pH driven change in bacterial community following forest conversion. For. Ecol. Manag. 2020, 477, 118473. [Google Scholar] [CrossRef]
- Li, X.; Huo, S.; Xi, B. Updating the resolution for 16S rRNA OTUs clustering reveals the cryptic cyanobacterial genus and species. Ecol. Indic. 2020, 117, 106695. [Google Scholar] [CrossRef]
- Yan, H.; Jin, X.; Zhou, X.; Gu, S.; Wu, X.; Li, P.; Shi, D.; Liu, H.; Lu, G.; Deng, Y. Long-term cultivation of grass–legume mixtures changed the assembly process of the microbial community and increased microbial community stability. ISME Commun. 2024, 5, ycae157. [Google Scholar] [CrossRef] [PubMed]
- Knights, D.; Kuczynski, J.; Charlson, E.S.; Zaneveld, J.; Mozer, M.C.; Collman, R.G.; Bushman, F.D.; Knight, R.; Kelley, S.T. Bayesian community-wide culture-independent microbial source tracking. Nat. Methods 2011, 8, 761–763. [Google Scholar] [CrossRef]
- Pei, L.; Wu, Z.; Qian, Y.; Li, X.; Zhang, J.; Sun, J.; Wang, Y. Plant community stability, indicator species and their driving factors at a gradient of grazing intensity in an alpine meadow. Ecol. Indic. 2024, 162, 112012. [Google Scholar] [CrossRef]
- Ahmad, M.; Sharma, P.; Rathee, S.; Singh, H.P.; Batish, D.R.; Lone, G.R.; Kaur, S.; Jaryan, V.; Kohli, R.K. Niche width analyses facilitate identification of high-risk endemic species at high altitudes in western Himalayas. Ecol. Indic. 2021, 126, 107653. [Google Scholar] [CrossRef]
- Finn, D.R.; Yu, J.; Ilhan, Z.E.; Fernandes, V.M.C.; Penton, C.R.; Krajmalnik-Brown, R.; Garcia-Pichel, F.; Vogel, T.M. MicroNiche: An R package for assessing microbial niche breadth and overlap from amplicon sequencing data. FEMS Microbiol. Ecol. 2020, 96, fiaa131. [Google Scholar] [CrossRef]
- Ning, D.; Deng, Y.; Tiedje, J.M.; Zhou, J. A general framework for quantitatively assessing ecological stochasticity. Proc. Natl. Acad. Sci. USA 2019, 116, 16892–16898. [Google Scholar] [CrossRef]
- Bastida, F.; Eldridge, D.J.; García, C.; Kenny Png, G.; Bardgett, R.D.; Delgado-Baquerizo, M. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021, 15, 2081–2091. [Google Scholar] [CrossRef] [PubMed]
- Jiao, S.; Chen, W.; Wang, J.; Du, N.; Li, Q.; Wei, G. Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 2018, 6, 146. [Google Scholar] [CrossRef]
- Browne, M.W.; Cudeck, R. Alternative Ways of Assessing Model Fit. Sociol. Methods 1992, 21, 230–258. [Google Scholar] [CrossRef]
- Enders, C.K.; Bandalos, D.L. The Relative Performance of Full Information Maximum Likelihood Estimation for Missing Data in Structural Equation Models. Struct. Equ. Model. Multidiscip. J. 2001, 8, 430–457. [Google Scholar] [CrossRef]
- Rosseel, Y. lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Y.; Hardrath, A.; Jin, H.; Van Kleunen, M. Increases in multiple resources promote competitive ability of naturalized non-native plants. Commun. Biol. 2022, 5, 1150. [Google Scholar] [CrossRef]
- Johnson, R.; Vishwakarma, K.; Hossen, M.S.; Kumar, V.; Shackira, A.M.; Puthur, J.T.; Abdi, G.; Sarraf, M.; Hasanuzzaman, M. Potassium in plants: Growth regulation, signaling, and environmental stress tolerance. Plant Physiol. Biochem. 2022, 172, 56–69. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed]
- Mendoza-Suárez, M.; Akyol, T.Y.; Nadzieja, M.; Andersen, S.U. Increased diversity of beneficial rhizobia enhances faba bean growth. Nat. Commun. 2024, 15, 10673. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.R.; Zhalnina, K.; Yuan, M.; Herman, D.; Ceja-Navarro, J.A.; Sasse, J.; Jordan, J.S.; Bowen, B.P.; Wu, L.; Fossum, C.; et al. Nutrient and moisture limitations reveal keystone metabolites linking rhizosphere metabolomes and microbiomes. Proc. Natl. Acad. Sci. USA 2024, 121, e2303439121. [Google Scholar] [CrossRef]
- Wiesenbauer, J.; Gorka, S.; Jenab, K.; Schuster, R.; Kumar, N.; Rottensteiner, C.; König, A.; Kraemer, S.; Inselsbacher, E.; Kaiser, C. Preferential use of organic acids over sugars by soil microbes in simulated root exudation. Soil Biol. Biochem. 2025, 203, 109738. [Google Scholar] [CrossRef]
- Lu, Z.; Ren, T.; Li, Y.; Cakmak, I.; Lu, J. Nutrient limitations on photosynthesis: From individual to combinational stresses. Trends Plant Science 2025, 30, 872–885. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, G.; Chen, H.; Chen, C.; Wang, J.; Ai, S.; Wei, D.; Li, D.; Ma, B.; Tang, C.; et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J. 2020, 14, 757–770. [Google Scholar] [CrossRef]
- Kaye, J.P.; Hart, S.C. Competition for nitrogen between plants and soil microorganisms. Trends Ecol. Evol. 1997, 12, 139–143. [Google Scholar] [CrossRef]
- Dhungana, I.; Kantar, M.B.; Nguyen, N.H. Root exudate composition from different plant species influences the growth of rhizosphere bacteria. Rhizosphere 2023, 25, 100645. [Google Scholar] [CrossRef]
- Schwember, A.R.; Schulze, J.; Del Pozo, A.; Cabeza, R.A. Regulation of Symbiotic Nitrogen Fixation in Legume Root Nodules. Plants 2019, 8, 333. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, X.; Zhao, B.; Yan, C.; Zhao, H.; Zhang, H.; Halamka, T.A.; Peel, R.H.; Vreeken, M.; Gallego-Sala, A.V.; et al. Microbial responses to changing plant community protect peatland carbon stores during Holocene drying. Nat. Commun. 2025, 16, 6912. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Lee, S.H.; Jo, H.Y.; Finneran, K.T.; Kwon, M.J. Diversity and composition of soil Acidobacteria and Proteobacteria communities as a bacterial indicator of past land-use change from forest to farmland. Sci. Total Environ. 2021, 797, 148944. [Google Scholar] [CrossRef]
- Mujakić, I.; Piwosz, K.; Koblížek, M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022, 10, 151. [Google Scholar] [CrossRef]
- Mitra, D.; Mondal, R.; Khoshru, B.; Senapati, A.; Radha, T.K.; Mahakur, B.; Uniyal, N.; Myo, E.M.; Boutaj, H.; Sierra, B.E.G.; et al. Actinobacteria-enhanced plant growth, nutrient acquisition, and crop protection: Advances in soil, plant, and microbial multifactorial interactions. Pedosphere 2022, 32, 149–170. [Google Scholar] [CrossRef]
- Hu, L.; Robert, C.A.; Cadot, S.; Zhang, X.I.; Ye, M.; Li, B.; Manzo, D.; Chervet, N.; Steinger, T.; Van Der Heijden, M.G.; et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota. Nat. Commun. 2018, 9, 2738. [Google Scholar] [CrossRef]
- Chen, Y.J.; Leung, P.M.; Wood, J.L.; Bay, S.K.; Hugenholtz, P.; Kessler, A.J.; Shelley, G.; Waite, D.W.; Franks, A.E.; Cook, P.L.; et al. Metabolic flexibility allows bacterial habitat generalists to become dominant in a frequently disturbed ecosystem. ISME J. 2021, 15, 2986–3004. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.G.; Cheng, Z.G.; Batool, A.; Wang, Y.B.; Wang, J.; Zhou, R.; Khan, A.; Zhu, S.Y.; Yang, Y.M.; Wang, W.; et al. Plant facilitation shifts along with soil moisture and phosphorus gradients via rhizosphere interaction in the maize-grass pea intercropping system. Ecol. Indic. 2022, 139, 108901. [Google Scholar] [CrossRef]
- Wahbi, S.; Prin, Y.; Thioulouse, J.; Sanguin, H.; Baudoin, E.; Maghraoui, T.; Oufdou, K.; Le Roux, C.; Galiana, A.; Hafidi, M.; et al. Impact of Wheat/Faba Bean Mixed Cropping or Rotation Systems on Soil Microbial Functionalities. Front. Plant Sci. 2016, 7, 1364. [Google Scholar] [CrossRef] [PubMed]
- Zhalnina, K.; Louie, K.B.; Hao, Z.; Mansoori, N.; Da Rocha, U.N.; Shi, S.; Cho, H.; Karaoz, U.; Loqué, D.; Bowen, B.P.; et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 2018, 3, 470–480. [Google Scholar] [CrossRef]
- Rekosz-Burlaga, H.; Garbolinska, M. Characterization of selected groups of microorganisms occurring in soil rhizosphere and phyllosphere of oats. Pol. J. Microbiol. 2006, 55, 227–235. [Google Scholar]
- Jiang, P.; Wang, Y.; Zhang, Y.; Fei, J.; Rong, X.; Peng, J.; Yin, L.; Luo, G. Intercropping enhances maize growth and nutrient uptake by driving the link between rhizosphere metabolites and microbiomes. New Phytol. 2024, 243, 1506–1521. [Google Scholar] [CrossRef]
- Che, Y.; Jin, G. Plant–soil microbial diversity and structural attributes jointly dominate the multifunctionality of the temperate forest. Ecol. Indic. 2024, 166, 112282. [Google Scholar] [CrossRef]
- Chen, Y.; Tao, S.; Ma, J.; Qu, Y.; Sun, Y.; Wang, M.; Cai, Y. New insights into assembly processes and driving factors of urban soil microbial community under environmental stress in Beijing. Sci. Total Environ. 2024, 947, 174551. [Google Scholar] [CrossRef] [PubMed]
- Spohn, M.; Bagchi, S.; Bakker, J.D.; Borer, E.T.; Carbutt, C.; Catford, J.A.; Dickman, C.R.; Eisenhauer, N.; Eskelinen, A.; Hagenah, N.; et al. Interactive and unimodal relationships between plant biomass, abiotic factors, and plant diversity in global grasslands. Commun. Biol. 2025, 8, 97. [Google Scholar] [CrossRef]
- Chen, C.; Xiao, W.; Chen, H.Y. Meta-analysis reveals global variations in plant diversity effects on productivity. Nature 2025, 638, 435–440. [Google Scholar] [CrossRef]
- Ma, W.; Tang, S.; Dengzeng, Z.; Zhang, D.; Zhang, T.; Ma, X. Root exudates contribute to belowground ecosystem hotspots: A review. Front. Microbiol. 2022, 13, 937940. [Google Scholar] [CrossRef] [PubMed]
- Isbell, F.; Reich, P.B.; Tilman, D.; Hobbie, S.E.; Polasky, S.; Binder, S. Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proc. Natl. Acad. Sci. USA 2013, 110, 11911–11916. [Google Scholar] [CrossRef] [PubMed]
- Stomph, T.; Dordas, C.; Baranger, A.; de Rijk, J.; Dong, B.; Evers, J.; Gu, C.; Li, L.; Simon, J.; Jensen, E.S.; et al. Chapter One-Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles? Adv. Agron. 2020, 160, 1–50. [Google Scholar]
- Huber, K.J.; Overmann, J. Vicinamibacteraceae fam. nov., the first described family within the subdivision 6 Acidobacteria. Int. J. Syst. Evol. Microbiol. 2018, 68, 2331–2334. [Google Scholar] [CrossRef]
Planting Pattern | Monoculture | Grass–Legume Mixtures | |
---|---|---|---|
soil physical properties | F | O | MF and MO |
pH | 8.53 ± 0.08 | 8.51 ± 0.59 | 8.50 ± 0.08 |
TN (g/kg) | 1.98 ± 0.21 | 2.21 ± 0.16 | 2.12 ± 0.21 |
TP (g/kg) | 0.57 ± 0.03 * | 0.58 ± 0.03 * | 0.61 ± 0.03 |
TK (g/kg) | 10.79 ± 0.43 | 11.31 ± 0.47 | 10.51 ± 0.32 |
AP (mg/kg) | 14.38 ± 0.87 | 17.72 ± 1.63 ** | 15.73 ± 0.43 |
AK (mg/kg) | 71.30 ± 8.04 | 66.44 ± 7.24 | 59.11 ± 6.39 |
AN (mg/kg) | 102.27 ± 14.91 * | 115.94 ± 11.03 | 116.48 ± 15.62 |
OM (g/kg) | 32.68 ± 1.63 | 32.92 ± 1.91 | 31.47 ± 2.02 |
Effect Type | From→To | Estimate | CI Lower | CI Upper | p |
---|---|---|---|---|---|
Direct (std) | Soil→Freshweight | - | - | - | - |
Direct (std) | Diversity→Freshweight | −0.770 | −0.899 | −0.640 | <0.001 |
Direct (std) | Bcom→Freshweight | - | - | - | - |
Indirect (std) | Bcom→Freshweight (via Diversity) | 0.285 | 0.065 | 0.506 | 0.011 |
Indirect (std) | Soil→Freshweight (via Bcom) | 0.000 | 0.000 | 0.000 | - |
Total (std) | Soil→freshweight | 0.285 | 0.065 | 0.506 | 0.011 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, H.; Jin, X.; Ye, P.; Teng, C.; Liu, Y. Faba Bean–Oat Mixtures Modify Rhizosphere Microbiota and Nutrient–Biomass Regulation on the Qinghai–Tibetan Plateau. Agronomy 2025, 15, 2236. https://doi.org/10.3390/agronomy15092236
Yan H, Jin X, Ye P, Teng C, Liu Y. Faba Bean–Oat Mixtures Modify Rhizosphere Microbiota and Nutrient–Biomass Regulation on the Qinghai–Tibetan Plateau. Agronomy. 2025; 15(9):2236. https://doi.org/10.3390/agronomy15092236
Chicago/Turabian StyleYan, Huilin, Xin Jin, Panda Ye, Changcai Teng, and Yujiao Liu. 2025. "Faba Bean–Oat Mixtures Modify Rhizosphere Microbiota and Nutrient–Biomass Regulation on the Qinghai–Tibetan Plateau" Agronomy 15, no. 9: 2236. https://doi.org/10.3390/agronomy15092236
APA StyleYan, H., Jin, X., Ye, P., Teng, C., & Liu, Y. (2025). Faba Bean–Oat Mixtures Modify Rhizosphere Microbiota and Nutrient–Biomass Regulation on the Qinghai–Tibetan Plateau. Agronomy, 15(9), 2236. https://doi.org/10.3390/agronomy15092236