Parental Origin Influences Seed Quality and Seedling Establishment in Kiwifruit Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Determination of Seed Volume and Weight
2.3. Determination of Physiological Quality by Tetrazolium
2.4. Seed Germination
2.5. Seedling Comparison After Germination
2.6. Statistical Analysis
3. Results
3.1. Seed Volume and Weight
3.2. Seed Viability
3.3. Germination Assessment
3.4. Seedling Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferguson, A.R. 1904—The year that kiwifruit (Actinidia deliciosa) came to New Zealand. N. Z. J. Crop Hortic. Sci. 2004, 32, 3–27. [Google Scholar] [CrossRef]
- Guroo, I.; Wani, S.; Wani, S.; Ahmad, M.; Mir, S.; Masoodi, F. A review of production and processing of kiwifruit. J. Food Process Technol. 2017, 8, 1000699. [Google Scholar] [CrossRef]
- Hazarika, B.N.; Angami, T.; Parthasarathy, V.A.; Hazarika, K.B.N. Kiwifruit. In Fruits: Tropical & Subtropical; Parthasarathy, V.A., Bose, T.K., Mitra, S.K., Ghosh, B., Chakraborty, I., Sanyal, D., Majhi, D., Eds.; Daya Publishing House: New Delhi, India, 2022; Volume 3, pp. 389–457. [Google Scholar]
- Huang, H. Kiwifruit: The Genus Actinidia; Academic Press: San Diego, CA, USA, 2016. [Google Scholar]
- Cruzat, C. O kiwi no Chile e no mundo. Rev. Bras. Frutic. 2014, 36, 112–123. [Google Scholar] [CrossRef]
- Qu, Z.J.; Zhou, G.S. Regionalization of climatic suitability for major kiwifruit cultivars in China. Chin. J. Agrometeorol. 2017, 38, 257–266. Available online: https://zgnyqx.ieda.org.cn/EN/Y2017/V38/I04/257 (accessed on 17 August 2025).
- Kataoka, I.; Matsumoto, H.; Kawano, A.; Ohtani, M.; Suezawa, K. Selection of low-chill kiwifruit adapting to warm climate by utilizing Actinidia rufa native to southwestern part of Japan. Acta Hortic. 2014, 1059, 85–88. [Google Scholar] [CrossRef]
- Iliescu, L.M.; Stan, E.G.; Peticilă, A.G.; Hoza, D.; Asănică, A.C.; Zuccherelli, G.; Stănică, F. Can kiwifruit grow in Romania? Results of the Romanian breeding program after 25 years of research on Actinidia spp. Sci. Pap. Ser. B Hortic. 2022, 56, 56–70. [Google Scholar]
- Cruz-Castillo, J.G.; Reina-García, J.; Guerra-Ramírez, D.; Almaguer-Vargas, G. Producción de kiwi (Actinidia chinensis) como contribución a la soberanía alimentaria frutícola de México. Agro-Divulgación 2022, 2, 59–61. [Google Scholar]
- Challenger, A.; Soberón, J. Los ecosistemas terrestres. In Capital Natural De México; CONABIO: Mexico City, Mexico, 2008; Volume 1, pp. 87–108. [Google Scholar]
- López-Páez, F.K.; Cruz-Castillo, J.G.; Galindo-Tovar, E.; García-Martínez, Á.; Serna-Lagunes, R. Potential zones for the cultivation of Actinidia chinensis var. deliciosa in temperate regions of Veracruz, Mexico. Agro Product. 2023, 16, 41–48. [Google Scholar] [CrossRef]
- Guerra-Ramírez, D.; Galicia-Lucas, M.; Salgado-Escobar, I.; Cruz-Castillo, J.G. Características físico-químicas y funcionales de la fruta kiwi en una zona tropical de altura en México. Rev. Fitotec. Mex. 2021, 44, 103–106. [Google Scholar] [CrossRef]
- David, M.Á.; Yommi, A.; Sánchez, E. Elección Del Terreno Y Plantación Del Cultivo De Kiwi; Ediciones INTA: Buenos Aires, Argentina, 2020; ISBN 9789878333458. [Google Scholar]
- Esfandiari, A.; Norling, C.; Kaji, R.; McLachlan, A.; Mathew, L.; Fleming, M.; Morgan, E.; Nadarajan, J. Variations in seed dormancy occurrence and their classifications in thirteen Actinidia Species. Seeds 2024, 3, 179–195. [Google Scholar] [CrossRef]
- Lastuvka, M.; Benech-Arnold, R.; Windauer, L. A stratification thermal time-based model as a tool for designing efficient methodologies to overcome seed dormancy constraints to kiwifruit seedling production. Sci. Hortic. 2021, 277, 109796. [Google Scholar] [CrossRef]
- Maghdouri, M.; Ghasemnezhad, M.; Rabiei, B.; Golmohammadi, M.; Atak, A. Optimizing seed germination and seedling growth in different kiwifruit genotypes. Horticulturae 2021, 7, 314. [Google Scholar] [CrossRef]
- Çelik, H.; Zenginbal, H.; Özcan, M. Enhancing germination of kiwifruit seeds with temperature, medium and gibberellic acid. Hortic. Sci. 2006, 33, 39–45. [Google Scholar] [CrossRef]
- Bishwas, K.C.; Amit, K.; Santosh, S.; Raj-Kumar, K.C.; Dipendra, R. Effect of GA3 on germination parameters of different varieties of kiwi. Curr. Investig. Agric. Curr. Res. 2018, 4, 186. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Kong, L.; Tang, H. Effects of Different treatment methods on seed germination of kiwifruit. IOP Conf. Ser. Mater. Sci. Eng. 2018, 394, 022034. [Google Scholar] [CrossRef]
- Reina-García, J.D.; Cruz-Castillo, J.G.; Almaguer Vargas, G.; Guerra Ramirez, D.; Castañeda Vildozola, A. Gibberellic acid and warm incubation temperatures as germination stimulants in yellow kiwifruit seeds (Actinidia chinensis var. chinensis). Rev. Fac. Nac. Agron. Medellin 2025, 78, 11069–11076. [Google Scholar] [CrossRef]
- Ambika, S.; Manonmani, V.; Somasundaram, G. Review on effect of seed size on seedling vigour and seed yield. Res. J. Seed Sci. 2014, 7, 31–38. [Google Scholar] [CrossRef]
- Leishman, M.R.; Wright, I.J.; Moles, A.T.; Westoby, M. The evolutionary ecology of seed size. In Seeds; Fenner, M., Ed.; CABI International: Oxon, UK, 2000; p. 31. [Google Scholar]
- Smith, T.M.; Sherman, C.D.H.; Cumming, E.E.; York, P.H.; Jarvis, J.C. Size matters: Variations in seagrass seed size at local scales affects seed performance. Hydrobiologia 2022, 849, 2335–2352. [Google Scholar] [CrossRef]
- Baker, H.G. Seed weight in relation to environmental conditions in California. Ecology 1972, 53, 997–1010. [Google Scholar] [CrossRef]
- Yang, S.J.; Zhang, Y.J.; Zhang, Y.; Peng, J.C.; Liu, C.Y.; Li, D.W.; Guo, W. Divergence in cold tolerance promotes niche differentiation between diploid and polyploid kiwifruits along an altitudinal gradient in southwest China. Oikos 2024, 2024, e10181. [Google Scholar] [CrossRef]
- Li, D.; Liu, Y.; Zhong, C.; Huang, H. Morphological and cytotype variation of wild kiwifruit (Actinidia chinensis complex) along an altitudinal and longitudinal gradient in central-west China. Bot. J. Linn. Soc. 2010, 164, 72–83. [Google Scholar] [CrossRef]
- Sun, S.; Fang, J.; Lin, M.; Qi, X.; Chen, J.; Wang, R.; Li, Z.; Li, Y.; Muhammad, A. Freezing Tolerance and expression of β-Amylase gene in two Actinidia arguta cultivars with seasonal changes. Plants 2020, 9, 515. [Google Scholar] [CrossRef]
- Seal, A.G.; McKenzie, C.M. The effects of interploid pollination on seed development and fruit weight in Actinidia chinensis (kiwifruit). J. Hortic. Sci. Biotechnol. 2025, 100, 437–457. [Google Scholar] [CrossRef]
- Huang, H.; Liu, Y. Natural hybridization, introgression breeding, and cultivar improvement in the genus Actinidia. Tree Genet. Genomes 2014, 10, 1113–1122. [Google Scholar] [CrossRef]
- Mercado, S.A.S.; Caleño, J.D.Q.; Suárez, J.P.R. Optimization of the tetrazolium test in three species of orchids of the Andean Forest. Aust. J. Crop Sci. 2020, 14, 822–830. [Google Scholar] [CrossRef]
- Abedi Gheshlaghi, E. Effect of different cold stratification periods on breakdown of Hayward kiwifruit seed dormancy. Iran. J. Hortic. Sci. Technol. 2018, 19, 497–508. [Google Scholar]
- Windauer, L.B.; Insausti, P.; Biganzoli, F.; Benech-Arnold, R.; Izaguirre, M.M. Dormancy and germination responses of kiwifruit (Actinidia deliciosa) seeds to environmental cues. Seed Sci. Res. 2016, 26, 342–350. [Google Scholar] [CrossRef]
- Feza Ahmad, M. Enhancement of seed germination in kiwi fruit by stratification and gibberellic acid application. Indian J. Hortic. 2010, 67, 34–36. [Google Scholar]
- Sharma, A.; Devkota, D.; Thapa, S.; Sapkota, M.; Bista, B. Improving germination and stand establishment of kiwifruit (Actinidia deliciosa cv. Hayward) seed through media selection and hormonal use in Dolakha, Nepal. Trop. Agrobiodivers. 2021, 2, 16–21. [Google Scholar] [CrossRef]
- González-Zertuche, L.; Orozco-Segovia, A. Métodos de análisis de datos en la germinación de semillas, un ejemplo: Manfreda brachystachya. Bot. Sci. 1996, 58, 15–30. [Google Scholar] [CrossRef]
- Khan, N.; Hamid, F.S.; Khan, M.A.; Ahmad, S.; Sumreen, S.; Ahmed, I.; Ahmad, F.; Islam, S.; Shah, B.H. Critical values of alternative organic amendments on kiwi seedling growth. Soil. Sci. Plant Nutr. 2018, 64, 774–781. [Google Scholar] [CrossRef]
- Esmaeilpour, A.; Van Damme, P. Evaluation of seed soaking times on germination percentage, germination rate and growth characteristics of pistachio seedlings. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): International Symposium on Nut Crops, Brisbane, Australia, 17 August 2014; Acta Horticulturae. International Society for Horticultural Science: Leuven, Belgium, 2016; Volume 1109, pp. 107–112. [Google Scholar]
- Urva; Shafique, H.; Jamil, Y.; Haq, Z.u.; Mujahid, T.; Khan, A.U.; Iqbal, M.; Abbas, M. Low power continuous wave-laser seed irradiation effect on Moringa oleifera germination, seedling growth and biochemical attributes. J. Photochem. Photobiol. B 2017, 170, 314–323. [Google Scholar] [CrossRef]
- Zar, J. Biostatistical-Analysis, 5th ed.; Pearson College Div, Ed.; Pearson: London, UK, 2010. [Google Scholar]
- Mansouri, L.M.; Kheloufi, A.; Belatreche, R. Assessment of the germination potential of Myrtus communis (L.) based on seed size. Reforesta 2024, 17, 10–17. [Google Scholar] [CrossRef]
- Tumpa, K.; Vidaković, A.; Drvodelić, D.; Šango, M.; Idžojtić, M.; Perković, I.; Poljak, I. The effect of seed size on germination and seedling growth in sweet chestnut (Castanea sativa Mill.). Forests 2021, 12, 858. [Google Scholar] [CrossRef]
- Gioria, M.; Pyšek, P.; Baskin, C.C.; Carta, A. Phylogenetic relatedness mediates persistence and density of soil seed banks. J. Ecol. 2020, 108, 2121–2131. [Google Scholar] [CrossRef]
- Boccaccini, A.; Cimini, S.; Kazmi, H.; Lepri, A.; Longo, C.; Lorrai, R.; Vittorioso, P. When size matters: New insights on how seed size can contribute to the early stages of plant development. Plants 2024, 13, 1793. [Google Scholar] [CrossRef]
- Carta, A.; Fernández-Pascual, E.; Gioria, M.; Müller, J.V.; Rivière, S.; Rosbakh, S.; Saatkamp, A.; Vandelook, F.; Mattana, E. Climate shapes the seed germination niche of temperate flowering plants: A meta-analysis of European seed conservation data. Ann. Bot. 2022, 129, 775–786. [Google Scholar] [CrossRef]
- Wang, R.; Bai, Y.; Low, N.H.; Tanino, K. Seed size variation in cold and freezing tolerance during seed germination of winterfat (Krascheninnikovia lanata) (Chenopodiaceae). Can. J. Bot. 2006, 84, 49–59. [Google Scholar] [CrossRef]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and heat-stress effects on seed filling in food crops: Impacts on functional biochemistry, seed yields, and nutritional quality. Front. Plant Sci. 2018, 9, 1705. [Google Scholar] [CrossRef]
- Seal, A.; McGhie, T.; Boldingh, H.; Rees, J.; Blackmore, A.; Jaksons, P.; Machin, T. The effect of pollen donor on fruit weight, seed weight and red colour development in Actinidia chinensis Hort22D. N. Z. J. Crop Hortic. Sci. 2016, 44, 1–12. [Google Scholar] [CrossRef]
- Lee, M.; Kim, H.L.; Joa, J.H.; Kwack, Y.B.; Kim, J.G. Differences in fruit and seed characteristics of kiwifruit ‘Haeguem’ and ‘Redvita’ affected by pollen donors. Hortic. Sci. Technol. 2023, 41, 584–594. [Google Scholar] [CrossRef]
- Chai, Y.; Hong, W.; Liu, H.; Shi, X.; Liu, Y.; Liu, Z. The pollen donor affects seed development, taste, and flavor quality in ‘Hayward’ kiwifruit. Int. J. Mol. Sci. 2023, 24, 8876. [Google Scholar] [CrossRef]
- Yazıcıoğlu, E.; Özcan, M. Effect of PEG-6000 Treatments and growth media on emergence and seedling development of kiwifruit seeds. Erwerbs-Obstbau 2019, 61, 97–102. [Google Scholar] [CrossRef]
- França-Neto, J.d.B.; Krzyzanowski, F.C. Use of the tetrazolium test for estimating the physiological quality of seeds. Seed Sci. Technol. 2022, 50, 31–44. [Google Scholar] [CrossRef]
- Logan, D.P.; Xu, X. Germination of kiwifruit, Actinidia chinensis, after passage through silvereyes, Zosterops Lateralis. N. Z. J. Ecol. 2006, 30, 407–411. [Google Scholar]
- Sekhukhune, M.K.; Nikolova, R.V.; Maila, M.Y. Effect of cold stratification and gibberellic acid on in vitro germination of Actinidia arguta and Actinidia chinensis. Acta Hortic. 2018, 1204, 65–76. [Google Scholar] [CrossRef]
- Donohue, K.; Rubio De Casas, R.; Burghardt, L.; Kovach, K.; Willis, C.G. Germination, postgermination adaptation, and species ecological ranges. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 293–319. [Google Scholar] [CrossRef]
- Donohue, K.; Dorn, L.; Griffith, C.; Kim, E.S.; Aguilera, A.; Polisetty, C.R.; Schmitt, J. Environmental and genetic influences on the germination of Arabidopsis thaliana in the field. Evolution 2005, 59, 740–757. [Google Scholar] [CrossRef]
- Zhao, T.; Li, D.; Li, L.; Han, F.; Liu, X.; Zhang, P.; Chen, M.; Zhong, C. The differentiation of chilling requirements of kiwifruit cultivars related to ploidy variation. HortScience 2017, 52, 1676–1679. [Google Scholar] [CrossRef]
- Tsuji, Y.; Konta, T.; Akbar, M.A.; Hayashida, M. Effects of Japanese marten (Martes melampus) gut passage on germination of Actinidia arguta (Actinidiaceae): Implications for seed dispersal. Acta Oecologica 2020, 105, 103578. [Google Scholar] [CrossRef]
- Rogers, H.S.; Cavazos, B.R.; Gawel, A.M.; Karnish, A.; Ray, C.A.; Rose, E.; Thierry, H.; Fricke, E.C. Frugivore gut passage increases seed germination: An updated meta-analysis. bioRxiv 2021. [Google Scholar] [CrossRef]
- Beckman, N.G.; Sullivan, L.L. The causes and consequences of seed dispersal. Annu. Rev. Ecol. Evol. Syst. 2023, 54, 403–427. [Google Scholar] [CrossRef]
- Serviss, B.E. The genus Actinidia (Actinidiaceae) in north America north of Mexico. Phytoneuron 2022, 28, 1–12. [Google Scholar]
- Ren, R.; Ji, Z.; Guo, J.; Yang, X. Cryopreservation of herbaceous Asteraceae seeds: Effects of seed reserves on seed germination and seedling Regrowth. Cryobiology 2023, 112, 104562. [Google Scholar] [CrossRef] [PubMed]
- Silvertown, J. The paradox of seed size and adaptation. Tree 1989, 4, 24–26. [Google Scholar] [CrossRef] [PubMed]
Codename | Species and/or Variety | Cultivar (cv) | Brand | Origin (cv Growth Place) | Year of Harvest | Fruits |
---|---|---|---|---|---|---|
ADH | A. chinensis var. deliciosa | Hayward | Zespri | Bay of Plenty, New Zealand | 2023 | |
ACG | A. chinensis var. chinensis | GoldenRouge derived from Jintao | Kiwitepec | Veracruz, Mexico | 2023 | |
ACS | A. chinensis var. chinensis | Sungold Zesy 002 | Zespri | Bay of Plenty, New Zealand | 2023 | |
AAP | A. arguta | Passion Poppers | Kiwi Berry Organics Co. | Pennsylvania, USA | 2023 |
ID | T0 (Days) | T50 (Days) | VG | CG (%) |
---|---|---|---|---|
ADH | 8.50 ± 0.28 a | 14.69 ± 0.45 a | 3.24 ± 0.07 a | 82.75 ± 1.65 b |
ACG | 6.75 ± 0.25 b | 13.90 ± 0.48 a | 2.37 ± 0.23 b | 65.00 ± 1.29 c |
ACS | 8.25 ± 0.25 a | 14.32 ± 0.39 a | 2.19 ± 0.17 b | 60.25 ± 1.49 c |
AAP | 6.75 ± 0.25 b | 13.68 ± 0.36 a | 3.41 ± 0.15 a | 90.75 ± 1.03 a |
ID | LR (mm) | LT (mm) | DM (mm) | PF (g) | PS (g) | CR | IV |
---|---|---|---|---|---|---|---|
ADH | 49.17 ± 5.21 a | 19.11 ± 1.24 b | 1.31 ± 0.04 a | 0.19 ± 0.02 b | 0.032 ± 0.00 a | 14.67 ± 0.93 b | 2.68 ± 0.34 a |
ACG | 39.38 ± 4.74 a | 18.44 ± 1.23 b | 1.14 ± 0.04 b | 0.15 ± 0.02 b | 0.023 ± 0.00 b | 16.43 ± 0.97 b | 1.53 ± 0.29 b |
ACS | 44.32 ± 4.97 a | 17.83 ± 1.21 b | 1.11 ± 0.04 b | 0.12 ± 0.02 b | 0.018 ± 0.00 b | 15.44 ± 0.95 b | 1.10 ± 0.28 c |
AAP | 50.68 ± 3.74 a | 28.51 ± 1.03 a | 1.41 ± 0.03 a | 0.26 ± 0.02 a | 0.037 ± 0.00 a | 20.28 ± 0.75 a | 3.38 ± 0.26 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bovio-Zenteno, E.M.; Hernández-Castellanos, B.; Castro-Luna, A.A.; Flores-Estévez, N.; Cruz-Castillo, J.G.; Noa-Carrazana, J.C. Parental Origin Influences Seed Quality and Seedling Establishment in Kiwifruit Cultivars. Agronomy 2025, 15, 2201. https://doi.org/10.3390/agronomy15092201
Bovio-Zenteno EM, Hernández-Castellanos B, Castro-Luna AA, Flores-Estévez N, Cruz-Castillo JG, Noa-Carrazana JC. Parental Origin Influences Seed Quality and Seedling Establishment in Kiwifruit Cultivars. Agronomy. 2025; 15(9):2201. https://doi.org/10.3390/agronomy15092201
Chicago/Turabian StyleBovio-Zenteno, Edgar Manuel, Benito Hernández-Castellanos, Alejandro Antonio Castro-Luna, Norma Flores-Estévez, Juan Guillermo Cruz-Castillo, and Juan Carlos Noa-Carrazana. 2025. "Parental Origin Influences Seed Quality and Seedling Establishment in Kiwifruit Cultivars" Agronomy 15, no. 9: 2201. https://doi.org/10.3390/agronomy15092201
APA StyleBovio-Zenteno, E. M., Hernández-Castellanos, B., Castro-Luna, A. A., Flores-Estévez, N., Cruz-Castillo, J. G., & Noa-Carrazana, J. C. (2025). Parental Origin Influences Seed Quality and Seedling Establishment in Kiwifruit Cultivars. Agronomy, 15(9), 2201. https://doi.org/10.3390/agronomy15092201