Biochar and Soil Water Synergistically Regulating Root Growth to Affect Photosynthesis in Maize (Zea mays L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Soil Properties
2.2. Experiment Materials
2.3. Experiment Design
2.3.1. Pot Experiment
2.3.2. Field Experiment
2.4. Soil Sample Collection and Analysis
2.5. Root Sample Collection and Analysis
2.6. Photosynthetic Parameters
2.7. Statistical Analysis
3. Results
3.1. Soil Water and Roots Under Biochar Application (Pot Experiment, 2023)
3.1.1. Soil Water and Physical Parameters of SWRC
3.1.2. Root Weight Density
3.2. Synergistic Effect of Soil Water and Biochar Application (Pot Experiment, 2024)
3.2.1. Soil Water Suction Under Soil Water and Biochar Application
3.2.2. Relationship Between Root Weight Density and Root Length Density
3.2.3. Relationship Between Soil Water Suction and Root Length Density
3.2.4. Photosynthesis Under Soil Water and Biochar Application
4. Discussion
4.1. Effect of Biochar on Soil Hydraulic Properties
4.2. Effect of Biochar and Soil Water on Root Development
4.3. Effect of Biochar and Soil Water on the Relationship Between Root Density and Photosynthesis
4.4. Synergistic Regulation of Root Water Uptake and Photosynthesis
4.5. Perspectives on Root-Photosynthesis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hodge, A.; Berta, G.; Doussan, C.; Merchan, F.; Martin Crespi, M. Plant root growth, architecture and function. Plant Soil 2009, 321, 153–187. [Google Scholar] [CrossRef]
- Zheng, Y.; Xin, C.; Wang, C.; Sun, X.S.; Yang, W.Q.; Wan, S.B.; Zhang, Y.M.; Feng, H.; Chen, D.X.; Sun, X.W.; et al. Effects of phosphorus fertilizer on root morphology, physiological characteristics and yield in peanut (Arachis hypogaea). Chin. J. Plant Ecol. 2013, 37, 777–785. [Google Scholar] [CrossRef]
- Maan, C.; ten Veldhuis, M.C.; van de Wiel, B.J.H. Dynamic root growth in response to depth-varying soil moisture availability: A rhizobox study. Hydrol. Earth Syst. Sci. 2023, 27, 2341–2355. [Google Scholar] [CrossRef]
- Lima, V.; Keitel, C.; Sutton, B.; Leslie, G. Improved water management using subsurface membrane irrigation during cultivation of Phaseolus vulgaris. Agric. Water Manag. 2019, 223, 105730. [Google Scholar] [CrossRef]
- Souza, L.; Hirmas, D.R.; Sullivan, P.L.; Reuman, D.C.; Kirk, M.F.; Li, L.; Ajami, H.; Wen, H.; Sarto, M.; Loecke, T.D.; et al. Root distributions, precipitation, and soil structure converge to govern soil organic carbon depth distributions. Geoderma 2023, 437, 116569. [Google Scholar] [CrossRef]
- Liang, H.M.; Wang, L.; Gong, F.Q.; Chang, J.K. Functions of plant hormones and calcium signaling in regulating root hydrotropism. J. Plant Physiol. 2025, 308, 154490. [Google Scholar] [CrossRef]
- Wexler, Y.; Schroeder, J.I.; Shkolnik, D. Hydrotropism mechanisms and their interplay with gravitropism. Plant J. 2024, 118, 1732–1746. [Google Scholar] [CrossRef]
- Wang, J.; Du, G.; Tian, J.; Yali Zhang, Y.L.; Jiang, C.D.; Zhang, W.F. Effect of irrigation methods on root growth, root-shoot ratio and yield components of cotton by regulating the growth redundancy of root and shoot. Agric. Water Manag. 2020, 234, 106120. [Google Scholar] [CrossRef]
- Sun, Y.; Robert, C.A.; Thakur, M.P. Drought intensity and duration effects on morphological root traits vary across trait type and plant functional groups: A meta-analysis. BMC Ecol. Evol. 2024, 24, 92. [Google Scholar] [CrossRef] [PubMed]
- Chun, H.C.; Lee, S.H.; Choi, Y.D.; Gong, D.H.; Jung, K.Y. Effects of drought stress on root morphology and spatial distribution of soybean and adzuki bean. Integr. Agric. 2021, 20, 2639–2651. [Google Scholar] [CrossRef]
- Lozano, Y.M.; Aguilar-Trigueros, C.A.; Ospina, J.M.; Rillig, M.C. Drought legacy effects on root morphological traits and plant biomass via soil biota feedback. New Phytol. 2022, 236, 222–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhang, T.H.; Li, Y.Q.; Cong, A.Q.; Lian, J.; Feng, K.Y. Integrated application of fertilization increased maize (Zea mays L.) yield by improving soil quality, particularly under limited water conditions in a semi-arid sandy area. Agric. Water Manag. 2025, 309, 109334. [Google Scholar] [CrossRef]
- Lehmann, J.; Cowie, A.; Masiello, C.A.; Kammann, C.; Woolf, D.; James, E.A.; Cayuela, M.L.; Camps-Arbestain, M.; Thea Whitman, T. Biochar in climate change mitigation. Nat. Geosci. 2021, 14, 883–892. [Google Scholar] [CrossRef]
- Bordoloi, S.; Gopal, P.; Rishita, B.; Wang, Q.H.; Cheng, Y.F.; Garg, A.; Sreedeep, S. Soil-biochar-water interactions: Role of biochar from Eichhornia crassipes in influencing crack propagation and suction in unsaturated soils. J. Clean. Prod. 2019, 210, 847–859. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef]
- Fang, B.; Li, X.; Zhao, B.; Zhong, L. Influence of biochar on soil physical and chemical properties and crop yields in rainfed fields. Ecol. Environ. Sci. 2014, 23, 1292–1297. [Google Scholar]
- Liu, M.; Li, J.; Ji, S. Evaluation of Effect of Biochar on Tobacco Yield and Nitrogen Use Efficiency in Mountain Slope Areas. Crops 2020, 194, 89–97. [Google Scholar]
- Ruan, R.J.; Wang, Y.S. Effects of biochar amendment on root growth and plant water status depend on maize genotypes. Agric. Water Manag. 2024, 293, 108688. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, L.; Kong, X.; Bao, S.; Wu, S.; Fang, L. Biochar alters the morphology of plant roots to enable optimized and reduced nitrogen fertilizer applications. Plant Soil 2023, 492, 655–673. [Google Scholar] [CrossRef]
- Han, S.; Li, H.B.; Rengel, Z.; Du, Z.L.; Hu, N.; Wang, Y.Y.; Zhang, A.P. Biochar application promotes crops yield through regulating root development and the community structure of root endophytic fungi in wheat-maize rotation. Soil Till. Res. 2023, 234, 105827. [Google Scholar] [CrossRef]
- Liu, J.M.; Si, Z.Y.; Wu, L.F.; Fu, Y.Y.; Zhang, Y.Y.; Kpalari, D.F.; Wu, X.L.; Cao, H.; Gao, Y.; Duan, A.W. Application of resource-environmental-economic perspective for optimal water and nitrogen rate under high-low seedbed cultivation in winter wheat. Agric. Water Manag. 2024, 298, 108865. [Google Scholar] [CrossRef]
- Van Genuchten, T.M. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil. Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Gao, C.; Li, M.S.; Li, D.W. Root architecture and visualization model of cotton group with different planting spacing under local irrigation. Front. Plant Sci. 2023, 14, 1080234. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, J.; Wang, J.; Fan, S.X.; Chen, W.F. Effect of biochar on root morphological and physiological characteristics and yield in rice. Acta Agron. Sin. 2013, 39, 1445–1451. [Google Scholar] [CrossRef]
- Javaheri, S.H.; Sepehri, M.M.; Teimourpour, B. Chapter 6—Response Modeling in Direct Marketing: A Data Mining-Based Approach for Target Selection. In Data Mining Applications with R; Zhao, Y.C., Cen, Y.H., Eds.; Academic Press: Cambridge, MA, USA, 2014; pp. 153–180. [Google Scholar]
- Wei, B.L.; Peng, Y.C.; Lin, L.X.; Zhang, D.L.; Ma, L.; Jiang, L.G.; Li, Y.Z.; He, T.G.; Wang, Z.T. Drivers of biochar-mediated improvement of soil water retention capacity based on soil texture: A meta-analysis. Geoderma 2023, 437, 116591. [Google Scholar] [CrossRef]
- Saffari, N.; Hajabbasi, M.A.; Shirani, H.; Mosaddeghi, M.R.; Mamedov, A.I. Biochar type and pyrolysis temperature effects on soil quality indicators and structural stability. J. Environ. Manag. 2020, 261, 110190. [Google Scholar] [CrossRef]
- Ihenetu, S.C.; Khan, Z.H.; Liu, X.; Han, R.X.; Zhou, C.L.; Ma, J.; Li, H.; Wang, C.H.; Xu, Q.; Li, G. Biochar as a Potential Tool for Addressing Microplastic Pollution: A Review. Int. J. Environ. Res. 2025, 19, 105. [Google Scholar] [CrossRef]
- Vu Khac Hoang Bui, T.; Phuong Nguyen, T.C.; Phuong Tran, T.T.; Nguyen, T.; Nghi Duong, V.; Nguyen, T.; Liu, C.; Duc Nguyen, D.; Nguyen, X.C. Biochar-based fixed filter columns for water treatment: A comprehensive review. Sci. Total Environ. 2024, 954, 176199. [Google Scholar]
- Zhao, Z.L.; Dai, H.; Ji, J.Q.; Yuan, X.Z.; Li, X.D.; Jiang, L.B.; Wang, H. Resource utilization of luffa sponge to produce biochar for effective degradation of organic contaminants through persulfate activation. Sep. Purif. Technol. 2022, 288, 120650. [Google Scholar] [CrossRef]
- Holtzman, R. Effects of Pore-Scale Disorder on Fluid Displacement in Partially-Wettable Porous Media. Sci. Rep. 2016, 6, 36221. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; Kammann, C.; Abalos, D. Biochar effects on methane emissions from soils: A meta-analysis. Soil. Biol. Biochem. 2016, 101, 251–258. [Google Scholar] [CrossRef]
- Ali, S.; Rizwan, M.; Qayyum, M.F.; Ok, Y.S.; Ibrahim, M.; Riaz, M.; Arif, M.S.; Hafeez, F.; Al-Wabel, M.I.; Shahzad, A.N. Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environ. Sci. Pollut. Res. 2017, 24, 12700–12712. [Google Scholar] [CrossRef]
- Dawood, M.F.A.; Mohamed, H.I.; Abideen, Z.; Sheteiwy, M.S.; Eissa, M.A.; Latef, A. Chapter 13—Biochar amendments and drought tolerance of plants. In Biochar in Mitigating Abiotic Stress in Plants; Academic Press: Cambridge, MA, USA, 2025; pp. 229–246. [Google Scholar]
- Yin, L.M.; Xiao, W.; Dijkstra, F.A.; Zhu, B.; Wang, P.; Cheng, W.X. Linking absorptive roots and their functional traits with rhizosphere priming of tree species. Soil. Biol. Biochem. 2020, 150, 107997. [Google Scholar] [CrossRef]
- Abbas, T.; Rizwan, M.; Ali, S.; Adrees, M.; Mahmood, A.; Zia-ur-Rehman, M.; Ibrahim, M.; Arshad, M.; Qayyum, M.F. Biochar application increased the growth and yield and reduced cadmium in drought stressed wheat grown in an aged, contaminated soil. Ecotoxicol. Environ. Saf. 2018, 148, 825–833. [Google Scholar] [CrossRef]
- Cai, G.; Vanderborght, J.; Langensiepen, M.; Schnepf, A.; Hüging, H.; Vereeckenet, H. Root growth, water uptake, and sap flow of winter wheat in response to different soil water conditions. Hydrol. Earth Syst. Sci. 2018, 22, 2449–2470. [Google Scholar] [CrossRef]
- Liu, R.; Yang, L.; Zhang, J.D.; Zhou, G.P.; Chang, D.N.; Chai, Q.; Cao, W.D. Maize and legume intercropping enhanced crop growth and soil carbon and nutrient cycling through regulating soil enzyme activities. Eur. J. Agron. 2024, 159, 127237. [Google Scholar] [CrossRef]
- Haider, I.; Raza, M.A.S.; Iqbal, R.; Aslam, M.U.; Rahman, M.H.; Raja, S.; Khan, M.T.; Aslam, M.M.; Waqas, M.; Ahmad, S. Potential effects of biochar application on mitigating the drought stress implications on wheat (Triticum aestivum L.) under various growth stages. J. Saudi Chem. Soc. 2020, 24, 974–981. [Google Scholar] [CrossRef]
- Abideen, Z.; Koyro, H.; Huchzermeyer, B.; Ansari, F.; Gul, Z.B. Ameliorating effects of biochar on photosynthetic efficiency and antioxidant defence of Phragmites karka under drought stress. Plant Biol. 2020, 22, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Wankmüller, F.J.P.; Delval, L.; Lehmann, P.; Baur, M.J.; Cecere, A.; Wolf, S.; Or, D.; Javaux, M.; Carminati, A. Global influence of soil texture on ecosystem water limitation. Nature 2024, 635, 631–638. [Google Scholar] [CrossRef]
- Leung, A.K.; Garg, A.; Ng, C. Effects of plant roots on soil-water retention and induced suction in vegetated soil. Eng. Geol. 2015, 193, 183–197. [Google Scholar] [CrossRef]
- Acharya, B.S.; Dodla, S.; Wang, J.J.; Kiran Pavuluri, K.; Darapuneni, M.; Dattamudi, S.; Maharjan, B.; Kharel, G. Biochar impacts on soil water dynamics: Knowns, unknowns, and research directions. Biochar 2024, 6, 34. [Google Scholar] [CrossRef]
- Adhikari, S.; Timms, W.; Parvez Mahmud, M.A. Optimising water holding capacity and hydrophobicity of biochar for soil amendment—A review. Sci. Total Environ. 2022, 851, 158043. [Google Scholar] [CrossRef] [PubMed]
- Nadal-Sala, D.; Grote, R.; Birami, B.; Knüver, T.; Rehschuh, R.; Schwarz, S.; Ruehr, N.K. Leaf Shedding and Non-Stomatal Limitations of Photosynthesis Mitigate Hydraulic Conductance Losses in Scots Pine Saplings During Severe Drought Stress. Front. Plant Sci. 2021, 12, 715127. [Google Scholar] [CrossRef] [PubMed]
- Song, X.Y.; Zhou, G.S.; He, A.J.; Zhou, H.L. Stomatal limitations to photosynthesis and their critical Water conditions in different growth stages of maize under water stress. Agric. Water Manag. 2020, 241, 106330. [Google Scholar] [CrossRef]
- Waheed, A.; Xu, H.L.; Xu, Q.; Aili, A.; Yeernazhaer, Y.; Dou, H.T.; Murad, M. Biochar in sustainable agriculture and Climate Mitigation: Mechanisms, challenges, and applications in the circular bioeconomy. Biomass Bioenergy 2025, 193, 107531. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Iqbal, R.; Deng, G. Biochar from agricultural waste as a strategic resource for promotion of crop growth and nutrient cycling of soil under drought and salinity stress conditions: A comprehensive review with context of climate change. J. Plant Nutr. 2025, 48, 1832–1883. [Google Scholar] [CrossRef]
- Fan, J.C.; Lu, X.J.; Gu, S.H.; Guo, X.Y. Improving nutrient and water use efficiencies using water-drip irrigation and fertilization technology in Northeast China. Agric. Water Manag. 2020, 241, 106352. [Google Scholar] [CrossRef]
- Vullaganti, N.; Ram, B.G.; Sun, X. Precision agriculture technologies for soil site-specific nutrient management: A comprehensive review. Artif. Intell. Agric. 2025, 15, 147–161. [Google Scholar] [CrossRef]
- Omokaro, G.O.; Kornev, K.P.; Nafula, Z.S.; Chikukula, A.A.; Osayogie, O.G.; Efeni, O.S. Biochar for sustainable soil management: Enhancing soil fertility, plant growth and climate resilience. Farming Syst. 2025, 3, 100167. [Google Scholar] [CrossRef]
SOM (g kg−1) | TN (g kg−1) | AHN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | pH |
---|---|---|---|---|---|
21.70 | 1.38 | 86.50 | 24.72 | 174.23 | 5.87 |
Particle Size of 0.075–2 mm (%) | Particle Size of <0.075 mm (%) | Specific Surface Area (m2g−1) | Volatile Matter (%) | AHN (mg kg−1) | AP (mg kg−1) | AK (mg kg−1) | TC (g kg−1) | EC (μS cm−1) | pH |
---|---|---|---|---|---|---|---|---|---|
30.48 | 68.52% | 26.7 | 11.2 | 36.71 | 118.74 | 12.30 | 7.56 | 341.24 | 9.15 |
Treatments | Biochar (t ha−1) | Irrigation Water Content |
---|---|---|
B0W1 | 0 | Sufficient water (65–75% WHC) |
B0W2 | 0 | Moderate drought (45–55% WHC) |
B0W3 | 0 | Severe drought (30–40% WHC) |
B1W1 | 7.5 | Sufficient water (65–75% WHC) |
B1W2 | 7.5 | Moderate drought (45–55% WHC) |
B1W3 | 7.5 | Severe drought (30–40% WHC) |
Treatments | n | R2 | |||
---|---|---|---|---|---|
B0 | 0.1828 ± 0.012 | 0.4100 ± 0.018 | 0.0104 ± 0.001 | 7.7897 ± 0.32 | 0.9897 |
B1 | 0.1789 ± 0.009 | 0.4569 ± 0.021 | 0.0104 ± 0.001 | 9.0861 ± 0.41 | 0.9473 |
B2 | 0.1702 ± 0.011 | 0.4234 ± 0.015 | 0.0030 ± 0.0005 | 1.6551 ± 0.15 | 0.9418 |
Treatments | Relationship Equation | R2 | p-Value |
---|---|---|---|
B0W1 | RLD = 0.4316 − 0.3038*ln (Sr − 5.1737 × 10−4) | 0.8167 | 0.048 |
B0W2 | RLD = −0.3316*ln (Sr − 2.3159 × 10−5) | 0.7651 | 0.038 |
B0W3 | RLD = 1.2875 − 2.3557*ln (Sr + 0.5317) | 0.7841 | 0.029 |
B1W1 | RLD = 0.0075 − 0.4033*ln (Sr + 1.9017 × 10−4) | 0.7553 | 0.041 |
B1W2 | RLD = 0.2261 − 1.0280*ln (Sr + 0.0761) | 0.8032 | 0.025 |
B1W3 | RLD = 0.4619 − 0.5155*ln (Sr + 0.0034) | 0.8633 | 0.017 |
Treatments | Pn (μmol m−2 s−1) | Gs (mol m−2 s−1) | Ci (μmol mol−1) | Tr (mmol m−2 s−1) | |
---|---|---|---|---|---|
GS | B0W1 | 15.90 ± 1.46 ab | 0.65 ± 0.03 bc | 376.33 ± 1.11 ab | 6.24 ± 0.42 a |
B0W2 | 12.87 ± 0.12 cde | 0.45 ± 0.03 de | 358.67 ± 1.21 ab | 3.65 ± 0.60 b | |
B0W3 | 10.87 ± 1.09 e | 0.32 ± 0.02 f | 353.33 ± 1.69 ab | 3.19 ± 0.71 b | |
B1W1 | 15.33 ± 0.26 ab | 0.67 ± 0.02 bc | 373.00 ± 0.13 ab | 5.82 ± 0.14 a | |
B1W2 | 14.77 ± 0.41 bcd | 0.49 ± 0.01 d | 362.67 ± 1.86 ab | 3.39 ± 0.22 b | |
B1W3 | 11.57 ± 1.04 e | 0.34 ± 0.03 f | 371.33 ± 0.81 ab | 3.21 ± 0.17 b | |
MS | B0W1 | 8.72 ± 0.53 abc | 0.31 ± 0.02 ab | 306.33 ± 1.25 abc | 3.46 ± 0.24 a |
B0W2 | 6.72 ± 1.12 e | 0.19 ± 0.02 cd | 287.00 ± 0.52 c | 2.55 ± 0.37 bc | |
B0W3 | 6.54 ± 0.87 e | 0.14 ± 0.02 d | 305.67 ± 1.64 abc | 1.98 ± 0.28 c | |
B1W1 | 10.83 ± 1.11 abc | 0.34 ± 0.06 ab | 312.33 ± 0.55 abc | 3.52 ± 0.31 a | |
B1W2 | 8.05 ± 1.09 de | 0.31 ± 0.03 ab | 304.33 ± 0.48 abc | 3.09 ± 0.33 ab | |
B1W3 | 7.02 ± 0.13 e | 0.17 ± 0.02 d | 296.33 ± 1.70 bc | 2.02 ± 0.17 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Qin, J.; Tian, Y.; Yang, J.; Wang, G. Biochar and Soil Water Synergistically Regulating Root Growth to Affect Photosynthesis in Maize (Zea mays L.). Agronomy 2025, 15, 2170. https://doi.org/10.3390/agronomy15092170
Gao C, Qin J, Tian Y, Yang J, Wang G. Biochar and Soil Water Synergistically Regulating Root Growth to Affect Photosynthesis in Maize (Zea mays L.). Agronomy. 2025; 15(9):2170. https://doi.org/10.3390/agronomy15092170
Chicago/Turabian StyleGao, Chao, Jingtao Qin, Yan Tian, Jianbo Yang, and Guobing Wang. 2025. "Biochar and Soil Water Synergistically Regulating Root Growth to Affect Photosynthesis in Maize (Zea mays L.)" Agronomy 15, no. 9: 2170. https://doi.org/10.3390/agronomy15092170
APA StyleGao, C., Qin, J., Tian, Y., Yang, J., & Wang, G. (2025). Biochar and Soil Water Synergistically Regulating Root Growth to Affect Photosynthesis in Maize (Zea mays L.). Agronomy, 15(9), 2170. https://doi.org/10.3390/agronomy15092170