Comparison of the Effects of Exogenous Selenium and Silicon on Alleviating Cadmium Stress in Artemisia argyi
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Materials and Potted Plant Experiments
2.2. Growth Index Measurement
2.3. Cd Accumulation, Transport Coefficient, and Enrichment Coefficient Calculation
2.4. Determination of Cd Subcellular Distribution
2.5. Determination of Se and Si Content in Plant Tissues
2.6. Photosynthesis Measurement
2.7. Determination of Osmoregulatory Substances
2.8. Determination of MDA, GSH, and PCs
2.9. Determination of Hydrogen Peroxide and Superoxide Anion Content
2.10. Determination of Total Phenolic and Flavonoid Content
2.11. Statistical Analysis
3. Results
3.1. Growth Changes
3.2. Cd Contamination and Se, Si Content in A. argyi
3.3. Subcellular Distribution of Cd
3.4. Oxidative Stress-Related Indicators
3.5. Photosynthesis
3.6. Osmotic Regulation Substances
3.7. Total Phenolic and Flavonoid Content in A. argyi Leaves
3.8. PCA and Correlation Analysis of Growth and Physiological Indicators in A. argyi
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A. Argyi | Artemisia argyi |
Cd | Cadmium |
GSH | Glutathione |
H2O2 | Hydrogen peroxide |
MDA | malondialdehyde |
O2•− | Superoxide |
PCs | Phytochelatins |
ROS | reactive oxygen species |
Se | Selenium |
Si | Silicon |
References
- Yan, K.; Wang, H.; Lan, Z.; Zhou, J.; Fu, H.Z.; Wu, L.; Xu, J. Heavy metal pollution in the soil of contaminated sites in China: Research status and pollution assessment over the past two decades. J. Clean. Prod. 2022, 373, 133780. [Google Scholar] [CrossRef]
- Qin, G.; Niu, Z.; Yu, J.; Li, L.; Ma, J.; Xiang, P. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 2021, 267, 129205. [Google Scholar] [CrossRef]
- Afzal, B.; Yasin, D.; Naaz, H.; Sami, N.; Zaki, A.; Rizvi, M.A.; Kumar, R.; Srivastava, P.; Fatma, T. Biomedical potential of anabaena variabilis NCCU-441 based selenium nanoparticles and their comparison with commercial nanoparticles. Sci. Rep. 2021, 11, 13507. [Google Scholar] [CrossRef] [PubMed]
- GB 15618—2018; Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land. Ministry of Ecology and Environment: Beijing, China, 2018.
- Wang, Z.; Wang, Y.; Lu, J.; Li, T.; Li, S.; Nie, M.; Shi, G.; Zhao, X. Silicon and selenium alleviate cadmium toxicity in artemisia selengensis turcz by regulating the plant-rhizosphere. Environ. Res. 2024, 252, 119064. [Google Scholar] [CrossRef]
- Cui, B.; Luo, H.; Yao, X.; Xing, P.; Deng, S.; Zhang, Q.; Yi, W.; Gu, Q.; Peng, L.; Yu, X.; et al. Nanosized-selenium-application-mediated cadmium toxicity in aromatic rice at different stages. Plants 2024, 13, 2253. [Google Scholar] [PubMed]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Saf. 2021, 211, 111887. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Lauria, G.; Carocci, A.; Catalano, A. The effects of cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar]
- Sood, M. Reactive oxygen species (ROS): Plant perspectives on oxidative signalling and biotic stress response. Discov. Plants 2025, 2, 187. [Google Scholar] [CrossRef]
- Satarug, S.; Garrett, S.H.; Sens, M.A.; Sens, D.A. Cadmium, environmental exposure, and health outcomes. Environ. Health Perspect. 2010, 118, 182–190. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, H.; Zhao, B. Exploring the remediation potential of Hydrangea macrophylla (thunb.) Ser. In cadmium-contaminated soil by comparing cultivars and seedling age. Environ. Technol. Innov. 2024, 33, 103474. [Google Scholar]
- Sarwar, N.; Malhi, S.S.; Zia, M.H.; Naeem, A.; Bibi, S.; Farid, G. Role of mineral nutrition in minimizing cadmium accumulation by plants. J. Sci. Food Agric. 2010, 90, 925–937. [Google Scholar] [CrossRef]
- Nazar, R.; Iqbal, N.; Masood, A.; Khan, M.I.R.; Syeed, S.; Khan, N.A. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Am. J. Plant Sci. 2012, 3, 1476–1489. [Google Scholar] [CrossRef]
- Kaur, N.; Sharma, S.; Kaur, S.; Nayyar, H. Selenium in agriculture: A nutrient or contaminant for crops? Arch. Agron. Soil Sci. 2014, 60, 1593–1624. [Google Scholar] [CrossRef]
- Yasin, M.; El-Mehdawi, A.F.; Anwar, A.; Pilon-Smits, E.A.; Faisal, M. Microbial-enhanced selenium and iron biofortification of wheat (Triticum aestivum L.)—Applications in phytoremediation and biofortification. Int. J. Phytoremediation 2015, 17, 341–347. [Google Scholar]
- Li, Z.; Tian, Y.; Wang, B.; Peng, R.; Xu, J.; Fu, X.; Han, H.; Wang, L.; Zhang, W.; Deng, Y.; et al. Enhanced phytoremediation of selenium using genetically engineered rice plants. J. Plant Physiol. 2022, 271, 153665. [Google Scholar] [CrossRef]
- Odeyemi, I.A.; Oyediran, J.A.; Ademiluyi, A.O.; Oboh, G.; Ogunsuyi, O.B. Selenium-biofortified gboma (Solanum macro-carpon L.) Vegetable-supplemented diets increased circulating selenium levels and potentiated endogenous anti-inflammatory, antioxidant and immunomodulatory properties in wistar rats. Biometals 2025. [Google Scholar]
- Ahmad, R.; Waraich, E.A.; Nawaz, F.; Ashraf, M.Y.; Khalid, M. Selenium (se) improves drought tolerance in crop plants—A myth or fact? J. Sci. Food Agric. 2016, 96, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Xian, L.; Yuan, L.; Lin, Z.; Chen, X.; Wang, J.; Li, T. The use of selenium for controlling plant fungal diseases and in-sect pests. Front. Plant Sci. 2023, 14, 1102594. [Google Scholar]
- Pukacka, S.; Ratajczak, E.; Kalemba, E. The protective role of selenium in recalcitrant Acer saccharium L. Seeds subjected to desiccation. J. Plant Physiol. 2010, 168, 220–225. [Google Scholar] [PubMed]
- Nedjimi, B. The role of selenium and selenium nanoparticles in enhancing plant tolerance to cadmium stress: A sustainable approach. Discov. Plants 2025, 2, 1–22. [Google Scholar] [CrossRef]
- Khan, M.I.; Nazir, F.; Asgher, M.; Per, T.S.; Khan, N.A. Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. J. Plant Physiol. 2015, 173, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Alves, L.R.; Prado, E.R.; de Oliveira, R.; Santos, E.F.; Lemos, D.S.I.; Dos, R.A.; Azevedo, R.A.; Gratao, P.L. Mechanisms of cadmium-stress avoidance by selenium in tomato plants. Ecotoxicology 2020, 29, 594–606. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Zhou, W.; Dai, H.; Cao, F.; Zhang, G.; Wu, F. Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J. Hazard. Mater. 2012, 235–236, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Awan, S.A.; Rizwan, M.; Ali, S.; Hassan, M.J.; Brestic, M.; Zhang, X.; Huang, L. Effects of silicon on heavy metal uptake at the soil-plant interphase: A review. Ecotoxicol. Environ. Saf. 2021, 222, 112510. [Google Scholar] [CrossRef]
- Aqeel, A.; Ahmad, Y.N.; Ullah, K.W.; Waheed, A.; Rui, W.; Ali, S.A.; Muhammad, A.; Aamir, A.; Tingquan, W. Silicon assisted ameliorative effects of iron nanoparticles against cadmium stress: Attaining new equilibrium among physiochemical parameters, antioxidative machinery, and osmoregulators of phaseolus lunatus. Plant Physiol. Biochem. 2021, 166, 874–886. [Google Scholar]
- Wang, L.; Yang, B.; Liu, Q.; Zhang, Q.; Zhao, F.; Xiao, Y.; Liao, X. Safe usage of cd-polluted paddy fields using alkaline si–rich compound amendment: Effect and mechanism. J. Environ. Manag. 2023, 335, 117547. [Google Scholar] [CrossRef]
- Tan, Y.; Liu, X.; Shen, Z.; Xiao, Y.; Zhang, Y.; Du, H.; Wu, Z.; Zhi, D.; Delgado, A.N.; Yang, Y. Effects of seed priming with different concentrations and forms of silicon on germination and growth of rice under cadmium stress. Appl. Soil Ecol. 2025, 207, 105947. [Google Scholar] [CrossRef]
- Altaf, M.M.; Yi, H.; Bashir, S.; Abbasi, S.S.; Anwar, M.; Alsahli, A.A.; Altaf, M.A.; Ahmad, P. Mitigating chromium stress in tomato plants using green-silicone nanoparticles: Enhancing cellular oxidative stress management and chromium reduction. Sci. Hortic. 2024, 338, 113635. [Google Scholar] [CrossRef]
- Javed, M.T.; Saleem, M.H.; Aslam, S.; Rehman, M.; Iqbal, N.; Begum, R.; Ali, S.; Alsahli, A.A.; Alyemeni, M.N.; Wijaya, L. Elucidating silicon-mediated distinct morpho-physio-biochemical attributes and organic acid exudation patterns of cad-mium stressed ajwain (Trachyspermum ammi L.). Plant Physiol. Biochem. 2020, 157, 23–37. [Google Scholar] [CrossRef]
- Manna, I.; Nath, S.; Mandal, P.; Paul, S. Effect of cerium oxide and silicon dioxide nanoparticles in combating heavy metal stress in plants. Nucleu 2025, 1–27. [Google Scholar] [CrossRef]
- Song, A.; Li, Z.; Zhang, J.; Xue, G.; Fan, F.; Liang, Y. Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. Is attributed to si-suppressed cadmium uptake and transport and si-enhanced antioxidant defense capacity. J. Hazard. Mater. 2009, 172, 74–83. [Google Scholar] [CrossRef]
- Shi, Q.; Bao, Z.; Zhu, Z.; He, Y.; Qian, Q.; Yu, J. Silicon-mediated alleviation of mn toxicity in cucumis sativus in relation to activities of superoxide dismutase and ascorbate peroxidase. Phytochemistry 2005, 66, 1551–1559. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Rizwan, M.; Dai, Z.; Yuan, Y.; Hossain, M.M.; Cao, M.; Xiong, S.; Tu, S. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J. Hazard. Mater. 2021, 401, 123393. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, Y.; Guo, Y.; Pan, M.; Hao, W. Exogenous selenium enhances cadmium stress tolerance by improving physio-logical characteristics of Artemisia argyi seedlings. Sci. Rep. 2025, 15, 3450. [Google Scholar]
- Mousa, M.K.S.; Maryam, M. Assessment of phytoremediation potential of native plant species naturally growing in a heavy metal-polluted saline-sodic soil. Environ. Sci. Pollut. Res. Int. 2020, 27, 10027–10038. [Google Scholar]
- Zhao, L.; Yang, Y.; Hu, Y.; Yang, S.; Jin, H.; Wei, J.; Yang, M. Analysis of the current situation of heavy metal pollution in Chinese medicinal materials in China and countermeasures research. Chin. J. Tradit. Chin. Med. 2014, 45, 1199–1206. [Google Scholar]
- Yang, Y.; Zhao, Y.; Pan, M.; Yu, Y.; Guo, Y.; Ge, Q.; Hao, W. Physiology and transcriptome analysis of Artemisia argyi adaptation and accumulation to soil cadmium. Ecotoxicol. Environ. Saf. 2024, 278, 116397. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Hu, C.; Wu, Z.; Liu, X.; Cai, M.; Jia, W.; Zhao, X. Selenium reduces cadmium accumulation in seed by increasing cadmium retention in root of oilseed rape (Brassica napus L.). Environ. Exp. Bot. 2018, 158, 161–170. [Google Scholar] [CrossRef]
- Huang, F.; Wen, X.H.; Cai, Y.X.; Cai, K.Z. Silicon-mediated enhancement of heavy metal tolerance in rice at different growth stages. Int. J. Environ. Res. Public Health 2018, 15, 2193. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, Y.; Yang, X.; Zhang, H.; Wang, D.; Wu, P.; Yin, A.; Gao, C. Classification and regression tree (CART) for predicting cadmium (cd) uptake by rice (Oryza sativa L.) And its application to derive soil cd threshold based on field data. Ecotoxicol. Environ. Saf. 2024, 285, 117125. [Google Scholar] [CrossRef]
- Zhang, R.; Xu, S.; Lin, L.; Fan, Z.; Liu, X. Effects of methyl jasmonate on soil physicochemical properties and mi-crobial communities of continuous cropping strawberry. Jiangsu Agric. Sci. 2025, 6, 254–263. [Google Scholar]
- Jia, H.; Wang, X.; Shi, C.; Guo, J.; Ma, P.; Ren, X.; Wei, T.; Liu, H.; Li, J. Hydrogen sulfide decreases cd translocation from root to shoot through increasing cd accumulation in cell wall and decreasing cd(2+) influx in isatis indigotica. Plant Physiol. Biochem. 2020, 155, 605–612. [Google Scholar] [CrossRef]
- GB 5009.268-2025; National Food Safety Standard—Determination of Multiple Elements in Foods. China Standards Press: Beijing, China, 2025.
- Hua, H.; Yu, H.; Liu, D. Determination of silicon in plants by silicon molybdenum blue colorimetric method. Mod. Agric. Sci. Technol. 2013, 24, 173–174. [Google Scholar]
- Hou, X.; Ma, C.; Wang, Z.; Shi, X.; Duan, W.; Fu, X.; Liu, J.; Guo, C.; Xiao, K. Transcription factor gene TaWRKY76 confers plants improved drought and salt tolerance through modulating stress defensive-associated processes in Triticum aestivum L. Plant Physiol. Biochem. 2024, 216, 109147. [Google Scholar] [CrossRef]
- Cappellari, L.D.R.; Santoro, M.V.; Nievas, F.; Giordano, W.; Banchio, E. Increase of secondary metabolite content in mari-gold by inoculation with plant growth-promoting rhizobacteria. Appl. Soil Ecol. 2013, 70, 16–22. [Google Scholar] [CrossRef]
- Yang, J.; Kim, J.S.; Kwon, Y.S.; Seong, E.S.; Kim, M.J. Antioxidant and antiproliferative activities of Eclipta prostrata (L.) L. Extract and isolated compounds. Molecules 2023, 28, 7354. [Google Scholar] [CrossRef]
- Wang, Y.; Li, X.; Zhuang, K.; Peng, Y.; Huang, X.; Lu, Q.; Qian, M.; Liu, Y.; Chen, X.; Peng, K.; et al. Multiple in-sights into differential cd detoxification mechanisms in new germplasms of mung bean (Vigna radiata L.) And potential mitigation strategy. Plant Physiol. Biochem. 2025, 220, 109458. [Google Scholar] [CrossRef]
- Cui, J.; Liu, T.; Li, F.; Yi, J.; Liu, C.; Yu, H. Silica nanoparticles alleviate cadmium toxicity in rice cells: Mechanisms and size effects. Environ. Pollut. 2017, 228, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Riaz, M.; Kamran, M.; Rizwan, M.; Ali, S.; Parveen, A.; Malik, Z.; Wang, X. Cadmium uptake and translocation: Selenium and silicon roles in cd detoxification for the production of low cd crops: A critical review. Chemosphere 2021, 273, 129690. [Google Scholar] [CrossRef]
- Huang, Q.; Liu, Y.; Qin, X.; Zhao, L.; Liang, X.; Xu, Y. Selenite mitigates cadmium-induced oxidative stress and affects cd uptake in rice seedlings under different water management systems. Ecotoxicol. Environ. Saf. 2019, 168, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Saffaryazdi, A.; Lahouti, M.; Ganjeali, A.; Bayat, H. Impact of selenium supplementation on growth and selenium accumu-lation on spinach (Spinacia oleracea L.) Plants. Not. Sci. Biol. 2012, 4, 95–100. [Google Scholar] [CrossRef]
- Li, L.; Zheng, C.; Fu, Y.; Wu, D.; Yang, X.; Shen, H. Silicate-mediated alleviation of pb toxicity in banana grown in pb-contaminated soil. Biol. Trace Elem. Res. 2012, 145, 101–108. [Google Scholar] [CrossRef]
- Shahid, M.A.; Balal, R.M.; Khan, N.; Zotarelli, L.; Liu, G.D.; Sarkhosh, A.; Fernandez-Zapata, J.C.; Martinez, N.J.; Gar-cia-Sanchez, F. Selenium impedes cadmium and arsenic toxicity in potato by modulating carbohydrate and nitrogen metabolism. Ecotoxicol. Environ. Saf. 2019, 180, 588–599. [Google Scholar] [CrossRef]
- Wu, Z.; Liu, S.; Zhao, J.; Wang, F.; Du, Y.; Zou, S.; Li, H.; Wen, D.; Huang, Y. Comparative responses to silicon and selenium in relation to antioxidant enzyme system and the glutathione-ascorbate cycle in flowering chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis) under cadmium stress. Environ. Exp. Bot. 2017, 133, 1–11. [Google Scholar]
- Ghuge, S.A.; Nikalje, G.C.; Kadam, U.S.; Suprasanna, P.; Hong, J.C. Comprehensive mechanisms of heavy metal toxicity in plants, detoxification, and remediation. J. Hazard. Mater. 2023, 450, 131039. [Google Scholar] [CrossRef]
- Giri, J. Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 2011, 6, 1746–1751. [Google Scholar] [CrossRef]
- Wan, Y.; Yu, Y.; Wang, Q.; Qiao, Y.; Li, H. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium. Ecotoxicol. Environ. Saf. 2016, 133, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Dalcorso, G.; Farinati, S.; Maistri, S.; Furini, A. How plants cope with cadmium: Staking all on metabolism and gene ex-pression. J. Integr. Plant Biol. 2008, 50, 1268–1280. [Google Scholar] [CrossRef]
- Ernst, W.H.; Krauss, G.J.; Verkleij, J.A.; Wesenberg, D. Interaction of heavy metals with the sulphur metabolism in angio-sperms from an ecological point of view. Plant Cell Environ. 2008, 31, 123–143. [Google Scholar] [CrossRef] [PubMed]
- Sahito, J.H.; Ma, C.; Zhang, J.; Li, J.; Zhao, J.; Mu, L.; Zhang, Y.; Gishkori, Z.; Ding, D.; Zhang, X.; et al. Selenium and its mechanisms mitigate cadmium toxicity in plants: Promising role and future potentials. Ecotoxicol. Environ. Saf. 2025, 300, 118422. [Google Scholar] [CrossRef]
- Vaculik, M.; Lukacova, Z.; Bokor, B.; Martinka, M.; Tripathi, D.K.; Lux, A. Alleviation mechanisms of metal(loid) stress in plants by silicon: A review. J. Exp. Bot. 2020, 71, 6744–6757. [Google Scholar] [CrossRef]
- Rogalla, H.; Römheld, V. Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L. Plant Cell Environ. 2002, 25, 549–555. [Google Scholar] [CrossRef]
- Gu, H.H.; Qiu, H.; Tian, T.; Zhan, S.S.; Deng, T.H.; Chaney, R.L.; Wang, S.Z.; Tang, Y.T.; Morel, J.L.; Qiu, R.L. Mitigation ef-fects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) Planted on multi-metal contami-nated acidic soil. Chemosphere 2011, 83, 1234–1240. [Google Scholar] [CrossRef]
- Ma, J.; Cai, H.; He, C.; Zhang, W.; Wang, L. A hemicellulose-bound form of silicon inhibits cadmium ion uptake in rice (Oryza sativa) cells. New Phytol. 2015, 206, 1063–1074. [Google Scholar] [CrossRef]
- Greger, M.; Kabir, A.H.; Landberg, T.; Maity, P.J.; Lindberg, S. Silicate reduces cadmium uptake into cells of wheat. Environ. Pollut. 2016, 211, 90–97. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, W.; Ye, D.; Liu, X.; Peng, C.; Tang, Y.; Su, L.; Cheng, S.; Cao, K.; Lei, Q.; et al. Mitigation mechanism of silicon and iron co-application to cadmium toxicity in tomato seedlings by integrated transcriptomic and physio-logical correlation analysis. Front. Plant Sci. 2025, 16, 1555618. [Google Scholar] [CrossRef]
- Panda, A.; Fatnani, D.; Parida, A.K. Uptake, impact, adaptive mechanisms, and phytoremediation of heavy metals by plants: Role of transporters in heavy metal sequestration. Plant Physiol. Biochem. 2025, 221, 109578. [Google Scholar] [CrossRef] [PubMed]
- Fan, P.; Wu, L.; Wang, Q.; Wang, Y.; Luo, H.; Song, J.; Yang, M.; Yao, H.; Chen, S. Physiological and molecular mechanisms of medicinal plants in response to cadmium stress: Current status and future perspective. J. Hazard. Mater. 2023, 450, 131008. [Google Scholar] [CrossRef] [PubMed]
- Sperdouli, I.; Adamakis, I.S.; Dobrikova, A.; Apostolova, E.; Hanc, A.; Moustakas, M. Excess zinc supply reduces cadmium uptake and mitigates cadmium toxicity effects on chloroplast structure, oxidative stress, and photosystem II photochem-ical efficiency in Salvia sclarea plants. Toxics 2022, 10, 36. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Abd, A.E.; Alqarawi, A.A.; Egamberdieva, D. Bioremediation of adverse impact of cadmium toxicity on cassia italica mill by arbuscular mycorrhizal fungi. Saudi J. Biol. Sci. 2016, 23, 39–47. [Google Scholar] [CrossRef]
- Batool, T.; Javied, S.; Ashraf, K.; Sultan, K.; Zaman, Q.U.; Haider, F.U. Alleviation of cadmium stress by silicon supplemen-tation in peas by the modulation of morpho-physio-biochemical variables and health risk assessment. Life 2022, 12, 1479. [Google Scholar] [CrossRef] [PubMed]
- Tamma, A.A.; Lejcuś, K.; Fiałkiewicz, W.; Marczak, D. Advancing phytoremediation: A review of soil amendments for heavy metal contamination management. Sustainability 2025, 17, 5688. [Google Scholar] [CrossRef]
- Rodríguez-Serrano, M.; Romero-Puertas, M.C.; Pazmiño, D.M.; Testillano, P.S.; Risueño, M.C.; Del Río, L.A.; Sandalio, L.M. Cellular response of pea plants to cadmium toxicity: Cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 2009, 150, 229–243. [Google Scholar] [CrossRef]
- Sardar, R.; Ahmed, S.; Shah, A.A.; Yasin, N.A. Selenium nanoparticles reduced cadmium uptake, regulated nutritional ho-meostasis and antioxidative system in coriandrum sativum grown in cadmium toxic conditions. Chemosphere 2022, 287, 132332. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Jha, A.B.; Dubey, R.S.; Sharma, P. Mitigating cadmium accumulation and toxicity in plants: The promising role of nanoparticles. Sci. Total Environ. 2024, 912, 168826. [Google Scholar] [CrossRef]
- Liu, Z.; Wu, X.; Yan, J.; Fan, W.; Li, T.; Wang, S.; Liu, P. Silicon reduces cadmium accumulation and toxicity by regulating transcriptional and physiological pathways, and promotes the early growth of tomato seedlings. Ind. Crops Prod. 2023, 206, 117720. [Google Scholar] [CrossRef]
- Song, J.; Sun, Z.; Saud, S.; Fahad, S.; Nawaz, T. Exploring the deleterious effects of heavy metal cadmium on antioxidant defense and photosynthetic pathways in higher plants. Plant Stress 2025, 15, 100716. [Google Scholar] [CrossRef]
- Guo, L.; Yao, H.; Chen, W.; Wang, X.; Ye, P.; Xu, Z.; Zhang, S.; Wu, H. Natural products of medicinal plants: Biosynthesis and bioengineering in post-genomic era. Hortic. Res. 2022, 9, uhac223. [Google Scholar] [CrossRef]
- Kazemi, E.M.; Kolahi, M.; Yazdi, M.; Goldson-Barnaby, A. Anatomic features, tolerance index, secondary metabolites and protein content of chickpea (Cicer arietinum) seedlings under cadmium induction and identification of PCS and FC genes. Physiol. Mol. Biol. Plants Int. J. Funct. Plant Biol. 2020, 26, 1551–1568. [Google Scholar] [CrossRef]
- Golubkina, N.; Moldovan, A.; Fedotov, M.; Kekina, H.; Kharchenko, V.; Folmanis, G.; Alpatov, A.; Caruso, G. Iodine and selenium biofortification of chervil plants treated with silicon nanoparticles. Plants 2021, 10, 2528. [Google Scholar] [CrossRef] [PubMed]
- Walczak-Skierska, J.; Krakowska-Sieprawska, A.; Monedeiro, F.; Zloch, M.; Pomastowski, P.; Cichorek, M.; Olszewski, J.; Glowacka, K.; Guzewska, G.; Szultka-Mlynska, M. Silicon’s influence on polyphenol and flavonoid profiles in pea (Pisum sativum L.) Under cadmium exposure in hydroponics: A study of metabolomics, extraction efficacy, and antimicrobial properties of extracts. ACS Omega 2024, 9, 14899–14910. [Google Scholar] [CrossRef] [PubMed]
Treatment | Cd0 | Cd4 | Cd4Se2 | Cd4Si20 | Cd10 | Cd10Se2 | Cd10Si20 |
---|---|---|---|---|---|---|---|
TF | 0.01c | 0.33ab | 0.29ab | 0.46a | 0.27ab | 0.24bc | 0.17bc |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Y.; Guo, Y.; Yu, Q.; Wu, M.; Hao, W. Comparison of the Effects of Exogenous Selenium and Silicon on Alleviating Cadmium Stress in Artemisia argyi. Agronomy 2025, 15, 2114. https://doi.org/10.3390/agronomy15092114
Yu Y, Guo Y, Yu Q, Wu M, Hao W. Comparison of the Effects of Exogenous Selenium and Silicon on Alleviating Cadmium Stress in Artemisia argyi. Agronomy. 2025; 15(9):2114. https://doi.org/10.3390/agronomy15092114
Chicago/Turabian StyleYu, Yaxin, Yu Guo, Qianqian Yu, Mengting Wu, and Wenfang Hao. 2025. "Comparison of the Effects of Exogenous Selenium and Silicon on Alleviating Cadmium Stress in Artemisia argyi" Agronomy 15, no. 9: 2114. https://doi.org/10.3390/agronomy15092114
APA StyleYu, Y., Guo, Y., Yu, Q., Wu, M., & Hao, W. (2025). Comparison of the Effects of Exogenous Selenium and Silicon on Alleviating Cadmium Stress in Artemisia argyi. Agronomy, 15(9), 2114. https://doi.org/10.3390/agronomy15092114