Contrasting Pre- and Post-Pyrolysis Incorporation of Bentonite into Manure Biochar: Impacts on Nutrient Availability, Carbon Stability, and Physicochemical Properties
Abstract
1. Introduction
2. Materials and Methods
2.1. Manure Biochar Preparation
2.2. Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FT-IR)
2.3. Water Holding Capacity (WHC)
2.4. Organic Carbon (OC) and Normalized Organic Carbon Content
2.5. Carbon Stability
2.6. Soil Nutrient Analysis
2.7. Statistical Analyses
3. Results and Discussion
3.1. Surface Morphology of Biochar Composites
3.2. Functional Group of Biochar Composites
3.3. Physicochemical Properties of Biochar Composites
3.3.1. pH and Electrical Conductivity (EC)
3.3.2. Water Holding Capacity
3.4. Biochar Carbon Characteristics
3.5. Nutrient Availability
3.5.1. Nitrate Concentration
3.5.2. Available Phosphorus Concentration
3.5.3. Available Potassium Concentration
3.6. PCA and Correlation Analysis of Pre- and Post-Pyrolysis Bentonite Biochar
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, J.; Joseph, S. (Eds.) Biochar for Environmental Management: Science, Technology and Implementation; Taylor & Francis: Abingdon, UK, 2024. [Google Scholar] [CrossRef]
- Diatta, A.A.; Fike, J.H.; Battaglia, M.L.; Galbraith, J.M.; Baig, M.B. Effects of biochar on soil fertility and crop productivity in arid regions: A review. Arab. J. Geosci. 2020, 13, 595. [Google Scholar] [CrossRef]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A sustainable approach for improving plant growth and soil properties. In Biochar—An Imperative Amendment for Soil and the Environment; IntechOpen: London, UK, 2019; pp. 1–17. Available online: https://www.intechopen.com/books/7305 (accessed on 15 July 2025).
- Zhang, A.; Bian, R.; Pan, G.; Cui, L.; Hussain, Q.; Li, L.; Zheng, J.; Zheng, J.; Zhang, X.; Han, X.; et al. Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: A field study of 2 consecutive rice growing cycles. Field Crops Res. 2012, 127, 153–160. [Google Scholar] [CrossRef]
- Rehman, A.; Nawaz, S.; Alghamdi, H.A.; Alrumman, S.; Yan, W.; Nawaz, M.Z. Effects of manure-based biochar on uptake of nutrients and water holding capacity of different types of soils. Case Stud. Chem. Environ. Eng. 2020, 2, 100036. [Google Scholar] [CrossRef]
- Rathnayake, D.; Schmidt, H.P.; Leifeld, J.; Mayer, J.; Epper, C.A.; Bucheli, T.D.; Hagemann, N. Biochar from animal manure: A critical assessment on technical feasibility, economic viability, and ecological impact. GCB Bioenergy 2023, 15, 1078–1104. [Google Scholar] [CrossRef]
- Karbout, N.; Brahim, N.; Mlih, R.; Moussa, M.; Bousnina, H.; Weihermuller, L.; Bol, R. Bentonite clay combined with organic amendments to enhance soil fertility in oasis agrosystem. Arab. J. Geosci. 2021, 14, 428. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Liu, J. Effect of bentonite as a soil amendment on field water-holding capacity, and millet photosynthesis and grain quality. Sci. Rep. 2020, 10, 18282. [Google Scholar] [CrossRef]
- Amjad, M.H.; Mehmood, A.; Abbas, Y.; Rukh, S.; Hussain, M.; Hassan, A.; Tariq, M.; Ahmad, Z.; Yun, S. The role of mineral bentonite and biochar in improving the performance of anaerobic Co-digestion under mesophilic conditions. Renew. Energy 2025, 242, 122391. [Google Scholar] [CrossRef]
- Al-Mishyikh, S.H.; Jarallah, A.K. Effect of Biochar and Bentonite Application in Availability and Uptake of N, P and K for Faba Bean in Desert Soil. Iraqi J. Desert Stud. 2023, 13, 76–84. [Google Scholar]
- Wang, L.; Ok, Y.S.; Tsang, D.C.; Alessi, D.S.; Rinklebe, J.; Wang, H.; Mašek, O.; Hou, R.; O’Connor, D.; Hou, D. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag. 2020, 36, 358–386. [Google Scholar] [CrossRef]
- Abdeen, S.A. Biochar, bentonite and potassium humate effects on saline soil properties and nitrogen loss. Annu. Res. Rev. Biol. 2020, 35, 45–55. [Google Scholar] [CrossRef]
- Mohawesh, O.; Durner, W. Effects of bentonite, hydrogel and biochar amendments on soil hydraulic properties from saturation to oven dryness. Pedosphere 2019, 29, 598–607. [Google Scholar] [CrossRef]
- Sewu, D.D.; Lee, D.S.; Tran, H.N.; Woo, S.H. Effect of bentonite-mineral co-pyrolysis with macroalgae on physicochemical property and dye uptake capacity of bentonite/biochar composite. J. Taiwan Inst. Chem. Eng. 2019, 104, 106–113. [Google Scholar] [CrossRef]
- Kale, R.C.; Ravi, K. A review on the impact of thermal history on compacted bentonite in the context of nuclear waste management. Environ. Technol. Innov. 2021, 23, 101728. [Google Scholar] [CrossRef]
- Mi, J.; Gregorich, E.G.; Xu, S.; McLaughlin, N.B.; Ma, B.; Liu, J. Changes in soil biochemical properties following application of bentonite as a soil amendment. Eur. J. Soil Biol. 2021, 102, 103251. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Arif, M.; Liu, G.; Yousaf, B.; Ahmed, R.; Irshad, S.; Ashraf, A.; Zia-ur-Rehman, M.; Rashid, M.S. Synthesis, characteristics and mechanistic insight into the clays and clay minerals-biochar surface interactions for contaminants removal-A review. J. Clean. Prod. 2021, 310, 127548. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, X.; Mašek, O.; Zimmerman, A. Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J. Hazard. Mater. 2013, 256, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Munir, M.; Iqbal, Z.; Alqahtani, N.K. Biochar from different feedstocks as a sustainable approach to alleviate water deficit effects on zucchini. Pak. J. Bot. 2024, 56, 2165–2178. [Google Scholar] [CrossRef]
- Cross, A.; Sohi, S.P. A method for screening the relative long-term stability of biochar. Gcb Bioenergy 2013, 5, 215–220. [Google Scholar] [CrossRef]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; FAO Fertilizer and Plant Nutrition Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; Volume 19, Available online: https://www.fao.org/4/i0131e/i0131e.pdf (accessed on 5 September 2024).
- Hossain, M.Z.; Bahar, M.M.; Sarkar, B.; Donne, S.W.; Ok, Y.S.; Palansooriya, K.N.; Kirkham, M.B.; Chowdhury, S.; Bolan, N. Biochar and its importance on nutrient dynamics in soil and plant. Biochar 2020, 2, 379–420. [Google Scholar] [CrossRef]
- Medha, I.; Chandra, S.; Bhattacharya, J.; Samal, B. Development of rice straw-derived biochar-bentonite composite and its application for in situ sequestration of ammonium and phosphate ions in the degraded mine soil. Environ. Manag. 2023, 71, 1065–1086. [Google Scholar] [CrossRef]
- Liu, X.; Liao, J.; Song, H.; Yang, Y.; Guan, C.; Zhang, Z. A biochar-based route for environmentally friendly controlled release of nitrogen: Urea-loaded biochar and bentonite composite. Sci. Rep. 2019, 9, 9548. [Google Scholar] [CrossRef]
- Gray, M.; Johnson, M.G.; Dragila, M.I.; Kleber, M. Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass Bioenergy 2014, 61, 196–205. [Google Scholar] [CrossRef]
- Jing, F.; Sun, Y.; Liu, Y.; Wan, Z.; Chen, J.; Tsang, D.C. Interactions between biochar and clay minerals in changing biochar carbon stability. Sci. Total Environ. 2022, 809, 151124. [Google Scholar] [CrossRef]
- Laine, H.; Karttunen, P. Long-Term Stability of Bentonite A Literature Review. 2010. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/066/43066643.pdf?r=1 (accessed on 28 October 2024).
- Kwon, G.; Cho, D.W.; Kwon, E.E.; Rinklebe, J.; Wang, H.; Song, H. Beneficial use of Fe-impregnated bentonite as a catalyst for pyrolysis of grass cut into syngas, bio-oil and biochar. Chem. Eng. J. 2022, 448, 137502. [Google Scholar] [CrossRef]
- Chen, J.; Lü, S.; Zhang, Z.; Zhao, X.; Li, X.; Ning, P.; Liu, M. Environmentally friendly fertilizers: A review of materials used and their effects on the environment. Sci. Total Environ. 2018, 613, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Harrou, A.; Lechheb, M.; El Ouahabi, M.; Fagel, N.; Gharibi, E. Physico-chemical properties and microstructure of bentonite in highly alkaline environments. Clays Clay Miner. 2024, 72, e15. [Google Scholar] [CrossRef]
- Ellerbrock, R.; Stein, M.; Schaller, J. Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR. Sci. Rep. 2022, 12, 11708. [Google Scholar] [CrossRef]
- Bunnelle, W.H.; Meyer, L.A.; Glaser, R.E. Experiment 3: IR Spectroscopy Tutorial. University of Missouri. 2000. Available online: https://glaserr.missouri.edu/vitpub/teaching/212w00p/expt_3_IR_tutorial.pdf (accessed on 8 November 2024).
- Ellerbrock, R.H.; Gerke, H.H. FTIR spectral band shifts explained by OM–cation interactions. J. Plant Nutr. Soil Sci. 2021, 184, 388–397. [Google Scholar] [CrossRef]
- Sahoo, S.S.; Vijay, V.K.; Chandra, R.; Kumar, H. Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo. Clean. Eng. Technol. 2021, 3, 100101. [Google Scholar] [CrossRef]
- Bellamy, L.J.F.C. The Infra-Red Spectra of Complex Molecules; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Li, F.; Cao, X.; Zhao, L.; Wang, J.; Ding, Z. Effects of mineral additives on biochar formation: Carbon retention, stability, and properties. Environ. Sci. Technol. 2014, 48, 11211–11217. [Google Scholar] [CrossRef]
- Smith, B. Infrared Spectral Interpretation, In The Beginning I: The Meaning of Peak Positions, Heights, and Widths. Spectroscopy 2024, 39, 18–24. [Google Scholar] [CrossRef]
- Kumari, N.; Mohan, C. Basics of clay minerals and their characteristic properties. In Clays and Clay Minerals; IntechOpen: London, UK, 2021; Volume 24. [Google Scholar] [CrossRef]
- Tomczyk, A.; Sokołowska, Z.; Boguta, P. Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Rev. Environ. Sci. Bio/Technol. 2020, 19, 191–215. [Google Scholar] [CrossRef]
- Spokas, K.A.; Novak, J.M.; Stewart, C.E.; Cantrell, K.B.; Uchimiya, M.; DuSaire, M.G.; Ro, K.S. Qualitative analysis of volatile organic compounds on biochar. Chemosphere 2011, 85, 869–882. [Google Scholar] [CrossRef] [PubMed]
- Alghamdi, A.G.; Aly, A.A.; Al-Omran, A.M.; Alkhasha, A. Impact of biochar, bentonite, and compost on physical and chemical characteristics of a sandy soil. Arab. J. Geosci. 2018, 11, 670. [Google Scholar] [CrossRef]
- Sarpong, K.A.; Amiri, A.; Ellis, S.; Idowu, O.J.; Brewer, C.E. Short-term leachability of salts from Atriplex-derived biochars. Sci. Total Environ. 2019, 688, 701–707. [Google Scholar] [CrossRef]
- Chacón, F.J.; Sánchez-Monedero, M.A.; Lezama, L.; Cayuela, M.L. Enhancing biochar redox properties through feedstock selection, metal preloading and post-pyrolysis treatments. Chem. Eng. J. 2020, 395, 125100. [Google Scholar] [CrossRef]
- Zhang, D. Thermal decomposition of coal. In Coal, Oil Shale, Natural Bitumen, Heavy Oil, and Peat; Eolss Publishers: Oxford, UK, 2009; Volume 1, pp. 340–359. [Google Scholar]
- Lian, F.; Xing, B. Black carbon (biochar) in water/soil environments: Molecular structure, sorption, stability, and potential risk. Environ. Sci. Technol. 2017, 51, 13517–13532. [Google Scholar] [CrossRef]
- Kianersi, A.; Hajipour, M.; Biniaz Delijani, E. Experimental evaluation of bentonite clay swelling and inhibition effect of nanoparticles. Environ. Earth Sci. 2023, 82, 526. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, R.; Donne, S.W.; Beyad, Y.; Liu, X.; Duan, X.; Yang, T.; Su, P.; Sun, H. Co-pyrolysis of wood chips and bentonite/kaolin: Influence of temperatures and minerals on characteristics and carbon sequestration potential of biochar. Sci. Total Environ. 2022, 838, 156081. [Google Scholar] [CrossRef]
- Tong, L.; Liang, T.; Tian, Y.; Zhang, Q.; Pan, Y. Research progress on treatment of mine wastewater by bentonite composite. Arab. J. Geosci. 2022, 15, 681. [Google Scholar] [CrossRef]
- Pocha, P.R.; Bag, R. An Experimental Investigation on the Hydraulic and Mechanical Properties of Red Mud Amended with Monovalent and Divalent Bentonites. Int. J. Geosynth. Ground Eng. 2024, 10, 91. [Google Scholar] [CrossRef]
- Hansima, C. Elucidating Mechanisms of Sulfamethoxazole Sorption onto Bentonite in the Presence of Fresh Liquid Swine Manure Dissolved Organic Carbon. 2023. Available online: http://hdl.handle.net/1993/37738 (accessed on 13 July 2025).
- Kleber, M.; Lindsley, A. The science and semantics of “Soil organic matter stabilization”. In Multi-Scale Biogeochemical Processes in Soil Ecosystems: Critical Reactions and Resilience to Climate Changes; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 13–49. [Google Scholar] [CrossRef]
- Alexander, J.A.; Ahmad Zaini, M.A.; Surajudeen, A.; Aliyu, E.N.U.; Omeiza, A.U. Surface modification of low-cost bentonite adsorbents—A review. Part. Sci. Technol. 2019, 37, 538–549. [Google Scholar] [CrossRef]
- Nan, H.; Mašek, O.; Yang, F.; Xu, X.; Qiu, H.; Cao, X.; Zhao, L. Minerals: A missing role for enhanced biochar carbon sequestration from the thermal conversion of biomass to the application in soil. Earth-Sci. Rev. 2022, 234, 104215. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, C.; Wang, Y.; He, L.; Lu, H.; Yang, S. Vermiculite modification increases carbon retention and stability of rice straw biochar at different carbonization temperatures. J. Clean. Prod. 2020, 254, 120111. [Google Scholar] [CrossRef]
- Karod, M.; Pollard, Z.A.; Ahmad, M.T.; Dou, G.; Gao, L.; Goldfarb, J.L. Impact of bentonite clay on in situ pyrolysis vs. hydrothermal carbonization of avocado pit biomass. Catalysts 2022, 12, 655. [Google Scholar] [CrossRef]
- Battas, A.; Gaidoumi, A.E.; Ksakas, A.; Kherbeche, A. Adsorption study for the removal of nitrate from water using local clay. Sci. World J. 2019, 2019, 9529618. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, Z.; Xie, H. Preparation, characterization and intercalation mechanism of bentonite modified with different organic ammonium. Chem. Eng. Sci. 2025, 301, 120758. [Google Scholar] [CrossRef]
- Viglašová, E.; Galamboš, M.; Danková, Z.; Krivosudský, L.; Lengauer, C.L.; Hood-Nowotny, R.; Soja, G.; Rompel, A.; Matík, M.; Briančin, J. Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Manag. 2018, 79, 385–394. [Google Scholar] [CrossRef]
- Zhang, M.; Song, G.; Gelardi, D.L.; Huang, L.; Khan, E.; Mašek, O.; Parikh, S.; Ok, Y.S. Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Res. 2020, 186, 116303. [Google Scholar] [CrossRef] [PubMed]
- Kavan Kumar, V.; Panwar, N.L. Pyrolysis technologies for biochar production in waste management: A review. Clean Energy 2024, 8, 61–78. [Google Scholar] [CrossRef]
- Başer, B.; Yousaf, B.; Yetis, U.; Abbas, Q.; Kwon, E.E.; Wang, S.; Bolan, N.S.; Rinklebe, J. Formation of nitrogen functionalities in biochar materials and their role in the mitigation of hazardous emerging organic pollutants from wastewater. J. Hazard. Mater. 2021, 416, 126131. [Google Scholar] [CrossRef]
- de Oliveira Paiva, I.; de Morais, E.G.; Jindo, K.; Silva, C.A. Biochar n content, pools and aromaticity as affected by feedstock and pyrolysis temperature. In Waste and Biomass Valorization; Springer: Berlin/Heidelberg, Germany, 2024; pp. 1–21. [Google Scholar] [CrossRef]
- An, X.; Wu, Z.; Yu, J.; Ge, L.; Li, T.; Liu, X.; Yu, B. High-efficiency reclaiming phosphate from an aqueous solution by bentonite modified biochars: A slow release fertilizer with a precise rate regulation. ACS Sustain. Chem. Eng. 2020, 8, 6090–6099. [Google Scholar] [CrossRef]
- Chen, L.; Chen, X.L.; Zhou, C.H.; Yang, H.M.; Ji, S.F.; Tong, D.S.; Zhong, Z.K.; Yu, W.H.; Chu, M.Q. Environmental-friendly montmorillonite-biochar composites: Facile production and tunable adsorption-release of ammonium and phosphate. J. Clean. Prod. 2017, 156, 648–659. [Google Scholar] [CrossRef]
- Hanyabui, E.; Apori, S.O.; Frimpong, K.A.; Atiah, K.; Abindaw, T.; Byalebeka, J.; Ali, M.; Asiamah, J.Y. Phosphorus Sorption in Tropical Soils. AIMS Agric. Food 2020, 5, 599–616. [Google Scholar] [CrossRef]
- Maj, I.; Matus, K. Aluminosilicate clay minerals: Kaolin, bentonite, and halloysite as fuel additives for thermal conversion of biomass and waste. Energies 2023, 16, 4359. [Google Scholar] [CrossRef]
- Fang, S.; Wang, X.; Li, P.; Bai, J.; Chang, C.; Wang, X.; Song, J.; Pang, S. Effects of potassium salt on the pyrolysis products characteristics of alkali lignin from furfural residue. Fuel 2023, 333, 126216. [Google Scholar] [CrossRef]
- Chen, G.; Wang, Y.; Wang, J.; Wang, J.; Yu, F.; Ma, Q.; Cheng, Z.; Yan, B.; Song, Y.; Cui, X. Production of potassium-enriched biochar from Canna indica: Transformation and release of potassium. Waste Manag. 2023, 164, 119–126. [Google Scholar] [CrossRef]
- Piash, M.I.; Iwabuchi, K.; Itoh, T. Synthesizing biochar-based fertilizer with sustained phosphorus and potassium release: Co-pyrolysis of nutrient-rich chicken manure and Ca-bentonite. Sci. Total Environ. 2022, 822, 153509. [Google Scholar] [CrossRef] [PubMed]
- An, X.; Wu, Z.; Yu, J.; Cravotto, G.; Liu, X.; Li, Q.; Yu, B. Copyrolysis of biomass, bentonite, and nutrients as a new strategy for the synthesis of improved biochar-based slow-release fertilizers. ACS Sustain. Chem. Eng. 2020, 8, 3181–3190. [Google Scholar] [CrossRef]
- Kammann, C.; Schmidt, H.P.; Messerschmidt, N.; Linsel, S.; Steffens, D.; Müller, C.; Koyro, H.W.; Conte, P.; Joseph, S. Plant growth improvement mediated by nitrate capture in co-composted biochar. Sci. Rep. 2015, 5, 11080. [Google Scholar] [CrossRef]
- Hagemann, N.; Kammann, C.I.; Schmidt, H.-P.; Kappler, A.; Behrens, S. Nitrate capture and slow release in biochar amended compost and soil. PLoS ONE 2017, 12, e0171214. [Google Scholar] [CrossRef] [PubMed]
- Spokas, K.A. Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Manag. 2010, 1, 289–303. [Google Scholar] [CrossRef]
- Singh, B.P.; Cowie, A.L.; Smernik, R.J. Biochar carbon stability in a clayey soil as a function of feedstock and pyrolysis temperature. Environ. Sci. Technol. 2012, 46, 11770–11778. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.H.; Xu, R.K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 2011, 102, 3488–3497. [Google Scholar] [CrossRef]
Pyrolysis Type | Bentonite (%) | Element (% w/w) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
C | O | Si | K | Al | Ca | Mg | Fe | Na | ||
Control | 0 | 79.53 | 16.22 | 1.70 | 1.22 | 0.50 | 0.65 | 0.18 | - | - |
Pre-pyrolysis | 10 | 64.15 | 22.94 | 6.33 | 2.42 | 0.86 | 2.19 | 0.54 | - | 0.57 |
30 | 52.41 | 23.43 | 10.98 | 1.75 | 3.14 | 4.69 | 1.07 | 2.18 | 0.35 | |
Post-pyrolysis | 10 | 66.18 | 21.77 | 4.15 | 2.62 | 0.93 | 2.84 | 0.95 | - | 0.56 |
30 | 60.22 | 22.89 | 9.85 | 1.17 | 1.67 | 2.24 | 0.83 | 2.76- | 1.12 |
Parameters | Pyrolysis Processes (PP) | Bentonite Addition Rate (BR) | PP × BR |
---|---|---|---|
pH (-) | *** | *** | *** |
EC (µm/cm) | *** | *** | *** |
WHC (%) | ns | * | ns |
OC (%) | *** | *** | *** |
Normalized OC (%) | *** | *** | *** |
C stability (%) | *** | *** | *** |
NO3− (mg/kg) | *** | *** | *** |
Available P (mg/kg) | *** | * | ** |
Available K (mg/kg) | *** | *** | *** |
DF | 1 | 4 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rupngam, T.; Udomkun, P.; Boonupara, T.; Kaewlom, P. Contrasting Pre- and Post-Pyrolysis Incorporation of Bentonite into Manure Biochar: Impacts on Nutrient Availability, Carbon Stability, and Physicochemical Properties. Agronomy 2025, 15, 2015. https://doi.org/10.3390/agronomy15082015
Rupngam T, Udomkun P, Boonupara T, Kaewlom P. Contrasting Pre- and Post-Pyrolysis Incorporation of Bentonite into Manure Biochar: Impacts on Nutrient Availability, Carbon Stability, and Physicochemical Properties. Agronomy. 2025; 15(8):2015. https://doi.org/10.3390/agronomy15082015
Chicago/Turabian StyleRupngam, Thidarat, Patchimaporn Udomkun, Thirasant Boonupara, and Puangrat Kaewlom. 2025. "Contrasting Pre- and Post-Pyrolysis Incorporation of Bentonite into Manure Biochar: Impacts on Nutrient Availability, Carbon Stability, and Physicochemical Properties" Agronomy 15, no. 8: 2015. https://doi.org/10.3390/agronomy15082015
APA StyleRupngam, T., Udomkun, P., Boonupara, T., & Kaewlom, P. (2025). Contrasting Pre- and Post-Pyrolysis Incorporation of Bentonite into Manure Biochar: Impacts on Nutrient Availability, Carbon Stability, and Physicochemical Properties. Agronomy, 15(8), 2015. https://doi.org/10.3390/agronomy15082015