Large-Scale Individual Plastic Greenhouse Extraction Using Deep Learning and High-Resolution Remote Sensing Imagery
Abstract
1. Introduction
- A Multi-scale Feature Fusion Decoder (MFFD) module was designed. By upsampling high-level semantic features and concatenating them with low-level detail features, followed by convolutional processing, it enhances contextual awareness and strengthens the network’s capability to delineate edges of individual plastic greenhouses.
- An Individual Plastic Greenhouse Extraction Network (IPGENet) was constructed. The Swin-UNet baseline architecture was improved by designing an MFFD (Multi-scale Feature Fusion and Distillation) module to enhance its capability for individual plastic greenhouse extraction.
- An iterative sample method is proposed. Through sample iteration based on the IPGENet framework, efficient dataset expansion is achieved starting from a limited initial sample set. This method ensures sample labeling accuracy while substantially reducing manual annotation costs and drastically improving the efficiency of large-scale sample dataset construction.
- High-precision mapping of individual plastic greenhouses throughout Shandong Province. The deep learning-based framework for individual plastic greenhouse extraction was systematically validated through experiments. Utilizing GF-2 remote sensing imagery, it achieved sub-meter-level extraction and mapping of plastic greenhouses across Shandong Province, realizing geometric accuracy recognition at the sub-meter scale for individual structures.
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. IPGENet Architecture
2.3.2. Multi-Scale Feature Fusion Decoder (MFFD)
- (1)
- Initial processing:
- (2)
- Multi-scale Feature Fusion (i = 0, 1, 2, 3):
- (3)
- Final Output Processing:
2.3.3. Accuracy Evaluation Metrics
3. Results
3.1. Ablation Study
3.1.1. Quantitative Comparisons
3.1.2. Extraction Result Comparison
3.2. Comparison of Methods
3.2.1. Quantitative Comparisons
3.2.2. Extraction Result Comparison
3.3. Extraction and Mapping of Individual Plastic Greenhouses in Shandong Province, China
3.4. Statistical Analysis of Individual Plastic Greenhouses Across Shandong Province, China
4. Discussion
4.1. Advantage
4.2. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MFFD | Multi-scale Feature Fusion Decoder |
IPGENet | Individual Plastic Greenhouse Extraction Network |
GF-2 | Gaofen-2 satellite |
DEM | Digital Elevation Model |
SPP | Spatial Pyramid Pooling |
Window CA | Window-Cross Attention |
IoU | Intersection over Union |
TP | True Positive |
TN | True Negative |
FP | False Positive |
FN | False Negative |
References
- Chen, Z.; Wu, Z.; Gao, J.; Cai, M.; Yang, X.; Chen, P.; Li, Q. A convolutional neural network for large-scale greenhouse extraction from satellite images considering spatial features. Remote Sens. 2022, 14, 4908. [Google Scholar] [CrossRef]
- Guo, B.; Zhou, B.; Zhang, Z.; Li, K.; Wang, J.; Chen, J.; Papadakis, G. A critical review of the status of current greenhouse technology in China and development prospects. Appl. Sci. 2024, 14, 5952. [Google Scholar] [CrossRef]
- Ma, H.; Feng, T.; Shen, X.; Luo, Z.; Chen, P.; Guan, B. Greenhouse extraction with high-resolution remote sensing imagery using fused fully convolutional network and object-oriented image analysis. J. Appl. Remote Sens. 2021, 15, 046502. [Google Scholar] [CrossRef]
- Aguilar, M.Á.; Jiménez-Lao, R.; Nemmaoui, A.; Aguilar, F.J.; Koc-San, D.; Tarantino, E.; Chourak, M. Evaluation of the consistency of simultaneously acquired Sentinel-2 and Landsat 8 imagery on plastic covered greenhouses. Remote Sens. 2020, 12, 2015. [Google Scholar] [CrossRef]
- van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Kootstra, G.; et al. Current status and future challenges in implementing and upscaling vertical farming systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef] [PubMed]
- Novelli, A.; Aguilar, M.A.; Nemmaoui, A.; Aguilar, F.J.; Tarantino, E. Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain). Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 403–411. [Google Scholar] [CrossRef]
- Picuno, P. Innovative material and improved technical design for a sustainable exploitation of agricultural plastic film. Polym.-Plast. Technol. Eng. 2014, 53, 1000–1011. Available online: https://hdl.handle.net/11563/58958 (accessed on 5 July 2025). [CrossRef]
- Picuno, P.; Sica, C.; Laviano, R.; Dimitrijević, A.; Scarascia-Mugnozza, G. Experimental tests and technical characteristics of regenerated films from agricultural plastics. Polym. Degrad. Stab. 2012, 97, 1654–1661. [Google Scholar] [CrossRef]
- Sica, C.; Picuno, P. Spectro-radiometrical characterization of plastic nets for protected cultivation. In Proceedings of the International Symposium on High Technology for Greenhouse System Management: Greensys 2007, Naples, Italy, 4–6 October 2007; Volume 801, pp. 245–252. [Google Scholar] [CrossRef]
- Picuno, P.; Tortora, A.; Capobianco, R.L. Analysis of plasticulture landscapes in Southern Italy through remote sensing and solid modelling techniques. Landsc. Urban Plan. 2011, 100, 45–56. [Google Scholar] [CrossRef]
- Agüera, F.; Aguilar, F.J.; Aguilar, M.A. Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses. ISPRS J. Photogramm. Remote Sens. 2008, 63, 635–646. [Google Scholar] [CrossRef]
- Lu, L.; Di, L.; Ye, Y.A. decision-tree classifier for extracting transparent plastic-mulched landcover from Landsat-5 TM images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4548–4558. [Google Scholar] [CrossRef]
- Chi, M.; Plaza, A.; Benediktsson, J.A.; Sun, Z.; Shen, J.; Zhu, Y. Big data for remote sensing: Challenges and opportunities. Proc. IEEE 2016, 104, 2207–2219. [Google Scholar] [CrossRef]
- Chen, W.; Xu, Y.; Zhang, Z.; Yang, L.; Pan, X.; Jia, Z. Mapping agricultural plastic greenhouses using Google Earth images and deep learning. Comput. Electron. Agric. 2021, 191, 106552. [Google Scholar] [CrossRef]
- Yuan, J.; Wang, D.; Li, R. Remote sensing image segmentation by combining spectral and texture features. IEEE Trans. Geosci. Remote Sens. 2013, 52, 16–24. [Google Scholar] [CrossRef]
- Sisodia, P.S.; Tiwari, V.; Kumar, A. Analysis of supervised maximum likelihood classification for remote sensing image. In Proceedings of the International Conference on Recent Advances and Innovations in Engineering (ICRAIE-2014), Jaipur, India, 9–11 May 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–4. [Google Scholar] [CrossRef]
- Luo, K.; Zhang, H.; Zhu, C.; Jiao, T.; Samat, A.; Chen, Y.; Cheng, C. A novel method integrating sample migration and threshold optimization for high-precision greenhouse classification: Evidence from Southern China. Geocarto Int. 2025, 40, 2527308. [Google Scholar] [CrossRef]
- Chen, S.; Chen, Y.; Gao, S.; Li, C.; Li, N.; Chen, L. A modified spectral remote sensing index to map plastic greenhouses in fragmented terrains. Smart Agric. Technol. 2025, 11, 100904. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Hao, J.; Li, J.; Ge, H.; Jiang, F.; Chen, F. Agricultural greenhouses datasets of 2010, 2016, and 2022 in China. Sci. Data 2025, 12, 1107. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Huang, X.; Gong, J. Deep neural network for remote-sensing image interpretation: Status and perspectives. Natl. Sci. Rev. 2019, 6, 1082–1086. [Google Scholar] [CrossRef] [PubMed]
- Cheng, G.; Yan, B.; Shi, P.; Li, K.; Yao, X.; Guo, L.; Han, J. Prototype-CNN for few-shot object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–10. [Google Scholar] [CrossRef]
- Ding, J.; Xue, N.; Xia, G.-S.; Bai, X.; Yang, W.; Yang, M.Y.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; et al. Object detection in aerial images: A large-scale benchmark and challenges. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 7778–7796. [Google Scholar] [CrossRef]
- Ma, A.; Chen, D.; Zhong, Y.; Zheng, Z.; Zhang, L. National-scale greenhouse mapping for high spatial resolution remote sensing imagery using a dense object dual-task deep learning framework: A case study of China. ISPRS J. Photogramm. Remote Sens. 2021, 181, 279–294. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, X.; Fensholt, R.; Jensen, P.R.D.; Li, S.; Larsen, M.N.; Reiner, F.; Tian, F.; Brandt, M. Global area boom for greenhouse cultivation revealed by satellite mapping. Nat. Food 2024, 5, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Chen, Z.; Li, Y.; Bai, Y. Crop classification in mountainous areas using object-oriented methods and multi-source data: A case study of Xishui county, China. Agronomy 2023, 13, 3037. [Google Scholar] [CrossRef]
- Xie, J.; Tian, T.; Hu, R.; Yang, X.; Xu, Y.; Zan, L. A Novel Detector for Wind Turbines in Wide-Ranging, Multi-Scene Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 17725–17738. [Google Scholar] [CrossRef]
- Chen, D.; Zhong, Y.; Ma, A.; Cao, L. Dense greenhouse extraction in high spatial resolution remote sensing imagery. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 4092–4095. [Google Scholar] [CrossRef]
- He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2961–2969. [Google Scholar] [CrossRef]
- Wang, Q.; Chen, W.; Tang, H.; Pan, X.; Zhao, H.; Yang, B.; Gu, W. Simultaneous extracting area and quantity of agricultural greenhouses in large scale with deep learning method and high-resolution remote sensing images. Sci. Total Environ. 2023, 872, 162229. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, B.; Jiao, J.; Hong, R.; Li, Y.; Liu, P. Remote sensing detection and mapping of plastic greenhouses based on YOLOX+: A case study in Weifang, China. Comput. Electron. Agric. 2024, 218, 108702. [Google Scholar] [CrossRef]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch: An imperative style, high-performance deep learning library. In Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019; pp. 8026–8037. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-unet: Unet-like pure transformer for medical image segmentation. In European Conference on Computer Vision; Springer Nature: Cham, Switzerland, 2022; pp. 205–218. [Google Scholar] [CrossRef]
- Xiao, H.; Li, L.; Liu, Q.; Zhu, X.; Zhang, Q. Transformers in medical image segmentation: A review. Biomed. Signal Process. Control 2023, 84, 104791. [Google Scholar] [CrossRef]
- Qin, J.; Huang, Y.; Wen, W. Multi-scale feature fusion residual network for single image super-resolution. Neurocomputing 2020, 379, 334–342. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, Y.; Yang, X.; Gao, S.; Li, F.; Kong, A.; Sun, L. Improved remote sensing image classification based on multi-scale feature fusion. Remote Sens. 2020, 12, 213. [Google Scholar] [CrossRef]
- Wang, G.; Gan, X.; Cao, Q.; Zhai, Q. MFANet: Multi-scale feature fusion network with attention mechanism. Vis. Comput. 2023, 39, 2969–2980. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the 18th International Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015, Munich, Germany, 5–9 October 2015; Proceedings, Part III 18. Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar] [CrossRef]
- Xiao, T.; Liu, Y.; Zhou, B.; Jiang, Y.; Sun, J. Unified Perceptual Parsing for Scene Understanding. arXiv 2018, arXiv:1807.10221. [Google Scholar] [CrossRef]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arXiv 2018, arXiv:1805.10180. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U-Net. arXiv 2017, arXiv:1711.10684. [Google Scholar] [CrossRef]
Sensor Resolution | Spectral Range | |
---|---|---|
Panchromatic imagery | 0.8 m | 450–900 nm |
Multispectral imagery | 3.2 m | 450–520 nm (Blue band) 520–590 nm (Green band) 630–690 nm (Red band) 770–890 nm (Near-infrared band) |
Methods | Recall (%) | Precision (%) | IoU (%) | F1-Score (%) |
---|---|---|---|---|
Baseline | 91.24 | 91.13 | 83.82 | 91.19 |
+MFFD | 93.46 | 92.86 | 87.45 | 93.16 |
Methods | Recall (%) | Precision (%) | IoU (%) | F1-Score (%) |
---|---|---|---|---|
UNet | 91.12 | 91.07 | 82.80 | 91.09 |
UperNet | 91.09 | 90.46 | 82.19 | 90.77 |
PAN | 92.31 | 91.89 | 85.72 | 92.31 |
Res-UNet | 92.98 | 92.77 | 86.69 | 92.87 |
Swin-UNet | 91.24 | 91.13 | 83.82 | 91.19 |
Our | 93.46 | 92.86 | 87.45 | 93.16 |
City | Number | Percentage of Total Quantity (%) | Area (km2) | Percentage of Total Area (%) |
---|---|---|---|---|
Binzhou | 55,465 | 2.05 | 22.45 | 1.86 |
Dezhou | 46,954 | 1.74 | 23.65 | 1.96 |
Dongying | 50,934 | 1.88 | 15.64 | 1.30 |
Heze | 159,781 | 5.91 | 76.35 | 6.34 |
Jinan | 100,655 | 3.72 | 47.76 | 3.97 |
Jining | 67,747 | 2.51 | 24.34 | 2.02 |
Liaocheng | 254,463 | 9.41 | 141.54 | 11.75 |
Linyi | 493,633 | 18.26 | 150.26 | 12.48 |
Qingdao | 234,979 | 8.69 | 110.75 | 9.20 |
Rizhao | 74,380 | 2.75 | 27.35 | 2.27 |
Taian | 93,620 | 3.46 | 35.47 | 2.94 |
Weifang | 665,412 | 24.62 | 419.74 | 34.85 |
Weihai | 67,263 | 2.49 | 16.36 | 1.36 |
Yantai | 146,044 | 5.40 | 44.56 | 3.70 |
Zaozhuang | 155,434 | 5.75 | 28.47 | 2.36 |
Zibo | 36,683 | 1.36 | 19.74 | 1.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Yu, X.; Li, B.; Tian, X.; Wu, Z. Large-Scale Individual Plastic Greenhouse Extraction Using Deep Learning and High-Resolution Remote Sensing Imagery. Agronomy 2025, 15, 2014. https://doi.org/10.3390/agronomy15082014
Chang Y, Yu X, Li B, Tian X, Wu Z. Large-Scale Individual Plastic Greenhouse Extraction Using Deep Learning and High-Resolution Remote Sensing Imagery. Agronomy. 2025; 15(8):2014. https://doi.org/10.3390/agronomy15082014
Chicago/Turabian StyleChang, Yuguang, Xiaoyu Yu, Baipeng Li, Xiangyu Tian, and Zhaoming Wu. 2025. "Large-Scale Individual Plastic Greenhouse Extraction Using Deep Learning and High-Resolution Remote Sensing Imagery" Agronomy 15, no. 8: 2014. https://doi.org/10.3390/agronomy15082014
APA StyleChang, Y., Yu, X., Li, B., Tian, X., & Wu, Z. (2025). Large-Scale Individual Plastic Greenhouse Extraction Using Deep Learning and High-Resolution Remote Sensing Imagery. Agronomy, 15(8), 2014. https://doi.org/10.3390/agronomy15082014