Use of Spent Mushroom Substrates in Radish (Raphanus ssp.) Microgreens Cultivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site, Plant Species, and Growing Substrates
2.2. Plant Material, Growing Conditions, and Harvest
2.3. Mineral Analysis of Microgreens and Substrates
2.4. Data Analyses
3. Results
3.1. Morphological Parameters
3.2. Mineral Content
3.2.1. Growing Media
3.2.2. Radish Microgreens
3.2.3. Black Radish Microgreens
3.2.4. Compare Both Species and Cycles
3.3. Photosynthetic Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
A-2.5 | 2.5% Agaricus bisporus SMS and 97.5% substrate |
A-5 | 5% Agaricus bisporus SMS and 95% substrate |
P-20 | 20% Pleurotus ostreatus SMS and 80% substrate |
P-30 | 30% Pleurotus ostreatus SMS and 70% substrate |
L-20 | 20% Lentinula edodes SMS and 80% substrate |
L-30 | 30% Lentinula edodes SMS and 70% substrate |
References
- Mwangi, R.W.; Mustafa, M.; Kappel, N.; Csambalik, L.; Szabó, A. Practical applications of spent mushroom compost in cultivation and disease control of selected vegetables species. J. Mater. Cycles Waste Manag. 2024, 26, 1918–1933. [Google Scholar] [CrossRef]
- Barua, B.S.; Nigaki, A.; Kataoka, R.A. A new recycling method through mushroom cultivation using food waste: Optimization of mushroom bed medium using food waste and agricultural use of spent mushroom substrates. Recycling 2024, 9, 58. [Google Scholar] [CrossRef]
- Raviv, M. Composts in growing media: What’s new and what’s next? Acta Hortic. 2013, 982, 39–50. [Google Scholar] [CrossRef]
- Schmilewski, G. The role of peat in assuring the quality of growing media. Mires Peat 2008, 3, 1–8. Available online: http://www.mires-and-peat.net/pages/volumes/map03/map0301.php (accessed on 13 August 2025).
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands; International Mire Conservation Group and International Peat Society: Saarijärvi, Finland, 2002. [Google Scholar]
- Medina, E.; Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Moral, R. Spent mushroom substrates as component of growing media for germination and growth of horticultural plants. Bioresour. Technol. 2009, 100, 4227–4232. [Google Scholar] [CrossRef]
- Gruda, N. Increasing sustainability of growing media constituents and stand-alone substrates in soilless culture systems. Agronomy 2019, 9, 298. [Google Scholar] [CrossRef]
- Sánchez, C. Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 2010, 85, 1321–1337. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, O.P.; Sagar, M.P. Management of Spent Mushroom Substrate; National Research Centre for Mushroom, Ed.; Indian Council of Agricultural Research: Solan, India, 2007; 56p. [Google Scholar]
- Uzun, I. Use of spent mushroom compost in sustainable fruit and vegetable production. J. Fruit. Ornam. Plant Res. 2004, 12, 157–165. Available online: https://www.inhort.pl/files/journal_pdf/journal_2004spec/full2004-18spec.pdf (accessed on 24 July 2025).
- Gunes, A.; Inal, A.; Taskin, M.B. Use of spent mushroom compost in sustainable agricultural systems. Commun. Soil. Sci. Plant Anal. 2014, 45, 2197–2208. [Google Scholar]
- Rinker, D.L. Spent mushroom substrate uses. In Edible and Medicinal Mushrooms: Technology and Applications; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 427–454. [Google Scholar] [CrossRef]
- Vahid Afagh, H.; Saadatmand, S.; Riahi, H.; Khavari-Nejad, R.A. Influence of spent mushroom compost (SMC) as an organic fertilizer on nutrient, growth, yield, and essential oil composition of german chamomile (Matricaria recutita L.). Commun. Soil. Sci. Plant Anal. 2019, 50, 538–548. [Google Scholar] [CrossRef]
- Poudel, P.; Di Gioia, F.; Lambert, J.D.; Connolly, E.L. Zinc biofortification through seed nutri-priming using alternative zinc sources and concentration levels in pea and sunflower microgreens. Front. Plant Sci. 2023, 14, 1177844. [Google Scholar] [CrossRef]
- Paraschivu, M.; Cotuna, O.; Sărățeanu, V.; Durău, C.C.; Păunescu, R.A. Microgreens-current status, global market trends and forward statements. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2021, 21, 633–639. [Google Scholar]
- Paglialunga, G.; El Nakhel, C.; Proietti, S.; Moscatello, S.; Battistelli, A.; Formisano, L.; Ciriello, M.; Del Bianco, M.; De Pascale, S.; Rouphael, Y. Substrate and fertigation management modulate microgreens production, quality and resource efficiency. Front. Sustain. Food Syst. 2023, 7, 1222914. [Google Scholar] [CrossRef]
- Mlinarić, S.; Piškor, A.; Melnjak, A.; Mikuška, A.; Šrajer Gajdošik, M.; Begović, L. Antioxidant capacity and shelf life of radish microgreens affected by growth light and cultivars. Horticulturae 2023, 9, 76. [Google Scholar] [CrossRef]
- Balik, S.; Dasgan, H.Y.; Ikiz, B.; Gruda, N.S. The performance of growing-media-shaped microgreens: The growth, yield, and nutrient profiles of broccoli, red beet, and black radish. Horticulturae 2024, 10, 1289. [Google Scholar] [CrossRef]
- Lone, J.K.; Pandey, R.; Gayacharan. Microgreens on the rise: Expanding our horizons from farm to fork. Heliyon 2024, 10, e25870. [Google Scholar] [CrossRef]
- Teng, Z.; Luo, Y.; Pearlstein, D.J.; Wheeler, R.M.; Johnson, C.M.; Wang, Q.; Fonseca, J.M. Microgreens for home, commercial, and space farming: A comprehensive update of the most recent developments. Annu. Rev. Food Sci. Technol. 2023, 14, 539–562. [Google Scholar] [CrossRef]
- Kajszczak, D.; Sosnowska, D.; Bonikowski, R.; Szymczak, K.; Frąszczak, B.; Pielech-Przybylska, K.; Podsędek, A. Comparative nutrient study of Raphanus sativus L. sprouts, microgreens, and roots. Agronomy 2025, 15, 1216. [Google Scholar] [CrossRef]
- Garegnani, M.; Sandri, C.; Pacelli, C.; Ferranti, F.; Bennici, E.; Desiderio, A.; Nardi, L.; Villani, M.E. Non-destructive real-time analysis of plant metabolite accumulation in radish microgreens under different led light recipes. Front. Plant Sci. 2024, 14, 1289208. [Google Scholar] [CrossRef]
- Czerwińska-Kayzer, D.; Kleiber, T.; Wolna-Maruwka, A.; Frankowski, P.; Staniszewski, R.; Kayzer, D. Sustainable use of organic matter obtained from the bottom of a post-mining pit reservoir—A case study on the creation of Raduszyn Lake in Poland. Energies 2023, 16, 2223. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 2nd ed.; Page, A.L., Ed.; American Society of Agronomy and Soil Science Society of America: New York, NY, USA, 1982; Volume 9, pp. 643–698. [Google Scholar] [CrossRef]
- Rosada, J.; Grzesiak, J.; Grzesiak, P.; Schroeder, G.; Ratajczak, J.; Orlicka, A.; Rissmann, I. Determination in Soils by ASA and ICP Methods of Heavy Metals Isolated by Sequential Extraction. In Chemical Aspects of Environmental Research; Schroeder, G., Ed.; Adam Mickiewicz University: Poznań, Poland, 2004; Volume 2, pp. 163–199. ISBN 83-89936-02-X. (In Polish) [Google Scholar]
- Czerniawska, W.; Strahl, A. (Eds.) Examination of soils, earths and substrates under vegetables and flowers, as well as indicator parts of plants for diagnostic purposes. In Methods of Laboratory Research in Chemical and Agricultural Stations; Institute of Soil Science and Plant Cultivation (IUNG): Puławy, Poland, 1983; Volume 4. [Google Scholar]
- Stirbet, A.; Lazár, D.; Kromdijk, J. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica 2018, 56, 86–104. [Google Scholar] [CrossRef]
- Polish Committee for Standardization (PKN). Fruit Products and Vegetable. The Preparation of Samples and Method of Physic-Chemist Investigations. Marking the Content of Dry Mass with Weight Method; PN-90/A-75101/03; PKN: Warsaw, Poland, 1990; p. 529. (In Polish) [Google Scholar]
- Fidanza, M.A.; Sanford, D.L.; Beyer, D.M.; Aurentz, D.J. Analysis of fresh mushroom compost. HortTechnology 2010, 20, 449–453. [Google Scholar] [CrossRef]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef]
- Poudel, P.; Duenas, A.E.; Di Gioia, F. Organic waste compost and spent mushroom compost as potential growing media components for the sustainable production of microgreens. Frontiers in Plant Science 2023, 14, 1229157. [Google Scholar] [CrossRef]
- Beatriz, B.R.; Wagner, G.V.J.; Rafael, B.P.; Lucas, D.S.A.; Cinthia, E.C.C.; Marcos, A.D.S.F.; Diego, C.Z. A cascade approach to sustainable agriculture: From mushroom mycelium to lettuce harvest. Sci. Total Environ. 2024, 944, 173976. [Google Scholar] [CrossRef]
- Berić, A.; Milinković, M.; Gvozdenac, S.; Milošević, D. Phytotoxicity of raw and composted organic substrates in horticultural production. Chem. Sci. Rev. Lett. 2021, 9, 399–404. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Tiquia, S.M.; Tam, N.F.Y. Characterization and composting of poultry litter in forced-aeration piles. Process Biochem. 2002, 37, 869–880. [Google Scholar] [CrossRef]
- Said-Pullicino, D.; Cucu, M.A.; Sodano, M.; Birk, J.J.; Glaser, B.; Celi, L. Nitrogen immobilization in paddy soils as affected by redox conditions and rice straw incorporation. Geoderma 2014, 228–229, 44–53. [Google Scholar] [CrossRef]
- Liang, X.; Yuan, J.; Yang, E.; Meng, J. Responses of soil organic carbon decomposition and microbial community to the addition of plant residues with different C:N ratio. Eur. J. Soil. Biol. 2017, 82, 50–55. [Google Scholar] [CrossRef]
- Petropoulos, S.A.; Fernandes, Â.; Calhelha, R.C.; Di Gioia, F.; Kolovou, P.; Barros, L.; Ferreira, I.C.F.R. Chemical composition and bioactive properties of Cichorium spinosum L. in relation to nitrate/ammonium nitrogen ratio. J. Sci. Food Agric. 2019, 99, 6741–6750. [Google Scholar] [CrossRef]
- Schulte, E.E.; Hoskins, B. Recommended soil organic matter tests. In Recommended Soil Testing Procedures for the Northeastern USA; Northeastern Regional Publication No. 493; University of Delaware: Newark, DE, USA, 1995; pp. 52–60. Available online: https://www.udel.edu/content/dam/udelImages/canr/pdfs/extension/factsheets/soiltest-recs/CHAP8.pdf (accessed on 22 July 2025).
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; van der Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Ashbell, G.; Evers, E.; Bosma, A. A Model describing the relationship between electrical conductivity and forage dry matter content. Braz. Arch. Biol. Technol. 2000, 43, 361–364. [Google Scholar] [CrossRef]
- Di Gioia, F.; Rosskopf, E.N. Effects of application timing of saline irrigation water on broccoli production and quality. Agric. Water Manag. 2018, 203, 97–104. [Google Scholar] [CrossRef]
- Wojdyło, A.; Nowicka, P.; Tkacz, K.; Turkiewicz, I.P. Sprouts vs. microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules 2020, 25, 4648. [Google Scholar] [CrossRef] [PubMed]
- Di Gioia, F.; Petropoulos, S.A.; Ferreira, I.C.F.R.; Rosskopf, E.N. Microgreens: From trendy vegetables to functional food and potential nutrition security resource. Acta Hortic. 2021, 1321, 235–242. [Google Scholar] [CrossRef]
- Prasad, R.; Lisiecka, J.; Antala, M.; Rastogi, A. Influence of different spent mushroom substrates on yield, morphological and photosynthetic parameters of strawberry (Fragaria × ananassa Duch.). Agronomy 2021, 11, 2086. [Google Scholar] [CrossRef]
- Abad, M.; Noguera, P.; Burés, S. National inventory of organic wastes for use as growing media for ornamental potted plant production: Case study in Spain. Bioresour. Technol. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Beyer, D.M. Spent Mushroom Substrate. PennState Extension. 2011. Available online: https://extension.psu.edu/spent-mushroom-substrate (accessed on 24 July 2025).
- Di Gioia, F.; Petropoulos, S.A.; Ozores-Hampton, M.; Morgan, K.; Rosskopf, E.N. Zinc and iron agronomic biofortification of Brassicaceae microgreens. Agronomy 2019, 9, 677. [Google Scholar] [CrossRef]
- Xiao, Z.; Codling, E.E.; Luo, Y.; Nou, X.; Lester, G.E.; Wang, Q. Microgreens of Brassicaceae: Mineral composition and content of 30 varieties. J. Food Compos. Anal. 2016, 49, 87–93. [Google Scholar] [CrossRef]
- Mishra, G.P.; Priti Dikshit, H.K.; Aski, M.; Sangwan, S.; Stobdan, T.; Singh, A.; Kumar, R.R.; Praveen, S. Microgreens: A novel food for nutritional security. In Conceptualizing Plant-Based Nutrition: Bioresources, Nutrients Repertoire and Bioavailability; Ramesh, S.V., Praveen, S., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 123–156. [Google Scholar] [CrossRef]
- Abou Seeda, M.; Abou El-Nour, E.Z.; Abdallah, M.; El-Bassiouny, H. Impacts of metal, metalloid and their effects in plant physiology: A review. Middle East J Agric Res 2022, 11, 838–931. [Google Scholar] [CrossRef]
- Frąszczak, B.; Kleiber, T. Microgreens biometric and fluorescence response to iron (Fe) biofortification. Int. J. Mol. Sci. 2022, 23, 14553. [Google Scholar] [CrossRef] [PubMed]
- Kalac, P. Trace element contents in european species of wild growing edible mushrooms: A review for the period 2000–2009. Food Chem. 2010, 122, 2–15. [Google Scholar] [CrossRef]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, microgreens and “Baby Leaf” vegetables. In Fresh-Cut Products: Maintaining Quality and Safety; Elsevier: Cambridge, MA, USA, 2017; pp. 403–432. [Google Scholar]
- Commission Regulation (EU). 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food. Off. J. Eur. Union 2023, L119, 103–157. [Google Scholar]
- Commission Regulation (EU). 2024/1987 of 30 July 2024 Amending Regulation (EU) 2023/915 as Regards Maximum Levels of Nickel in Certain Foodstuffs. Off. J. Eur. Union 2024, L197, 21–26. [Google Scholar]
- FAO/WHO. Joint FAO/WHO Food Standards Programme Codex Committee on Contaminants in Foods: Working Document for Information and Use in Discussions Related to Contaminants and Toxins in the GSCTFF; FAO: Rome, Italy, 2011. [Google Scholar]
- Bulgari, R.; Negri, M.; Santoro, P.; Ferrante, A. Quality evaluation of indoor-grown microgreens cultivated on three different substrates. Hortic. 2021, 7, 96. [Google Scholar] [CrossRef]
- Spiżewski, T.; Krzesiński, W.; Kałużewicz, A.; Prasad, R.; Zaworska, A. The effect of spent mushroom substrate enriched with selenium and zinc on the yield and photosynthetic parameters of lettuce (Lactuca sativa L.). Acta Sci. Pol. Hort. Cult. 2022, 21, 83–97. [Google Scholar] [CrossRef]
- Corrado, G.; Vitaglione, P.; Giordano, M.; Raimondi, G.; Napolitano, F.; Di Stasio, E.; Di Mola, I.; Mori, M.; Rouphael, Y. Phytochemical responses to salt stress in red and green baby leaf lettuce (Lactuca sativa L.) varieties grown in a floating hydroponic module. Separations 2021, 8, 175. [Google Scholar] [CrossRef]
- Di Gioia, F.; Avato, P.; Serio, F.; Argentieri, M.P. Glucosinolate profile of Eruca sativa, Diplotaxis tenuifolia and Diplotaxis erucoides grown in soil and soilless systems. J. Food Compos. Anal. 2018, 69, 197–204. [Google Scholar] [CrossRef]
- Bonasia, A.; Lazzizera, C.; Elia, A.; Conversa, G. Nutritional, biophysical and physiological characteristics of wild rocket genotypes as affected by soilless cultivation system, salinity level of nutrient solution and growing period. Front. Plant Sci. 2017, 8, 300. [Google Scholar] [CrossRef]
- Ding, X.; Jiang, Y.; Zhao, H.; Guo, D.; He, L.; Liu, F.; Ma, W.; Zhang, Y.; Wang, L. Electrical conductivity of nutrient solution influenced photosynthesis, quality, and antioxidant enzyme activity of pakchoi (Brassica campestris L. ssp. chinensis) in a hydroponic system. PLoS ONE 2018, 13, e0202090. [Google Scholar] [CrossRef] [PubMed]
- Kowitcharoen, L.; Phornvillay, S.; Lekkham, P.; Pongprasert, N.; Srilaong, V. Bioactive composition and nutritional profile of microgreens cultivated in Thailand. Appl. Sci. 2021, 11, 7981. [Google Scholar] [CrossRef]
- Frąszczak, B.; Kula-Maximenko, M.; Podsędek, A.; Sosnowska, D.; Unegbu, K.C.; Spiżewski, T. Morphological and photosynthetic parameters of green and red kale microgreens cultivated under different light spectra. Plants 2023, 12, 3800. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of vitamin and carotenoid concentrations of emerging food products: Edible microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef]
Nutrients (mg L−1) | Substrate | ||||||
---|---|---|---|---|---|---|---|
C | A-2.5 | A-5 | P-20 | P-30 | L-20 | L-30 | |
N-NH4 | 21 | śl | 11 | 7 | śl | 4 | 33 |
N-NO3 | 252 | 245 | 242 | 172 | 4 | śl | 151 |
P | 87 | 83 | 97 | 98 | 71 | 76 | 168 |
K | 239 | 286 | 343 | 968 | 1537 | 202 | 272 |
Ca | 14.57 | 13.99 | 14.73 | 13.76 | 12.49 | 12.84 | 13.36 |
Mg | 166 | 156 | 158 | 146 | 139 | 142 | 201 |
S-SO4 | 22.1 | 25.3 | 43.1 | 23.6 | 20.6 | 12.3 | 16.8 |
Fe | 27.4 | 21.7 | 24.1 | 18.1 | 14.1 | 17.4 | 23.4 |
Zn | 1.4 | 1.6 | 2.1 | 2 | 2.4 | 1.9 | 3.6 |
Mn | 4.9 | 4.3 | 4.6 | 2.5 | 10.9 | 8.4 | 18.7 |
Cu | 0.4 | 0.3 | 0.4 | 0.4 | 0.3 | 0.4 | 0.4 |
Cl | 20 | 25 | 27 | 57 | 35 | 13 | 17 |
Na | 50 | 37 | 45 | 45 | 52 | 34 | 52 |
pH (H2O) | 5.83 | 6.01 | 6.01 | 6.24 | 6.81 | 6.45 | 6.04 |
EC (mS cm−1) | 1.223 | 1.362 | 1.565 | 1.494 | 1.322 | 1.449 | 1.094 |
Substrates | Fresh Weight (g) | Dry Weight (g) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Radish | Black Radish | Radish | Black Radish | |||||||||
Cycle | Mean | Cycle | Mean | Cycle | Mean | Cycle | Mean | |||||
I | II | I | II | I | II | I | II | |||||
Control | 1.09 bc | 1.03 bc | 1.06 c | 2.43 b | 2.24 b | 2.34 a | 0.10 c | 0.13 bc | 0.12 bc | 0.23 ab | 0.20 bc | 0.21 a |
A-2.5 | 1.82 a | 1.19 b | 1.51 a | 2.76 a | 1.74 d | 2.25 a | 0.20 a | 0.12 bc | 0.16 a | 0.27 a | 0.15 c | 0.21 a |
A-5 | 1.20 b | 1.27 b | 1.23 b | 2.17 c | 1.56 e | 1.87 b | 0.14 b | 0.13 bc | 0.13 ab | 0.27 a | 0.12 cd | 0.19 ab |
P-20 | 0.74 d | 0.93 c | 0.84 d | 1.38 ef | 1.46 e | 1.42 c | 0.08 d | 0.10 c | 0.09 c | 0.16 c | 0.13 cd | 0.14 b |
P-30 | 0.18 e | 0.30 e | 0.24 f | 0.29 j | 0.49 i | 0.39 e | 0.02 f | 0.03 f | 0.02 d | 0.05 e | 0.05 e | 0.05 d |
L-20 | 0.15 e | 0.15 e | 0.15 f | 0.23 j | 0.22 j | 0.23 f | 0.02 f | 0.01 f | 0.02 d | 0.03 e | 0.03 e | 0.03 d |
L-30 | 0.39 e | 0.57 d | 0.48 e | 0.71 h | 0.91 g | 0.81 d | 0.04 ef | 0.06 de | 0.05 d | 0.10 d | 0.08 d | 0.09 c |
Plant Length (cm) | Plant Area (cm2) | |||||||||||
Control | 9.16 b | 7.72 c | 8.44 c | 14.11 a | 8.56 d | 11.34 b | 7.48 c | 6.48 c | 6.98 b | 18.9 ab | 17.5 b | 18.2 a |
A-2.5 | 11.68 a | 9.22 b | 10.45 a | 14.84 a | 11.56 c | 13.20 a | 10.2 a | 9.33 b | 9.76 a | 18.2 ab | 11.5 c | 14.8 b |
A-5 | 9.09 b | 8.91 b | 9.00 b | 12.64 b | 12.69 b | 12.67 a | 8.62 bc | 8.51 bc | 8.56 ab | 20.5 a | 14.7 bc | 17.6 a |
P-20 | 6.03 d | 7.37 c | 6.7 d | 10.80 c | 11.07 c | 10.94 b | 3.65 d | 5.44 cd | 4.54 c | 8.59 d | 9.09 d | 8.84 c |
P-30 | 3.35 g | 4.56 e | 3.95 f | 4.71 g | 6.63 ef | 5.67 d | 1.07 g | 2.07 ef | 1.57 d | 2.63 f | 4.44 ef | 3.53 d |
L-20 | 2.86 g | 4.01 f | 3.43 g | 4.30 g | 6.09 f | 5.20 d | 0.95 g | 1.72 ef | 1.33 d | 2.10 f | 2.01 f | 2.05 d |
L-30 | 4.57 e | 7.39 c | 5.98 e | 7.03 e | 7.20 e | 7.12 c | 3.50 e | 6.88 c | 5.19 c | 6.64 e | 8.51 d | 7.57 c |
Element | Substrate | ||||||
---|---|---|---|---|---|---|---|
C | A-2.5 | A-5 | P-20 | P-30 | L-20 | L-30 | |
Ca | 25,248 | 25,924 | 26,418 | 23,451 | 21,788 | 23,153 | 24,877 |
K | 1693 | 1414 | 1629 | 4692 | 6250 | 1285 | 1548 |
Mg | 824.0 | 816.4 | 808.8 | 844.3 | 800.5 | 847.2 | 1093 |
Na | 120.8 | 117.1 | 138.3 | 172.3 | 183.4 | 103.6 | 143.3 |
Al | 414.0 | 490.6 | 445.2 | 383.6 | 378.7 | 345.9 | 426.7 |
B | 15.15 | 16.11 | 15.06 | 15.00 | 16.40 | 13.71 | 17.53 |
Cd | 0.167 | 0.150 | 0.167 | 0.174 | 0.162 | 0.134 | 0.154 |
Cr | 4.179 | 5.649 | 5.216 | 4.346 | 6.051 | 6.139 | 8.072 |
Cu | 13.10 | 12.86 | 12.17 | 11.76 | 10.75 | 11.07 | 13.74 |
Fe | 3168 | 4171 | 3499 | 3179 | 2745 | 2791 | 3082 |
Mn | 91.95 | 108.9 | 117.1 | 157.0 | 197.9 | 176.3 | 247.5 |
Mo | 10.316 | 9.874 | 9.808 | 8.641 | 8.250 | 9.522 | 9.900 |
Pb | 2.840 | 3.838 | 4.107 | 3.776 | 3.609 | 4.201 | 5.318 |
Pr | 1.659 | 1.916 | 1.823 | 1.557 | 1.554 | 1.558 | 1.612 |
Rb | 0.422 | 0.646 | 0.676 | 1.351 | 1.912 | 0.491 | 0.877 |
Si | 582.2 | 736.6 | 663.6 | 588.5 | 637.5 | 493.4 | 660.6 |
Sr | 32.57 | 33.93 | 33.74 | 35.29 | 34.36 | 30.87 | 33.81 |
Ti | 12.41 | 13.15 | 12.64 | 10.88 | 10.91 | 9.81 | 13.01 |
Zn | 16.46 | 22.54 | 29.50 | 32.73 | 36.82 | 27.07 | 44.25 |
Zr | 0.247 | 0.262 | 0.239 | 0.219 | 0.235 | 0.198 | 0.258 |
Element | Control | A-2.5 | A-5 | P-20 | P-30 | L-20 | L-30 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle | I | II | I | II | I | II | I | II | I | II | I | II | I | II |
Ca | 32,085 c | 32,812 bc | 33,348 ab | 34,566 a | 33,648 c | 33,373 ab | 16,583 f | 21,617 d | 10,668 g | 7353 h | 20,132 e | 10,144 g | 17,486 f | 19,154 e |
K | 19,849 d | 22,148 d | 36,677 bc | 49,426 a | 40,758 b | 45,537 a | 33,122 c | 32,853 c | 19,822 d | 19,386 d | 18,649 d | 11,791 e | 17,240 d | 33,004 c |
Mg | 2952 bc | 3120 ab | 2869 bc | 3391 a | 3158 ab | 3234 ab | 1900 ef | 2588 cd | 1707 f | 1504 f | 2206 de | 1584 f | 2350 d | 2889 bc |
Na | 5302 ab | 3949 c | 4939 b | 5647 a | 3469 c | 3682 c | 1241 ef | 2235 d | 712 g | 872 fg | 1629 e | 802 fg | 1238 ef | 3635 c |
Al | 20.1 d | 22.5 c | 29.5 a | 27.9 b | 26.0 b | 16.5 ef | 20.7 cd | 17.8 e | 15.4 fg | 21.4 cd | 27.5 ab | 13.7 g | 8.3 h | 8.6 h |
B | 60.6 ab | 57.4 bc | 60.1 ab | 52.3 de | 62.3 a | 51.3 de | 48.3 ef | 52.2 de | 45.3 f | 38.2 g | 50.1 e | 38.1 g | 64.0 a | 55.4 de |
Cd | 0.36 a | 0.34 ab | 0.28 c | 0.36 a | 0.29 bc | 0.30 abc | 0.18 ef | 0.26 cd | 0.17 ef | 0.12 f | 0.26 cd | 0.18 ef | 0.19 e | 0.20 de |
Cr | 3. 4 f | 3.4 f | 7.3 a | 3.8 ef | 1.9 g | 1.6 g | 3.9 ef | 6.7 b | 3.9 f | 6.6 c | 7.2 a | 4.1 de | 1.9 g | 4.5 d |
Fe | 262 bc | 256 bc | 247 bc | 374 a | 254 bc | 233 cd | 157 e | 140 ef | 158 e | 164 e | 211 d | 140 ef | 115 f | 282 b |
Mn | 201 bcd | 147 f | 193 cd | 225 ab | 231 a | 214 abc | 72 h | 43 i | 186 cde | 120 g | 176 de | 160 ef | 235 a | 199 abc |
Mo | 3.09 bc | 2.67 cd | 3.29 b | 2.90 bc | 3.86 a | 2.90 bc | 3.10 bc | 3.72 a | 3.08 bc | 2.69 cd | 2.34 d | 1.69 e | 1.88 e | 1.53 e |
Na | 4262 b | 3949 bc | 4745 a | 4916 a | 3469 d | 3682 cd | 1241 gh | 2235 e | 712 i | 872 hi | 1629 fg | 802 i | 1238 gh | 1755 f |
Pb | 0.34 ef | 0.39 de | 1.11 a | 0.28 f | 1.15 a | 0.46 d | 0.00 h | 0.12 g | 0.00 h | 0.18 g | 0.82 b | 0.70 c | 0.82 b | 0.27 f |
Pr | 2.50 b | 2.57 b | 2.57 b | 2.90 a | 2.61 b | 2.60 b | 0.98 f | 1.50 c | 0.67 e | 0.31 f | 1.22 cd | 0.44 ef | 1.00 d | 1.30 c |
Rb | 11.0 ef | 12.8 de | 20.8 b | 18.6 c | 23.0 a | 22.0 ab | 8.9 e | 14.5 d | 6.0 g | 5.4 g | 10.1 f | 4.3 g | 12.7 de | 12.8 de |
Si | 576 a | 559 ab | 500 abcd | 524 abcd | 553 ab | 486 bcd | 537 abc | 441 d | 581 a | 467 cd | 464 cd | 300 e | 499 abcd | 530 abc |
Sr | 53.6 b | 60.2 ab | 57.3 ab | 62.8 a | 57.3 ab | 55.4 b | 28.4 d | 42.3 c | 18.6 e | 15.4 e | 30.3 d | 15.4 e | 25.4 d | 30.2 d |
Ti | 0.53 de | 0.57 d | 0.78 b | 0.67 c | 0.85 ab | 0.43 f | 0.92 a | 0.14 g | 0.58 d | 0.80 b | 0.94 a | 0.46 ef | 0.21 g | 0.54 de |
Zn | 90.8 bcde | 86.9 cde | 88.8 bcde | 100.6 abcd | 100.6 abcd | 102.5 abc | 66.4 fg | 103.2 ab | 93.5 bcd | 56.8 g | 85.0 de | 77.6 ef | 116.0 a | 95.9 def |
Zr | 0.041 a | 0.038 ab | 0.032 abc | 0.037 ab | 0.032 abc | 0.024 cde | 0.013 f | 0.014 f | 0.018 ef | 0.022 de | 0.027 cde | 0.039 a | 0.019 def | 0.028 bcd |
Element | Control (C) | A-2.5 | A-5 | P-20 | B 30 | S 20 | S 30 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle | I | II | I | II | I | II | I | II | I | II | I | II | I | II |
Ca | 42,140 a | 37,511 ab | 38,742 ab | 36,243 b | 37,513 ab | 30,025 c | 20,742 de | 20,853 de | 15,568 f | 13,226 f | 15,780 f | 15,161 f | 24,305 d | 17,351 ef |
K | 32,247 c | 35,215 c | 43,837 b | 49,378 ab | 54,156 a | 49,110 ab | 42,491 b | 48,719 ab | 45,079 b | 46,908 ab | 32,529 c | 32,815 c | 47,757 ab | 46,921 ab |
Mg | 2716 ab | 2405 bc | 2583 ab | 2658 ab | 2882 a | 2414 bc | 1884 de | 2107 cd | 1816 de | 1674 e | 1855 de | 1868 de | 2497 abc | 2431 bc |
Al | 12.5 efg | 7.7 h | 23.5 c | 17.15 d | 30.9 b | 10.5 gh | 34.9 ab | 30.7 b | 34.0 ab | 31.5 ab | 11.2 fgh | 14.3 def | 15.2 de | 21.6 c |
B | 56.5 def | 48.4 fg | 67.9 bc | 48.8 fg | 63.6 bcd | 46.1 g | 51.5 efg | 54.9 defg | 69.0 bc | 59.6 cde | 57.1 def | 56.9 def | 81.9 a | 73.1 ab |
Cd | 0.21 a | 0.22 a | 0.17 c | 0.21 a | 0.16 b | 0.14 b | 0.09 cde | 0.10 cd | 0.11 c | 0.07 e | 0.15 b | 0.08 de | 0.14 b | 0.09 de |
Cr | 3.8 ef | 2.9 g | 4.0 ef | 0.59 j | 2.8 g | 3.2 fg | 10.9 a | 6.8 b | 1.5 i | 5.0 d | 2.5 gh | 4.5 de | 5.9 c | 1.9 hi |
Cu | 3.21 abc | 1.94 fg | 3.39 ab | 2.70 ed | 3.41 a | 2.66 de | 3.05 abcd | 2.81 cd | 2.31 ef | 2.76 cde | 1.86 fg | 1.76 g | 2.93 bcd | 3.41 a |
Fe | 117 fg | 125 fg | 200 cd | 167 de | 314 b | 179 d | 349 a | 134 fg | 112 fg | 226 c | 104 g | 131 fg | 140 ef | 187 d |
Mn | 282 a | 114 f | 205 c | 198 cd | 192 cde | 170 de | 70 g | 50 g | 183 cde | 166 e | 134 f | 165 e | 239 b | 269 a |
Mo | 2.20 b | 0.98 h | 1.77 cde | 1.33 fg | 1.60 def | 1.31 g | 1.80 cd | 1.68 cde | 2.52 a | 1.82 cd | 1.91 c | 1.78 cde | 2.23 b | 1.50 efg |
Na | 7715 b | 6794 b | 7502 b | 9230 a | 7772 b | 7673 b | 2252 ef | 2676 de | 1620 f | 1829 ef | 1502 f | 1821 ef | 3333 d | 4376 c |
Pb | 0.51 c | 0.47 c | 0.00 d | 0.00 d | 0.72 a | 0.51 c | 0.65 ab | 0.64 ab | 0.66 ab | 0.64 ab | 0.62 b | 0.00 d | 0.68 ab | 0.67 ab |
Pr | 2.41 ab | 2.20 b | 2.64 a | 2.59 a | 2.73 a | 2.47 ab | 1.53 c | 1.44 cd | 0.97 e | 0.84 e | 0.97 e | 0.95 e | 1.65 c | 1.15 de |
Rb | 15.6 d | 16.0 d | 27.2 b | 27.1 b | 34.1 a | 28.5 b | 21.7 c | 19.9 cd | 15.7 d | 15.9 d | 17.9 cd | 18.4 cd | 36.1 a | 33.7 a |
Si | 553 bcd | 461 de | 524 bcde | 600 ab | 586 ab | 490 cde | 549 bcd | 582 abc | 562 abc | 652 a | 440 e | 487 cde | 576 abc | 554 bcd |
Sr | 61.0 ab | 54.1 b | 67.8 a | 67.3 a | 68.7 a | 54.6 b | 41.8 c | 43.5 c | 30.6 d | 28.3 d | 28.5 d | 27.8 d | 41.8 c | 31.9 d |
Ti | 0.28 cd | 0.09 g | 0.59 a | 0.42 b | 0.63 b | 0.17 f | 0.21 ef | 0.23 def | 0.31 c | 0.44 b | 0.31 c | 0.23 def | 0.46 b | 0.26 cde |
Zn | 77.7 cde | 70.4 def | 86.7 bc | 67.8 ef | 94.6 b | 63.3 f | 77.8 cde | 68.0 ef | 96.1 a | 84.2 bcd | 82.6 bcd | 90.7 bc | 117.4 a | 112.9 a |
Zr | 0.019 cde | 0.014 de | 0.021 cde | 0.026 bc | 0.013 e | 0.018 cde | 0.032 b | 0.061 a | 0.023 bcde | 0.33 b | 0.022 bcde | 0.020 cde | 0.026 bc | 0.024 bcd |
Substrates | Chlorophyll Content Index (CCI) [a.u.] | FV/FO [a.u.] | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Radish | Black Radish | Radish | Black Radish | |||||||||
Cycle | Mean | Cycle | Mean | Cycle | Mean | Cycle | Mean | |||||
I | II | I | II | I | II | I | II | |||||
Control | 20.6 b | 18.9 c | 19.8 a | 9.53 e | 17.3 b | 13.4 cd | 4.61 ab | 4.45 ab | 4.53 ab | 4.53 a | 4.19 ab | 4.36 a |
A-2.5 | 15.7 def | 14.4 fgh | 15.0 b | 12.2 d | 14.9 c | 13.5 cd | 4.40 ab | 4.37 ab | 4.38 b | 4.50 a | 4.50 a | 4.50 a |
A-5 | 17.4 cd | 13.4 gh | 15.4 b | 16.5 bc | 14.6 c | 15.6 b | 4.73 a | 4.47 ab | 4.60 ab | 3.79 abcd | 3.93 abc | 3.86 b |
P-20 | 16.9 de | 15.1 efg | 16.0 b | 12.4 d | 12.8 d | 12.6 d | 4.86 a | 4.85 a | 4.85 ab | 2.76 e | 4.12 ab | 3.44 bc |
P-30 | 2.09 i | 12.9 h | 7.48 c | 10.4 de | 11.9 d | 11.2 e | 4.06 b | 3.11 c | 3.59 c | 3.38 bcde | 4.00 abc | 3.69 bc |
L-20 | 1.93 i | 15.2 efg | 8.54 c | 20.6 a | 15.9 bc | 18.3 a | 3.56 c | 3.43 c | 3.50 c | 3.29 cde | 3.13 de | 3.21 c |
L-30 | 14.8 fg | 25.0 a | 19.9 a | 11.4 de | 17.5 b | 14.3 c | 4.51 ab | 4.62 ab | 4.56 ab | 2.73 e | 4.15 ab | 3.44 b |
FV/FM [a.u.] | Piabs [a.u.] | |||||||||||
Control | 0.82 a | 0.82 a | 0.82 a | 0.82 a | 0.81 ab | 0.81 a | 3.92 abcd | 3.10 cdef | 3.51 ab | 2.38 ab | 2.39 ab | 2.38 a |
A-2.5 | 0.81 a | 0.81 a | 0.81 a | 0.82 a | 0.82 a | 0.82 a | 2.85 def | 2.92 def | 2.88 b | 1.81 bcd | 1.81 bcd | 1.81 ab |
A-5 | 0.83 a | 0.82 a | 0.82 a | 0.79 abc | 0.79 abc | 0.79 b | 4.14 abc | 3.35 bcde | 3.75 a | 1.97 abc | 1.85 bcd | 1.91 ab |
P-20 | 0.83 a | 0.83 a | 0.83 a | 0.73 e | 0.80 ab | 0.77 bc | 4.24 ab | 3.63 abcde | 3.94 a | 1.19 cd | 2.09 abc | 1.64 b |
P-30 | 0.79 b | 0.76 c | 0.77 b | 0.77 bcd | 0.80 abc | 0.78 b | 2.66 ef | 1.25 g | 1.95 c | 2.12 abc | 1.98 abc | 2.05 ab |
L-20 | 0.78 b | 0.77 bc | 0.78 b | 0.76 cde | 0.75 de | 0.76 c | 2.06 fg | 1.55 g | 1.8 c | 3.01 a | 1.23 cd | 2.12 ab |
L-30 | 0.82 a | 0.82 a | 0.82 a | 0.73 e | 0.80 d | 0.77 bc | 4.56 a | 2.95 def | 3.76 a | 0.92 d | 2.32 ab | 1.62 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frąszczak, B.; Mleczek, M.; Siwulski, M. Use of Spent Mushroom Substrates in Radish (Raphanus ssp.) Microgreens Cultivation. Agronomy 2025, 15, 2012. https://doi.org/10.3390/agronomy15082012
Frąszczak B, Mleczek M, Siwulski M. Use of Spent Mushroom Substrates in Radish (Raphanus ssp.) Microgreens Cultivation. Agronomy. 2025; 15(8):2012. https://doi.org/10.3390/agronomy15082012
Chicago/Turabian StyleFrąszczak, Barbara, Mirosław Mleczek, and Marek Siwulski. 2025. "Use of Spent Mushroom Substrates in Radish (Raphanus ssp.) Microgreens Cultivation" Agronomy 15, no. 8: 2012. https://doi.org/10.3390/agronomy15082012
APA StyleFrąszczak, B., Mleczek, M., & Siwulski, M. (2025). Use of Spent Mushroom Substrates in Radish (Raphanus ssp.) Microgreens Cultivation. Agronomy, 15(8), 2012. https://doi.org/10.3390/agronomy15082012