Effect of Organic and Mineral Phosphate Fertilization of the Plant Cane and First Ratoon on Agronomic Performance and Industrial Quality of the Second Ratoon in the Brazilian Cerrado Region
Abstract
1. Introduction
2. Materials and Methods
2.1. Location of the Experiment
2.2. Experimental Design and Treatments with Mineral and Organic Phosphorus Residues
2.3. Cane Stalk Growth
2.4. Technological Quality of Sugarcane
- TRS is the total recoverable sugar (kg t ha−1);
- 1.05263 is the stoichiometric coefficient for converting sucrose to reducing sugars;
- 0.915 is the recovery coefficient accounting for 8.5% of industrial loss;
- 10 × ARC are the reducing sugars per ton of cane.
- PBU = Weight of the wet bagasse from the press, in grams.
- 0.08 = Empirical factor derived from calibration based on gravimetric methods.
- 0.876 = Correction coefficient for the apparent density or average moisture content of the bagasse.
- LPd is the saccharimetric reading obtained using lead subacetate.
- SY—sugar yield (t ha−1);
- PCC—percentage of gross sugar contained in the stalks, determined in the laboratory;
- TCH—tons of stalks per hectare (t ha−1).AY = ((PCC × F) + ARL) × Fg × 10 × PC
- AY—Gross alcohol yield (m3 ha−1);
- F—Stoichiometric conversion factor of sucrose into one molecule of glucose plus one molecule of fructose, equal to 1.052;
- ARL—Free reducing sugars %;
- Fg—Gay-Lussac factor equal to 0.6475.
2.5. Productivity
2.6. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PBU | Weight of the wet bagasse from the press in grams |
LPd | Saccharimetric reading obtained using lead subacetate |
PCC | Amount of raw sugar (%) contained in the stalks |
F | Stoichiometric conversion factor of sucrose into one molecule of glucose plus one molecule of fructose, equal to 1.052 |
ARL | Free reducing sugars (%) |
Fg | Gay-Lussac factor equal to 0.6475 |
MS | Mean square |
Int. | Interaction |
TS | Triple superphosphate |
PL | Poultry litter |
CV | Coefficient of variation |
DF | Degrees of freedom |
ns | Not significant |
PH | Plant height |
SD | Stem diameter |
NT | Number of tillers |
TCH | Stalk productivity in tons per hectare |
TRS | Total recoverable sugar |
°BRIX | Total soluble solids |
FIBER | Fiber content |
AJP | Apparent juice purity |
POL | Juice pol |
SY | Sugar yield |
AY | Alcohol yield |
t ha−1 | Ton per hectare |
kg ha−1 | Kilogram per hectare |
cm | Centimeter |
kg t ha−1 | kilograms per ton per hectare |
% | Percentage |
m3 ha−1 | Cubic meter per hectare |
References
- Pellegrina, H.S. Comércio, Produtividade e Organização Espacial Da Agricultura: Evidências Do Brasil. Rev. Econ. Desenvolv. 2022, 156, 102816. [Google Scholar] [CrossRef]
- Jordan, R.A.; Santos, R.C.; Freitas, R.L.; Motomiya, A.V.d.A.; Geisenhoff, L.O.; Sanches, A.C.; Ávalo, H.; Mesquita, M.; Ferreira, M.B.; Silva, P.C.; et al. Thermal Properties and Temporal Dynamics of Red Latosol (Oxisol) in Sustainable Agriculture and Environmental Conservation. Resources 2023, 12, 104. [Google Scholar] [CrossRef]
- Pessoa, T.N.; Libardi, P.L. Physical-Hydric Properties of Oxisols as Influenced by Soil Structure and Clay Mineralogy. Catena 2022, 211, 106009. [Google Scholar] [CrossRef]
- Schaefer, C.E.G.R.; Gilkes, R.J.; Fernandes, R.B.A. EDS/SEM Study on Microaggregates of Brazilian Latosols, in Relation to P Adsorption and Clay Fraction Attributes. Geoderma 2004, 123, 69–81. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Gotz, L.F.; Teles, A.P.B.; Arruda, B.; Herrera, W.B.; Chadwick, D.R.; Jones, D.L.; Withers, P.J.A. Legacy Soil Phosphorus Bioavailability in Tropical and Temperate Soils: Implications for Sustainable Crop Production. Soil Tillage Res. 2024, 244, 106228. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Cherubin, M.R.; Soltangheisi, A.; Rocha, G.C.; Chadwick, D.R.; Jones, D.L. Revealing Soil Legacy Phosphorus to Promote Sustainable Agriculture in Brazil. Sci. Rep. 2020, 10, 15615. [Google Scholar] [CrossRef]
- Maranguit, D.; Guillaume, T.; Kuzyakov, Y. Land-Use Change Affects Phosphorus Fractions in Highly Weathered Tropical Soils. Catena 2017, 149, 385–393. [Google Scholar] [CrossRef]
- Sandim, A.d.S.; da Silva, L.J.R.; Deus, A.C.F.; Penn, C.; Büll, L.T. Phosphorous Fractions in Weathered Tropical Soils After Application of Conventional and Alternative P Fertilizers. J. Soil Sci. Plant Nutr. 2023, 23, 5621–5631. [Google Scholar] [CrossRef]
- Mabagala, F.S.; Mng’ong’o, M.E. On the Tropical Soils; The Influence of Organic Matter (OM) on Phosphate Bioavailability. Saudi J. Biol. Sci. 2022, 29, 3635–3641. [Google Scholar] [CrossRef]
- Guelfi, D.; Nunes, A.P.P.; Sarkis, L.F.; Oliveira, D.P. Innovative Phosphate Fertilizer Technologies to Improve Phosphorus Use Efficiency in Agriculture. Sustainability 2022, 14, 14266. [Google Scholar] [CrossRef]
- Fontaine, S.; Abbadie, L.; Aubert, M.; Barot, S.; Bloor, J.M.G.; Derrien, D.; Duchene, O.; Gross, N.; Henneron, L.; Le Roux, X.; et al. Plant–Soil Synchrony in Nutrient Cycles: Learning from Ecosystems to Design Sustainable Agrosystems. Glob. Change Biol. 2024, 30, e17034. [Google Scholar] [CrossRef]
- Takahashi, Y.; Katoh, M. Root Response and Phosphorus Uptake with Enhancement in Available Phosphorus Level in Soil in the Presence of Water-Soluble Organic Matter Deriving from Organic Material. J. Environ. Manag. 2022, 322, 116038. [Google Scholar] [CrossRef]
- Wang, C.; Kuzyakov, Y. Soil Organic Matter Priming: The pH Effects. Glob. Change Biol. 2024, 30, e17349. [Google Scholar] [CrossRef]
- Jindo, K.; Audette, Y.; Olivares, F.L.; Canellas, L.P.; Smith, D.S.; Paul Voroney, R. Biotic and Abiotic Effects of Soil Organic Matter on the Phytoavailable Phosphorus in Soils: A Review. Chem. Biol. Technol. Agric. 2023, 10, 29. [Google Scholar] [CrossRef]
- de Oliveira Junior, A.C.; dos Santos, L.N.S.; Reis, M.N.O.; Vitorino, L.C.; Bessa, L.A.; Teixeira, M.B.; Soares, F.A.L. Effect of Mineral and Organic Nitrogen Sources on Vegetative Development, Nutrition, and Yield of Sugarcane. Agronomy 2023, 13, 1627. [Google Scholar] [CrossRef]
- Borges, B.M.M.N.; Strauss, M.; Camelo, P.A.; Sohi, S.P.; Franco, H.C.J. Re-Use of Sugarcane Residue as a Novel Biochar Fertiliser —Increased Phosphorus Use Efficiency and Plant Yield. J. Clean. Prod. 2020, 262, 121406. [Google Scholar] [CrossRef]
- Wu, Q.; Zhou, W.; Chen, D.; Cai, A.; Ao, J.; Huang, Z. Optimizing Soil and Fertilizer Phosphorus Management According to the Yield Response and Phosphorus Use Efficiency of Sugarcane in Southern China. J. Soil Sci. Plant Nutr. 2020, 20, 1655–1664. [Google Scholar] [CrossRef]
- Borges, B.M.M.N.; Abdala, D.B.; de Souza, M.F.; Viglio, L.M.; Coelho, M.J.A.; Pavinato, P.S.; Franco, H.C.J. Organomineral Phosphate Fertilizer from Sugarcane Byproduct and Its Effects on Soil Phosphorus Availability and Sugarcane Yield. Geoderma 2019, 339, 20–30. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; de Campos, M.; Martello, J.M.; Alves, C.J.; Nascimento, C.A.C.; Pereira, J.C.d.R.; Cantarella, H. Organomineral Fertilizer as Source of P and K for Sugarcane. Sci. Rep. 2020, 10, 5398. [Google Scholar] [CrossRef]
- de Moraes, E.R.; Mageste, J.G.; Lana, R.M.Q.; da Silva, R.V.; de Camargo, R.; de Moraes, E.R.; Mageste, J.G.; Lana, R.M.Q.; da Silva, R.V.; de Camargo, R. Sugarcane: Organo-Mineral Fertilizers and Biostimulants. In Sugarcane—Technology and Research; IntechOpen: London, UK, 2017; ISBN 978-1-78923-151-9. [Google Scholar]
- Ashworth, A.j.; Chastain, J.p.; Moore Jr, P.A. Nutrient Characteristics of Poultry Manure and Litter. In Animal Manure; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; Volume 67, pp. 63–87. ISBN 978-0-89118-371-6. [Google Scholar]
- Almeida, R.F.; Queiroz, I.D.S.; Mikhael, J.E.R.; Oliveira, R.C.; Borges, E.N. Enriched Animal Manure as a Source of Phosphorus in Sustainable Agriculture. Int. J. Recycl. Org. Waste Agric. 2019, 8, 203–210. [Google Scholar] [CrossRef]
- Nawaz, M.; Umer Chattha, M.; Chattha, M.; Ahmad, R.; Munir, H.; Usman, M.; Hassan, M.; Khan, S.; Kharal, M. Assessment of Compost as Nutrient Supplement for Spring Planted Sugarcane (Saccharum officinarum L.). J. Anim. Plant Sci. 2017, 27, 283–293. [Google Scholar]
- Guimarães, G.; Lana, R.d.P.; Rei, R.d.S.; Veloso, C.M.; Sousa, M.R.d.M.; Rodrigues, R.C.; Campos, S.d.A. Produção de cana-de-açúcar adubada com cama de frango. Rev. Bras. Saúde Prod. Anim. 2016, 17, 617–625. [Google Scholar] [CrossRef]
- Zuo, W.; Gu, C.; Zhang, W.; Xu, K.; Wang, Y.; Bai, Y.; Shan, Y.; Dai, Q. Sewage Sludge Amendment Improved Soil Properties and Sweet Sorghum Yield and Quality in a Newly Reclaimed Mudflat Land. Sci. Total Environ. 2019, 654, 541–549. [Google Scholar] [CrossRef]
- Melo, W.; Delarica, D.; Guedes, A.; Lavezzo, L.; Donha, R.; de Araújo, A.; de Melo, G.; Macedo, F. Ten Years of Application of Sewage Sludge on Tropical Soil. A Balance Sheet on Agricultural Crops and Environmental Quality. Sci. Total Environ. 2018, 643, 1493–1501. [Google Scholar] [CrossRef]
- Barbosa, J.Z.; Poggere, G.C.; Dalpisol, M.; Serrat, B.M.; Bittencourt, S.; Motta, A.C.V. Alkalinized Sewage Sludge Application Improves Fertility of Acid Soils. Ciênc. Agrotec. 2017, 41, 483–493. [Google Scholar] [CrossRef]
- da Silva, F.C.; Boaretto, A.E.; Berton, R.S.; Zotelli, H.B.; Pexe, C.A.; Bernardes, E.M. Efeito de lodo de esgoto na fertilidade de um Argissolo Vermelho-Amarelo cultivado com cana-de-açúcar. Pesq. Agropec. Bras. 2001, 36, 831–840. [Google Scholar] [CrossRef]
- Nascimento, C.W.A.; Barros, D.A.S.; Melo, E.E.C.; Oliveira, A.B. Alterações químicas em solos e crescimento de milho e feijoeiro após aplicação de lodo de esgoto. Rev. Bras. Ciênc. Solo 2004, 28, 385–392. [Google Scholar] [CrossRef]
- da Costa, D.B.; de Andrade, P.K.B.; da Silva, S.A.M.; Neto, D.E.S.; Freire, F.J.; de Oliveira, E.C.A. Adubação fosfatada em cana planta e soca em argissolos do nordeste de diferentes texturas. Rev. Caatinga 2014, 27, 47–56. [Google Scholar]
- Gopalasundaram, P.; Bhaskaran, A.; Rakkiyappan, P. Integrated Nutrient Management in Sugarcane. Sugar Tech 2011, 14, 3–20. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; de Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Raij, B.V.; de Andrade, J.C.; Cantarella, H.; Guaggio, J.A. Análise Química Para Avaliação da Fertilidade de Solos Tropicais; Instituto Agronômico (IAC): Campinas, SP, Brazil, 2001; ISBN 85-85564-05-9.
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, DF, Brazil, 2017; ISBN 978-85-7035-771-7. [Google Scholar]
- Xavier, M.A.; Landell, M.G.D.A.; Pires, R.C.D.M.; Rossetto, R.; Dinardo-Miranda, L.L.; Perecin, D.; do Prado, H.; Garcia, J.C.; Vitti, A.C.; Fracasso, J.; et al. Gemas Brotadas de Cana-de-Açúcar: Produção Sustentável e Utilização Experimental na Formação de Áreas de Multiplicação; Instituto Agronômico (IAC): Campinas, SP, Brazil, 2020; p. 52.
- Raij, B.V.; Cantarella, H.; Quaggio, J.A.; Furlani, A.M.C. Recomendações de Adubação e Calagem Para o Estado de São Paulo; Instituto Agronômico/Fundação IAC: Campinas, SP, Brazil, 1997.
- Consecana. Consecana Manual de Instruções; Consecana: Piracicaba, SP, Brazil, 2015. [Google Scholar]
- Caldas, C. Manual de Análises Selecionadas Para Indústrias Sucroalcooleiras; Sindicato da Indústria e do Álcool do Estado de Alagoas: Maceió, Brazil, 1998; p. 438. [Google Scholar]
- Ferreira, D.F. Sisvar: A Computer Statistical Analysis System. Ciênc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef]
- Pimentel-Gomes, F.; Garcia, C.H. Estatística Aplicada a Experimentos Agronômicos e Florestais: Exposição com Exemplos e Orientação Para Uso de Aplicativos; FEALQ: Piracicaba, Brazil, 2002; Volume 11, ISBN 85-7133-014-X. [Google Scholar]
- Arruda, B.; Rodrigues, M.; Soltangheisi, A.; Richardson, A.E.; Andreote, F.D.; Pavinato, P.S. Biological and Morphological Traits of Sugarcane Roots in Relation to Phosphorus Uptake. J. Soil Sci. Plant Nutr. 2016, 16, 901–915. [Google Scholar] [CrossRef]
- Vasconcelos, R.d.L.; Cremasco, C.P.; de Almeida, H.J.; Garcia, A.; Neto, A.B.; Mauad, M.; Gabriel Filho, L.R.A. Multivariate Behavior of Irrigated Sugarcane with Phosphate Fertilizer and Filter Cake Management: Nutritional State, Biometry, and Agroindustrial Performance. J. Soil Sci. Plant Nutr. 2020, 20, 1625–1636. [Google Scholar] [CrossRef]
- Vitti, G.C.; Mazza, J.A. Planejamento, Estratégias de Manejo e Nutrição Da Cultura de Cana-de-Açúcar. Informações Agronômicas 2002, 97, 1–16. [Google Scholar]
- Shenoy, V.V.; Kalagudi, G.M. Enhancing Plant Phosphorus Use Efficiency for Sustainable Cropping. Biotechnol. Adv. 2005, 23, 501–513. [Google Scholar] [CrossRef]
- Zambrosi, F.C.B.; Ribeiro, R.V.; Marchiori, P.E.R.; Cantarella, H.; Landell, M.G.A. Sugarcane Performance under Phosphorus Deficiency: Physiological Responses and Genotypic Variation. Plant Soil 2015, 386, 273–283. [Google Scholar] [CrossRef]
- da Silveira, G.; Costa, P.M.d.A.; Kist, V.; Almeida, C.d.F.; Baffa, D.C.F.; Barbosa, M.H.P. Genetic Variation Affecting Agronomic Traits in Sugarcane in Response to High and Low Phosphorus Availability. Agron. J. 2014, 106, 2296–2304. [Google Scholar] [CrossRef]
- Santos, D.H.; Silva, M.d.A.; Tiritan, C.S.; Foloni, J.S.S.; Echer, F.R. Qualidade tecnológica da cana-de-açúcar sob adubação com torta de filtro enriquecida com fosfato solúvel. Rev. Bras. Eng. Agríc. Ambient. 2011, 15, 443–449. [Google Scholar] [CrossRef]
- Bokhtiar, S.M.; Paul, G.C.; Alam, K.M. Effects of Organic and Inorganic Fertilizer on Growth, Yield, and Juice Quality and Residual Effects on Ratoon Crops of Sugarcane. J. Plant Nutr. 2008, 31, 1832–1843. [Google Scholar] [CrossRef]
- Jaarsveld, C.M.V.; Zharare, G.E.; Smit, M.A.; Preez, C.C.D. Availability of Residual and/or Applied Inorganic Phosphorus for Sugarcane Uptake and Growth in a Post-Mined Reconstituted Soil. J. Geosci. Environ. Prot. 2022, 10, 112–127. [Google Scholar] [CrossRef]
- Caione, G.; Fernandes, F.M.; Lange, A. Efeito residual de fontes de fósforo nos atributos químicos do solo, nutrição e produtividade de biomassa da cana-de-açúcar. Rev. Bras. Ciências Agrárias 2013, 8, 189–196. [Google Scholar] [CrossRef]
- Patil, K.B.; Tripathi, S.; Jangir, R.; Saini, L. Influence of Phosphorus Management on Growth, Development and Yield of Sugarcane. Ind. J. Pure App. Biosci. 2020, 8, 25–31. [Google Scholar] [CrossRef]
- Jiawen, G.; Yuebin, Z.; Shaochun, L.; Zhiming, L.; Jiayong, L.; Peifang, Z. Efeitos de diferentes níveis de fósforo no crescimento, estado nutricional e taxa fotossintética da cana-de-açúcar durante o estágio de perfilhamento. Rev. Agric. Sudoeste 2009, 2, 397–401. [Google Scholar]
- Kumar, V.; Mishra, D. Manurial Value of Press Mud Cake (Ganna-Khoi). Indian Farmers Dig. 1992, 25, 33–34. [Google Scholar]
- Yang, Y.; He, Z.; Stoffella, P.J.; Yang, X.; Graetz, D.A.; Morris, D. Leaching behavior of phosphorus in sandy soils amended with organic material. Soil Sci. 2008, 173, 257. [Google Scholar] [CrossRef]
- Ramos, L.A.; Lana, R.M.Q.; Korndorfer, G.H.; Silva, A.d.A. Effect of Organo-Mineral Fertilizer and Poultry Litter Waste on Sugarcane Yield and Some Plant and Soil Chemical Properties. Afr. J. Agric. Res. 2017, 12, 20–27. [Google Scholar] [CrossRef]
- Bryndum, S.; Muschler, R.; Nigussie, A.; Magid, J.; de Neergaard, A. Reduced Turning Frequency and Delayed Poultry Manure Addition Reduces N Loss from Sugarcane Compost. Waste Manag. 2017, 65, 169–177. [Google Scholar] [CrossRef]
- Santos, D.H.; Tiritan, C.S.; Foloni, J.S.S. Residual Effect of the Phosphate Fertilization and Filter Cake on the Sugarcane Ratoon Breaking; Universidade Federal da Grande Dourados: Dourados, MS, Brazil, 2012. [Google Scholar]
- van Raij, B.; Quaggio, J.A. Extractable Phosphorus Availability Indexes as Affected by Liming. Commun. Soil Sci. Plant Anal. 1990, 21, 1267–1276. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, D.; Zeng, Q.; Tahir, M.A.; Wu, Q.; Huang, Y.; Jiang, Y.; Li, Q.; Ao, J.; Huang, Z. Differential Physiological Behavior of Sugarcane Genotypes in Response to Sparingly Soluble Phosphorus-Sources. J. Plant Nutr. Soil Sci. 2021, 184, 187–197. [Google Scholar] [CrossRef]
- Tarumoto, M.B.; de Campos, M.; Momesso, L.; do Nascimento, C.A.C.; Garcia, A.; Coscolin, R.B.d.S.; Martello, J.M.; Crusciol, C.A.C. Carbohydrate Partitioning and Antioxidant Substances Synthesis Clarify the Differences Between Sugarcane Varieties on Facing Low Phosphorus Availability. Front. Plant Sci. 2022, 13, 888432. [Google Scholar] [CrossRef]
- Zambrosi, F.C.B.; Mesquita, G.L.; Tanaka, F.A.O. Assessment of Leaf Ultrastructure Offers Insights into Mechanisms Regulating Sugarcane Performance under Low-Phosphorus Stress. Acta Physiol. Plant. 2020, 42, 54. [Google Scholar] [CrossRef]
- CONAB Conab—Boletim da Safra de Cana-de-Açúcar. Available online: http://www.conab.gov.br/info-agro/safras/cana/boletim-da-safra-de-cana-de-acucar (accessed on 2 April 2025).
- da Costa, D.B.; Freire, F.J.; dos Santos, R.L.; Santos, H.C.; de Oliveira, A.C.; de Andrade, P.K.B. Qualidade tecnológica da cana planta e cana soca cultivadas sob adubação fosfatada em solos de diferentes texturas. Rev. Geama 2019, 5, 40–46. [Google Scholar]
- de Albuquerque, A.W.; Sá, L.d.A.; Rodrigues, W.A.R.; Moura, A.B.; Oliveira Filho, M.d.S. Growth and Yield of Sugarcane as a Function of Phosphorus Doses and Forms of Application. Rev. Bras. Eng. Agríc. Ambient. 2016, 20, 29–35. [Google Scholar] [CrossRef]
- Prado, E.; Vitorino, A.; Mauad, M.; Ensinas, S.; Paim, L. Características Tecnológicas Da Cana-de-Açúcar Sob Aplicação de Doses de Vinhaça Em Latossolo Vermelho Distroférrico. Rev. Ciências Agroveterinárias 2018, 16, 386–395. [Google Scholar] [CrossRef]
- Simões Neto, D.E.; de Oliveira, A.C.; Freire, F.J.; Freire, M.B.G.d.S.; do Nascimento, C.W.A.; da Rocha, A.T. Extração de fósforo em solos cultivados com cana-de-açúcar e suas relações com a capacidade tampão. Rev. Bras. Eng. Agríc. Ambient. 2009, 13, 840–848. [Google Scholar] [CrossRef]
- Simões Neto, D.E.; de Oliveira, A.C.; da Rocha, A.T.; Freire, F.J.; Freire, M.B.G.d.S.; do Nascimento, C.W.A. Características agroindustriais da cana-de-açúcar em função da adubação fosfatada, em solos de Pernambuco. Rev. Bras. Eng. Agríc. Ambient. 2012, 16, 347–354. [Google Scholar] [CrossRef]
- Oliveira, D.M.S.; Cherubin, M.R.; Franco, A.L.C.; Santos, A.S.; Gelain, J.G.; Dias, N.M.S.; Diniz, T.R.; Almeida, A.N.; Feigl, B.J.; Davies, C.A.; et al. Is the Expansion of Sugarcane over Pasturelands a Sustainable Strategy for Brazil’s Bioenergy Industry? Renew. Sustain. Energy Rev. 2019, 102, 346–355. [Google Scholar] [CrossRef]
- Duarte, A.; Salgado Jr, A.P.; Lemos, S.V.; de Souza Jr, M.A.A.; Antunes, F.d.A. Proposal of Operating Best Practices That Contribute to the Technical Efficiency in Brazilian Sugar and Ethanol Mills. J. Clean. Prod. 2019, 214, 173–184. [Google Scholar] [CrossRef]
- Matsuoka, S. Free Fiber Level Drives Resilience and Hybrid Vigor in Energy Cane. J. Sci. Achiev. 2017, 2, 1–35. [Google Scholar]
- Pedula, R.O.; Schultz, N.; Monteiro, R.C.; Pereira, W.; de Araujo, A.P.; Urquiaga, S.; Reis, V.M. Growth Analysis of Sugarcane Inoculated with Diazotrophic Bacteria and Nitrogen Fertilization. Afr. J. Agric. Res. 2016, 11, 2786–2795. [Google Scholar] [CrossRef]
- Eggleston, G.; Lima, I. Sustainability Issues and Opportunities in the Sugar and Sugar-Bioproduct Industries. Sustainability 2015, 7, 12209–12235. [Google Scholar] [CrossRef]
- Shi, C.; Xie, C.; Zhang, Z.; Rackemann, D.; Wei, B.; Hang, F.; Lu, H.; Li, K.; Doherty, W.O.S. Sugar and Value-Added Products Derived from Retentate Concentrate of Sugarcane Juice. J. Clean. Prod. 2021, 278, 123915. [Google Scholar] [CrossRef]
- de Oliveira, C.L.B.; Cassimiro, J.B.; Lira, M.V.d.S.; Boni, A.d.S.; Donato, N.d.L.; Reis, R.d.A.; Heinrichs, R. Sugarcane Ratoon Yield and Soil Phosphorus Availability in Response to Enhanced Efficiency Phosphate Fertilizer. Agronomy 2022, 12, 2817. [Google Scholar] [CrossRef]
- Hansel, F.D.; Amado, T.J.C.; Ruiz Diaz, D.A.; Rosso, L.H.M.; Nicoloso, F.T.; Schorr, M. Phosphorus Fertilizer Placement and Tillage Affect Soybean Root Growth and Drought Tolerance. Agron. J. 2017, 109, 2936–2944. [Google Scholar] [CrossRef]
- Pina, J.C.; Bono, J.A.M.; de Oliveira, A.K.M.; Rufino, R.d.S.; Amorim, D.O. Organic Residues on Rooting and Yield of Sugarcane in Typic Quartzipsamments Soil. Rev. Bras. Eng. Agríc. Ambient. 2015, 19, 650–655. [Google Scholar] [CrossRef]
- Moda, L.; Prado, R.; Caione, G.; Campos, C.; Silva, E.C.; Flores, R. Effect of Sources and Rates of Phosphorus Associated with Filter Cake on Sugarcane Nutrition and Yield. Aust. J. Crop Sci. 2015, 9, 477–485. [Google Scholar]
- Yan, X.; Wei, Z.; Hong, Q.; Lu, Z.; Wu, J. Phosphorus Fractions and Sorption Characteristics in a Subtropical Paddy Soil as Influenced by Fertilizer Sources. Geoderma 2017, 295, 80–85. [Google Scholar] [CrossRef]
- de Campos, M.; Antonangelo, J.A.; Alleoni, L.R.F. Phosphorus Sorption Index in Humid Tropical Soils. Soil Tillage Res. 2016, 156, 110–118. [Google Scholar] [CrossRef]
- Teixeira, E.B.; Bolonhezi, A.C.; Fernandes, F.M.; Ribeiro, N.A.; Queiroz, C.J. Características tecnológicas do caldo de variedades de cana-de-açúcar cultivadas em solo de cerrado com diferentes níveis de adubação fosfatada. Científica 2016, 44, 23–34. [Google Scholar] [CrossRef]
- Yadav, S.P.; Singh, S.C.; Yadav, S.; Yadav, S.K.; Tiwari, A.K.; Sharma, B.L. Integrated Nutrient Management Approaches for Enhancing Production Potential and Sustainability of Sugarcane (Saccharum Spp. Hybrid) Plant–Ratoon System in North Region of India. Sugar Tech 2019, 21, 170–175. [Google Scholar] [CrossRef]
- Altieri, M. Agroecologia—Bases Científicas Para uma Agricultura Sustentável, 3rd ed.; Expressão Popular: Viçosa, MG, Brazil, 2012; ISBN 978-85-7743-191-5. [Google Scholar]
- Bokhtiar, S.M.; Sakurai, K. Effects of Organic Manure and Chemical Fertilizer on Soil Fertility and Productivity of Plant and Ratoon Crops of Sugarcane. Arch. Agron. Soil Sci. 2005, 51, 325–334. [Google Scholar] [CrossRef]
- Ball-Coelho, B.; Tiessen, H.; Stewart, J.W.B.; Salcedo, I.H. Short- and Long-Term Phosphorus Dynamics in a Fertilized Ultisol under Sugarcane. Soil Sci. Soc. Am. J. 1993, 57, 1027–1034. [Google Scholar] [CrossRef]
- IBGE, Brazilian Institute of Geography and Statistics. IBGE Brazil in Brief Territory. Available online: https://brasilemsintese.ibge.gov.br/territorio.html (accessed on 28 July 2025).
- ABPA, Brazilian Association of Animal Protein. Annual Report 2025. Available online: https://abpa-br.org/abpa-relatorio-anual/ (accessed on 28 July 2025).
Ms | ||||||
---|---|---|---|---|---|---|
Variables | Source of Variation | |||||
TSP | PL | Int. TSP × PL | Block | Error | CV (%) | |
DF | 4 | 4 | 16 | 3 | 72 | |
PH | 375.25 ** | 3107.00 ** | 388.47 ** | 183.68 ** | 76.72 | 4.04 |
SD | 4.48 ** | 1.18 ns | 1.93 ** | 0.68 ns | 0.59 | 2.94 |
NT | 0.11 ns | 0.36 ns | 1.38 ** | 1.25 ** | 0.40 | 4.63 |
TCH | 2990.19 ** | 255.27 ** | 59.52 ** | 18.41 ** | 1.78 | 1.34 |
TRS | 21.97 ns | 128.40 ** | 11.38 ns | 124.42 ** | 22.97 | 2.93 |
°BRIX | 0.15 ns | 1.24 ** | 0.08 ns | 2.21 ** | 0.27 | 2.40 |
FIBER | 0.56 * | 0.09 ns | 0.58 ** | 0.05 ns | 0.22 | 4.29 |
AJP | 2.41 ns | 5.26 * | 1.49 ns | 5.19 * | 1.65 | 1.43 |
POL | 0.13 ns | 1.68 ** | 0.08 ns | 1.81 ** | 0.28 | 3.24 |
SY | 85.83 ** | 13.90 ** | 1.42 ** | 2.92 ns | 0.24 | 3.04 |
AY | 42.02 ** | 6.82 ** | 0.71 ** | 1.37 ns | 0.11 | 3.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, E.A.d.; Soares, F.A.L.; Teixeira, M.B.; da Silva, E.C.; Sousa, A.E.C.; Vale, L.S.R. Effect of Organic and Mineral Phosphate Fertilization of the Plant Cane and First Ratoon on Agronomic Performance and Industrial Quality of the Second Ratoon in the Brazilian Cerrado Region. Agronomy 2025, 15, 2004. https://doi.org/10.3390/agronomy15082004
Santos EAd, Soares FAL, Teixeira MB, da Silva EC, Sousa AEC, Vale LSR. Effect of Organic and Mineral Phosphate Fertilization of the Plant Cane and First Ratoon on Agronomic Performance and Industrial Quality of the Second Ratoon in the Brazilian Cerrado Region. Agronomy. 2025; 15(8):2004. https://doi.org/10.3390/agronomy15082004
Chicago/Turabian StyleSantos, Evaldo Alves dos, Frederico Antonio Loureiro Soares, Marconi Batista Teixeira, Edson Cabral da Silva, Antônio Evami Cavalcante Sousa, and Luís Sérgio Rodrigues Vale. 2025. "Effect of Organic and Mineral Phosphate Fertilization of the Plant Cane and First Ratoon on Agronomic Performance and Industrial Quality of the Second Ratoon in the Brazilian Cerrado Region" Agronomy 15, no. 8: 2004. https://doi.org/10.3390/agronomy15082004
APA StyleSantos, E. A. d., Soares, F. A. L., Teixeira, M. B., da Silva, E. C., Sousa, A. E. C., & Vale, L. S. R. (2025). Effect of Organic and Mineral Phosphate Fertilization of the Plant Cane and First Ratoon on Agronomic Performance and Industrial Quality of the Second Ratoon in the Brazilian Cerrado Region. Agronomy, 15(8), 2004. https://doi.org/10.3390/agronomy15082004