Enhancing Grassland Resilience and Productivity Under Climate Change
1. Introduction
2. Overview of the SI
3. Concluding Remarks
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Qu, R.; He, Z.; He, L.; Awange, J.; Song, Y.; Wang, B.; Wen, B.; Hu, J. Impact of Climate, Phenology, and Soil Factors on Net Ecosystem Productivity in Zoigê Alpine Grassland. Agronomy 2025, 15, 685.
- Liu, Y.; Zhang, M.; Zhao, Y.; Wei, J.; Zhou, S.; Shi, X. Effect of Environmental Factors on Grassland Biodiversity and Biomass in the Zhangye Region. Agronomy 2025, 15, 476.
- Hu, X.; Sun, Q.; Zhang, S.; Li, W.; Wang, X.; Long, R.; Jin, G.; Zhang, B. Effects of No-Till Seeding and Fertilization on Vegetation Restoration and Soil Physicochemical Properties in Alpine Degraded Grazing Grasslands. Agronomy 2025, 15, 578.
- Wang, S.; Miao, H.; Wu, Y.; Li, W.; Li, M. Study of Drought Characteristics and Atmospheric Circulation Mechanisms via a “Cloud Model”, Inner Mongolia Autonomous Region, China. Agronomy 2024, 15, 24.
- Wang, Z.; Liu, T.; Tong, X.; Duan, L.; Jia, T.; Hao, L.; Bao, Y.; Li, Y.; Sun, J. Changes and their controlling variables of soil nutrient storage under different treatments across northern China’s meadowgrassland. Agronomy 2025, 15, 1943.
- Aguilera Nuñez, G.; Glimskär, A.; Zacchello, G.; Francksen, R.M.; Whittingham, M.J.; Hiron, M. Agriculturally Improved and Semi-Natural Permanent Grasslands Provide Complementary Ecosystem Services in Swedish Boreal Landscapes. Agronomy 2024, 14, 567.
- Cicuéndez, V.; Inclán, R.; Sánchez-Cañete, E.P.; Román-Cascón, C.; Sáenz, C.; Yagüe, C. Modeling Gross Primary Production (GPP) of a Mediterranean Grassland in Central Spain Using Sentinel-2 NDVI and Meteorological Field Information. Agronomy 2024, 14, 1243.
- Xu, M.; Wang, J.; Wei, K.; Li, J.; Yu, X. Geographical Environment and Plant Functional Group Shape the Spatial Variation Pattern of Plant Carbon Density in Subalpine-Alpine Grasslands of the Eastern Loess Plateau, China. Agronomy 2024, 14, 1420.
- Milazzo, F.; Brocca, L.; Vanwalleghem, T. NDVI Prediction of Mediterranean Permanent Grasslands Using Soil Moisture Products. Agronomy 2024, 14, 1798.
- Braga, G.J.; Ramos, A.K.B.; Carvalho, M.A.; Fonseca, C.E.L.; Karia, C.T. Canopy Characteristics of Gamba Grass Cultivars and Their Effects on the Weight Gain of Beef Cattle under Grazing. Agronomy 2024, 14, 2293.
- Serrano, J.; Shahidian, S.; Moral, F.J. Crude Protein as an Indicator of Pasture Availability and Quality: A Validation of Two Complementary Sensors. Agronomy 2024, 14, 2310.
- Quatrini, S.; Hunter, E.; Tindale, S.; Newell Price, P.; Frewer, L.; Lieberherr, E. Policy Gaps and Diverging Perceptions of Effectiveness: An Assessment of Sustainable Permanent Grassland Management in Switzerland. Agronomy 2024, 14, 2599.
- Abdalla, M.; Hastings, A.; Campbell, G.; Chen, H.; Smith, P. Assessing the Sustainability of Miscanthus and Willow as Global Bioenergy Crops: Current and Future Climate Conditions (Part 1). Agronomy 2024, 14, 3020.
- Abdalla, M.; Hastings, A.; Campbell, G.; Mccalmont, J.; Shepherd, A.; Smith, P. Assessing the Sustainability of Miscanthus and Willow as Global Bioenergy Crops: Current and Future Climate Conditions (Part 2). Agronomy 2025, 15, 1491.
References
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of WGII to the Sixth Assessment Report; IPCC: Geneva, Switzerland, 2022. [Google Scholar]
- Soussana, J.F.; Loiseau, P.; Vuichard, N.; Ceschia, E.; Balesdent, J.; Chevallier, T.; Arrouays, D. Carbon cycling and sequestration opportunities in temperate grasslands. Soil Use Manag. 2004, 20, 219–230. [Google Scholar] [CrossRef]
- Dondini, M.; Martin, M.; De Camillis, C.; Uwizeye, A.; Soussana, J.-F.; Robinson, T.; Steinfeld, H. Global Assessment of Soil Carbon in Grasslands—From Current Stock Estimates to Sequestration Potential; FAO Animal Production and Health Paper No. 187; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Isbell, F.; Craven, D.; Connolly, J.; Loreau, M.; Schmid, B.; Beierkuhnlein, C.; Bezemer, T.M.; Bonin, C.; Bruelheide, H.; de Luca, E.; et al. Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature 2015, 526, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Ciais, P.; Gasser, T.; Smith, P.; Herrero, M.; Havlík, P.; Obersteiner, M.; Guenet, B.; Goll, D.S.; Li, W.; et al. Climate warming from managed grasslands cancels the cooling effect of carbon sinks in sparsely grazed and natural grasslands. Nat. Commun. 2021, 12, 118. [Google Scholar] [CrossRef] [PubMed]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [PubMed]
- Reichstein, M.; Bahn, M.; Ciais, P.; Frank, D.; Mahecha, M.D.; Seneviratne, S.I.; Zscheischler, J.; Beer, C.; Buchmann, N.; Frank, D.C.; et al. Climate extremes and the carbon cycle. Nature 2013, 500, 287–295. [Google Scholar] [CrossRef] [PubMed]
- O’Mara, F.P. The role of grasslands in food security and climate change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Knapp, A.K.; Chen, A.; Griffin-Nolan, R.J.; Baur, L.E.; Carroll, C.J.W.; Gray, J.E.; Hoffman, A.M.; Li, X.; Post, A.K.; Slette, I.J.; et al. Resolving the Dust Bowl paradox of grassland responses to extreme drought. Proc. Natl. Acad. Sci. USA 2020, 117, 22249–22255. [Google Scholar] [CrossRef] [PubMed]
- Peters, D.P.C.; Havstad, K.M.; Cushing, J.; Tweedie, C.; Fuentes, O.; Villanueva-Rosales, N. Harnessing the power of big data: Infusing the scientific method with machine learning to transform ecology. Ecosphere 2014, 5, 1–15. [Google Scholar] [CrossRef]
- Schils, R.L.M.; Bufe, C.; Rhymer, C.M.; Francksen, R.M.; Klaus, V.H.; Abdalla, M.; Milazzo, F.; Lellei-Kovács, E.; ten Berge, H.; Bertora, C.; et al. Permanent grasslands in Europe: Land use change and intensification decrease their multifunctionality. Agric. Ecosyst. Environ. 2022, 330, 107891. [Google Scholar] [CrossRef]
- Suttie, J.M.; Reynolds, S.G.; Batello, C. Grasslands of the World; FAO: Rome, Italy, 2005. [Google Scholar]
- FAO. Global Soil Organic Carbon Sequestration Potential Map-GSOCseq v.1.1; Technical Report; FAO: Rome, Italy, 2022. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdalla, M. Enhancing Grassland Resilience and Productivity Under Climate Change. Agronomy 2025, 15, 2003. https://doi.org/10.3390/agronomy15082003
Abdalla M. Enhancing Grassland Resilience and Productivity Under Climate Change. Agronomy. 2025; 15(8):2003. https://doi.org/10.3390/agronomy15082003
Chicago/Turabian StyleAbdalla, Mohamed. 2025. "Enhancing Grassland Resilience and Productivity Under Climate Change" Agronomy 15, no. 8: 2003. https://doi.org/10.3390/agronomy15082003
APA StyleAbdalla, M. (2025). Enhancing Grassland Resilience and Productivity Under Climate Change. Agronomy, 15(8), 2003. https://doi.org/10.3390/agronomy15082003