Predicting the Global Distribution of Fusarium circinatum Using MaxEnt Modeling
Abstract
1. Introduction
2. Material and Methods
2.1. Acquire the Occurrence Records of Species
2.2. Environmental Factor Data
2.3. Selection and Filtering of Environmental Variables
2.4. Parameter Optimization of Models
2.5. Model Construction
2.6. Hierarchical Classification and Spatial Pattern Changes in Species Habitats
3. Results
3.1. Model Parameter Optimization and Predictive Accuracy Validation
3.2. Environmental Variables Influencing the Distribution of F. circinatum
3.3. Global Potential Distribution of F. circinatum Under Current Environmental Variables
3.4. Research on Predicting the Potential Suitable Habitat Distribution of F. circinatum Under Global Climate Change
3.5. Projected Changes in the Potential Distribution Range of F. circinatum Under Future Climate Scenarios
3.6. Center Distributional Shifts
4. Discussion
4.1. Primary Drivers Governing the Potential Geographic Distribution of Fusarium circinatum
4.2. The Credibility of the Outputs Derived from the MaxEnt Model
4.3. Projected Shifts in the Climatically Suitable Niche of F. circinatum
4.4. Limitations and Future Directions in Ecological Niche Modeling of F. circinatum
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Betts, M.G.; Wolf, C.; Ripple, W.J.; Phalan, B.; Millers, K.A.; Duarte, A.; Butchart, S.H.M.; Levi, T. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 2017, 547, 441–444. [Google Scholar] [CrossRef]
- Fernandes, L.; Paiva, D.S.; Silva, A.C.; Fernandes, C.; Fernandes, A.R.; Ribeiro, D.; Martins, L.; Bragança, H.; Portugal, A. From Lab to Nursery: Novel Approaches of Seed Disinfection for Managing Pine Pitch Canker Propagation. Forests 2024, 15, 1154. [Google Scholar] [CrossRef]
- De Vos, L.; van der Nest, M.A.; Santana, Q.C.; van Wyk, S.; Leeuwendaal, K.S.; Wingfield, B.D.; Steenkamp, E.T. Chromosome-level assemblies for the pine pitch canker pathogen Fusarium circinatum. Pathogens 2024, 13, 70. [Google Scholar] [CrossRef]
- Mullett, M.S. Global geographic distribution and host range of fusarium circinatum, the causal agent of pine pitch canker. Forests 2020, 11, 724. [Google Scholar] [CrossRef]
- EPPO. Gibberella Circinata Eradicated in France; EPPO Reporting Service; EPPO Global Database: Paris, France, 2008; p. 103. [Google Scholar]
- Ganley, R.J.; Watt, M.; Manning, L.; Iturritxa, E. A global climatic risk assessment of pitch canker disease. Can. J. For. Res. 2009, 39, 2246–2256. [Google Scholar] [CrossRef]
- Baker, R.; Candresse, T.S.; Erzsébet Dormannsné, E.; Gilioli, G.; Grégoire, J.; Jeger, M.J. Risk assessment of Gibberella circinata for the EU territory and identification and evaluation of risk management options. EFSA 2010, 8, 1620. [Google Scholar]
- EPPO. Update of the Situation of Fusarium circinatum in Spain; EPPO Reporting Service; EPPO Global Database: Paris, France, 2019; p. 196. [Google Scholar]
- Geng, Y.; Liu, Y.; Li, P.; Sun, J.Y.; Jiang, Y.; Pan, Z.; Li, Y.Z.; Zhang, Z. Anthropogenic activity and climate change exacerbate the spread of pathogenic bacteria in the environment. Sci. Adv. 2025, 11, eads4355. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Guerra, C.A.; Cano-Díaz, C.; Egidi, E.; Wang, J.T.; Eisenhauer, N.; Singh, B.K.; Maestre, F.T. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 2020, 10, 550–554. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Mostafa, M.; Ferdus, H.; Rahman, M.; Rana, J.A.; Islam, S.S.; Shanta, A.; Sannal, A.; Hosen, M.A.E.; et al. Plant disease dynamics in a changing climate: Impacts, molecular mechanisms, and climate-informed strategies for sustainable management. Discov. Agric. 2024, 2, 132. [Google Scholar] [CrossRef]
- Xing, Y.Y.; Wang, X.K.; Mustafa, A. Exploring the link between soil health and crop productivity. Ecotoxicol. Environ. Saf. 2025, 289, 117703. [Google Scholar] [CrossRef]
- Li, H.F.; Zhao, N.; Zhang, Q.Q.; Huang, L.; Zhang, H.; Gao, L.; Chen, W.Q.; Liu, T.G. Genetic and wind field analysis of wheat leaf rust (Puccinia triticina) dispersal: From winter sources in Gansu and Shaanxi to summer epidemics in China. Front. Plant Sci. 2025, 16, 1558898. [Google Scholar] [CrossRef]
- Balta, I.; Lemon, J.; Murnane, C.; Pet, I.; Vintila, T.; McCleery, D.; Callaway, T.; Douglas, A.; Stef, L.; Corcionivoschi, N. The One Health aspect of climate events with impact on foodborne pathogens transmission. One Health 2024, 19, 100926. [Google Scholar] [CrossRef]
- Sena, K.L.; Yang, J.; Kohlbrand, A.J.; Dreaden, T.J.; Barton, C.D. Landscape variables influence Phytophthora cinnamomi distribution within a forested Kentucky watershed. For. Ecol. Manag. 2019, 436, 39–44. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Xu, S.Y.; Capinha, C.; Weterings, R.; Gao, T.X. Using species distribution model to predict the impact of climate change on the potential distribution of Japanese whiting Sillago japonica. Ecol. Indic. 2019, 104, 333–340. [Google Scholar] [CrossRef]
- Mahmoud, A.R.; Farahat, E.A.; Hassan, L.M.; Halmy, M.W.A. Remotely sensed data contribution in predicting the distribution of native Mediterranean species. Sci. Rep. 2025, 15, 12475. [Google Scholar] [CrossRef]
- Liao, D.; Zhou, B.; Xiao, H.; Zhang, Y.; Zhang, S.; Su, Q.; Yang, X.H. Maxent modeling of the impacts of human activities and climate change on the potential distribution of plantago in china. Biology 2025, 14, 564. [Google Scholar] [CrossRef] [PubMed]
- Vasconcelos, R.N.; Cantillo-Pérez, T.; Franca Rocha, W.J.; Aguiar, W.M.; Mendes, D.T.; de Jesus, T.B.; de Santana, C.O.; de Santana, M.M.M.; Oliveira, R.P. Advances and Challenges in Species Ecological Niche Modeling: A Mixed Review. Earth 2024, 5, 963–989. [Google Scholar] [CrossRef]
- Luo, M.; Yang, P.F.; Yang, L.L.; Zheng, Z.H.; Chen, Y.Y.; Li, H.; Wu, M.K. Predicting potentially suitable Bletilla striata habitats in China under future climate change scenarios using the optimized MaxEnt model. Sci. Rep. 2025, 15, 21231. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ding, C. Effects of sample size, sample accuracy and environmental variables on predictive performance of MaxEnt model. Pol. J. Ecol. 2016, 64, 303–312. [Google Scholar] [CrossRef]
- Warren, D.L.; Seifert, S.N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011, 21, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, X.; Li, Y.; Wu, C.; Zhao, B.; Peng, M.; Chen, W.; Wang, C. Response of extremely small populations to climate change—A case of Trachycarpus nanus in Yunnan, China. Biology 2024, 13, 240. [Google Scholar] [CrossRef]
- He, Z.; Ali, H.; Wu, J.; Liu, Z.; Wei, X.; Zhuo, Z. Impact of climate change on the distribution of Isaria cicadae Miquel in China: Predictions based on the MaxEnt model. Front. Microbiol. 2025, 16, 1509882. [Google Scholar] [CrossRef]
- Xiao, Y.; Guo, Q.Q.; Xie, N.; Yuan, G.Y.; Liao, M.G.; Gui, Q.; Ding, G.J. Predicting the global potential distribution of Bursaphelenchus xylophilus using an ecological niche model: Expansion trend and the main driving factors. BMC Ecol. Evol. 2024, 24, 48. [Google Scholar] [CrossRef]
- Hu, X.G.; Chen, J.H.; Chen, Q.Y.; Yang, Y.; Lin, Y.H.; Jin, Z.L.; Sha, L.Q.; Lin, E.; Yousry, E.-K.; Huang, H. The Spatial Shifts and Vulnerability Assessment of Ecological Niches under Climate Change Scenarios for Betula luminifera, a Fast-Growing Precious Tree in China. Plants 2024, 13, 1542. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, J.; König-Ries, B.; Recknagel, F. Proceedings of the 10th International Conference on Ecological Informatics: Translating ecological data into knowledge and decisions in a rapidly changing world. In Proceedings of the 10th International Conference on Ecological Informatics, Jena, Germany, 24–28 September 2018. [Google Scholar]
- Aidoo, O.F.; Souza, P.G.C.; da Silva, R.S.; Santana, P.A., Jr.; Picanço, M.C.; Osei-Owusu, J.; Sétamou, M.; Ekesi, S.; Borgemeister, C. A machine learning algorithm-based approach (MaxEnt) for predicting invasive potential of Trioza erytreae on a global scale. Ecol. Inform. 2022, 71, 101792. [Google Scholar] [CrossRef]
- GBIF Occurrence Download. Available online: https://doi.org/10.15468/dl.mda9gp (accessed on 20 June 2025).
- Recuenco, M.E.; Cacciola, S.O.S.O.; Sanz-Ros, A.V.; Garbelotto, M.; Diez, J.J. Potential interactions between invasive fusarium circinatum and other pine pathogens in europe. Forests 2020, 11, 7. [Google Scholar] [CrossRef]
- Ortiz, B.; Mendoza, K.; Enríquez, L.; Aguilar, K.; Yánez-Euceda, Y.; Amaya-Funes, K.; Umaña-Valle, I.; Fontecha, G. First Molecular Characterization of Fusarium circinatum Isolated from Pinus oocarpa in Honduras. Forest 2024, 9, 10. [Google Scholar]
- Chen, C.; Wang, B.; Li, J.; Xiao, Y.M.; Chen, K.Y.; Liu, N.; Zhou, G.Y. Predicting potential and quality distribution of Anisodus tanguticus (Maxim.) Pascher under different climatic conditions in the Qinghai–Tibet plateau. Front. Plant Sci. 2024, 15, 1369641. [Google Scholar] [CrossRef]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Dormann, C.F.; McPherson, J.M.; Araújo, M.B.; Bivand, R.; Bolliger, J.; Carl, G.; Davies, R.G.; Hirzel, A.; Jetz, W.; Kissling, W.D.; et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: A review. Ecography 2007, 30, 609–628. [Google Scholar] [CrossRef]
- Ancillotto, L.; Santini, L.; Ranc, N.; Maiorano, L.; Russo, D. Extraordinary range expansion in a common bat: The potential roles of climate change and urbanisation. Sci. Nat. 2016, 103, 15. [Google Scholar] [CrossRef] [PubMed]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Alba-Fernández, M.V.; Ariza-López, F.J.; Jiménez-Gamero, M.D. A new approach to the quality control of slope and aspect classes derived from digital elevation models. Remote Sens. 2021, 13, 2069. [Google Scholar] [CrossRef]
- Wang, J.G.; Wu, J.W.; Li, W.J. Ecological Niche Changes and Risk Regionalization of the Invasive Plant Praxelis clematidea. Ecol. Evol. 2025, 15, e71546. [Google Scholar] [CrossRef]
- Lee, J.Y.; Marotzke, J.; Bala, G.; Cao, L.; Corti, S.; Dunne, J.P.; Engelbrecht, F.; Fischer, E.; Fyfe, J.C.; Jones, C.; et al. Future Global Climate: Scenario-Based Projections and Near-Term Information; Cambridge University Press: Cambridge, UK, 2021; pp. 553–672. [Google Scholar]
- Wang, H.; Wang, L.; Yan, G.Y.; Bai, H.Z.; Zhao, Y.X.; Ju, M.M.; Xu, X.T.; Yan, J.; Xiao, D.P.; Chen, L. Assessment and prediction of extreme temperature indices in the North China Plain by CMIP6 climate model. Appl. Sci. 2022, 12, 7201. [Google Scholar] [CrossRef]
- Zhao, Y.; Deng, X.W.; Xiang, W.H.; Chen, L.; Ouyang, S. Predicting potential suitable habitats of Chinese fir under current and future climatic scenarios based on Maxent model. Ecol. Inform. 2021, 64, 101393. [Google Scholar] [CrossRef]
- Mosisa, G.B.; Tassie, N.; Adula, M. Current and future distribution of Eucalyptus globulus under changing climate in Ethiopia: Implications for forest management. Environ. Syst. Res. 2024, 13, 4. [Google Scholar] [CrossRef]
- Shen, S.C.; Zheng, F.P.; Zhang, W.; Xu, G.F.; Li, D.Y.; Yang, S.S.; Jin, G.M.; Clements, D.R.; Nikkel, E.; Chen, A.D.; et al. Potential distribution and ecological impacts of Acmella radicans (Jacquin) RK Jansen (a new Yunnan invasive species record) in China. BMC Plant Biol. 2024, 24, 494. [Google Scholar] [CrossRef]
- Zhang, Y.F.; Chen, S.T.; Gao, Y.; Yang, L.; Yu, H. Prediction of global potential suitable habitats of Nicotiana alata Link et Otto based on MaxEnt model. Sci. Rep. 2023, 13, 4851. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, L.; Zhang, X.; Guo, Z. Predicting the potential distribution of Hylomecon japonica in China under current and future climate change based on Maxent model. Sustainability 2021, 13, 11253. [Google Scholar] [CrossRef]
- van Steenderen, C.J.; Sutton, G.F. Climate covariate selection influences MaxEnt model predictions and predictive accuracy under current and future climates. Ecol. Model. 2024, 498, 110872. [Google Scholar] [CrossRef]
- Wang, Y.H.; Ren, X.Y.; Wang, K.; Lin, W.; Wang, P.; Liu, Z.Y.; Zhang, H.; Zhou, N. Maxent model-based prediction of the potential distribution of Fritillaria taipaiensis P.Y Li. Sci. Rep. 2025, 15, 20837. [Google Scholar]
- Kang, Y.; Lin, F.; Yin, J.; Han, Y.; Zhu, M.; Guo, Y.; Tang, F.; Li, Y. Projected distribution patterns of Alpinia officinarum in China under future climate scenarios: Insights from optimized Maxent and Biomod2 models. Front. Plant Sci. 2025, 16, 1517060. [Google Scholar] [CrossRef] [PubMed]
- Radosavljevic, A.; Anderson, R.P. Making better Maxent models of species distributions: Complexity, overfitting and evaluation. J. Biogeogr. 2014, 41, 629–643. [Google Scholar] [CrossRef]
- Yue, J.; Li, Z.; Zuo, Z.; Wang, Y. Evaluation of ecological suitability and quality suitability of panax notoginseng under multi-regionalization modeling theory. Front. Plant Sci. 2022, 13, 818376. [Google Scholar] [CrossRef]
- Wu, W.; Li, Y.; Hu, Y. Simulation of potential habitat overlap between red deer (Cervus elaphus) and roe deer (Capreolus capreolus) in northeastern China. PeerJ 2016, 4, e1756. [Google Scholar] [CrossRef]
- Tepker, J.H.; Strugnell, J.M.; Silva, C.N. Environmental determinants of suitable habitat and the prediction of a southern shift in the future distribution of spiny lobsters, genus Jasus. BioRxiv 2023. [Google Scholar] [CrossRef]
- Garcia-Lopez, Y.J.; Marquez, P.H.; Morales, N.N. Microfinance institutions failure prediction in emerging countries, a machine learning approach. PLoS ONE 2025, 20, e0321989. [Google Scholar] [CrossRef]
- Abrantes, J.F.V.; Cariño, Z.A.P.; Mercado, H.L.S.; Vicencio, F.N.; Sosa, G.R.S.; Habaña, M.A.M.; Dagamac, N.H.A. Identification of environmental determinants involved in the distribution of Burkholderia pseudomallei in Southeast Asia Using Maxent Software. PLOS Neglected Trop. Dis. 2025, 19, e0012684. [Google Scholar] [CrossRef]
- Duret, C.; Bartet, T.; Hambuckers, A.; Kishida, O.; Okada, S.; Taguchi, Y.; Takahashi, M.K.; Denoël, M. Loss of habitat suitability and distribution range of the endangered Japanese giant salamander under climate change. Front. Biogeogr. 2025, 18, e133105. [Google Scholar] [CrossRef]
- Yan, C.C.; Hao, H.T.; Wang, Z.; Sha, S.S.; Zhang, Y.W.; Wang, Q.P.; Kang, Z.S.; Huang, L.L.; Wang, L.; Feng, H. Prediction of Suitable Habitat Distribution of Cryptosphaeria pullmanensis in the World and China under Climate Change. J. Fungi 2023, 9, 739. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, M.; Janoš, P.; Botella, L.; Rotková, G.; Zas, R. Spore dispersal patterns of Fusarium circinatum on an infested Monterey pine forest in North-Western Spain. Forests 2017, 8, 432. [Google Scholar] [CrossRef]
- Garbelotto, M.; Smith, T.; Schweigkofler, W. Variation in rates of spore deposition of Fusarium circinatum, the causal agent of pine pitch canker, over a 12-month-period at two locations in Northern California. Phytopathology 2008, 98, 137–143. [Google Scholar] [CrossRef]
- Díaz, R.; Poveda, J.; Torres-Sánchez, E.; Sánchez-Gómez, T.; Martín-García, J.; Diez, J.J. Relation between morphology and native climate in the resistance of different Pinus pinaster populations to pitch canker disease caused by Fusarium circinatum. For. Ecol. Manag. 2024, 561, 121909. [Google Scholar] [CrossRef]
- Möykkynen, T.; Capretti, P.; Pukkala, T. Modelling the potential spread of Fusarium circinatum, the causal agent of pitch canker in Europe. Ann. For. Sci. 2015, 72, 169–181. [Google Scholar] [CrossRef]
- Muscarella, R.; Galante, P.J.; Soley-Guardia, M.; Boria, R.A.; Kass, J.M.; Uriarte, M.; Anderson, R.P. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 2014, 5, 1198–1205. [Google Scholar] [CrossRef]
- Khwarahm, N.R. MaxEnt-based distribution modeling of the invasive species Phragmites australis under climate change conditions in Iraq. Plants 2025, 14, 768. [Google Scholar] [CrossRef] [PubMed]
- Jihan, M.A.T.; Popy, S.; Kayes, S.; Rasul, G.; Maowa, A.S.; Rahman, M.M. Climate change scenario in Bangladesh: Historical data analysis and future projection based on CMIP6 model. Sci. Rep. 2025, 15, 7856. [Google Scholar] [CrossRef]
- Gyeltshen, S.; Wangdi, N.; Jurmey, K.; Loday, P.; Rai, P.; Jamtsho, D.; Dema, K. Social and Environmental Drivers of Black-Necked Crane (BNC) Habitat Suitability in Bhutan: Insights from Maxent Modelling and Conservation Implications. Qeios 2024. [Google Scholar] [CrossRef]
- Moreno-Arzate, C.N.; Martínez-Meyer, E. A retrospective approach for evaluating ecological niche modeling transferability over time: The case of Mexican endemic rodents. PeerJ 2024, 12, e18414. [Google Scholar] [CrossRef]
- Ogris, N.; Drenkhan, R.; Vahalík, P.; Cech, T.; Mullett, M.; Tubby, K. The potential global distribution of an emerging forest pathogen, Lecanosticta acicola, under a changing climate. Front. For. Glob. Change 2023, 6, 1221339. [Google Scholar] [CrossRef]
- Dong, W.; Bai, X.; Zhao, L.; Dong, H.; Liu, C. Comparative analysis of climate-induced habitat shift of economically significant species with diverse ecological preferences in the Northwest Pacific. Front. Mar. Sci. 2024, 11, 1476097. [Google Scholar] [CrossRef]
- Collot, D.; Robinet, C. Probability of outbreaks of forest insects in Europe: A generic model calibrated on six forest insect profiles. BioRxiv 2024. [Google Scholar] [CrossRef]
- Essa, Y.H.; Hirschi, M.; Thiery, W.; El-Kenawy, A.M.; Yang, C. Drought characteristics in Mediterranean under future climate change. Npj Clim. Atmos. Sci. 2023, 6, 133. [Google Scholar] [CrossRef]
- Adusei, G.; Aidoo, M.K.; Srivastava, A.K.; Asibuo, J.Y.; Gaiser, T. Model-based climate change adaptational potential and productivity of some cowpea genotypes and its sensitivity to bias adjustment. Front. Agron. 2023, 5, 1144219. [Google Scholar] [CrossRef]
- Sanchez-Lucas, R.; Luna, E. Elevated CO2: A double-edged sword for plant defence against pathogens. New Phytol. 2025, 246, 2380. [Google Scholar] [CrossRef]
- Angelotti, F.; Hamada, E.; Bettiol, W. A Comprehensive Review of Climate Change and Plant Diseases in Brazil. Plants 2024, 13, 2447. [Google Scholar] [CrossRef]
- Woodward, S.; Flores-Pacheco, J.A.; Muñoz-Adalia, E.J.; Martínez-Álvarez, P.; Martín-García, J.; Diez, J.J. Susceptibility of germinating seedlings of European and Eurasian populations of Pinus sylvestris to dam**-off caused by Fusarium circinatum. For. Pathol. 2022, 52, e12749. [Google Scholar] [CrossRef]
- Shi, Y.; Gao, X.; Jiang, Y.; Zhang, J.; Qi, F.H.; Jing, T.Z. Spatial Pattern of Host Tree Size, Rather than of Host Tree Itself, Affects the Infection Likelihood of a Fungal Stem Disease. Biology 2024, 13, 616. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Narine, L.L.; Willoughby, J.R.; Eckhardt, L.G. Remote sensing-based detection of brown spot needle blight: A comprehensive review, and future directions. PeerJ 2025, 13, e19407. [Google Scholar] [CrossRef]
- Widyati, E.; Nuroniah, H.S.; Tata, H.L.; Mindawati, N.; Lisnawati, Y.; van Noordwijk, M. Soil degradation due to conversion from natural to plantation forests in Indonesia. Forests 2022, 13, 1913. [Google Scholar] [CrossRef]
- Bharti, L.; Yadav, K.; Kumar Chaubey, A. Trichoderma spp.: Approach for bio-control agent. Challenges in Plant Disease Detection and Recent Advancements; IntechOpen: London, UK, 2024; pp. 1–30. [Google Scholar]
- Zhang, L.; Bao, L.; Li, S.; Liu, Y.; Liu, H. Active substances of myxobacteria against plant diseases and their action mechanisms. Front. Microbiol. 2024, 14, 1294854. [Google Scholar] [CrossRef] [PubMed]
- Delaeter, M.; Magnin-Robert, M.; Randoux, B.; Lounès-Hadj Sahraoui, A. Arbuscular mycorrhizal fungi as biostimulant and biocontrol agents: A review. Microorganisms 2024, 12, 1281. [Google Scholar] [CrossRef] [PubMed]
Number | Variable | Percent Contribution (%) | Permutation Importance (%) |
---|---|---|---|
1 | bio19 | 29.4 | 4.9 |
2 | bio11 | 18.2 | 25.7 |
3 | bio01 | 17.2 | 32.8 |
4 | bio12 | 12 | 7.3 |
5 | bio03 | 6.2 | 12.5 |
6 | slope | 5.2 | 6.1 |
7 | bio17 | 3.9 | 3.7 |
8 | t_esp | 3.4 | 2.3 |
9 | elev | 2.4 | 3.5 |
10 | aspect | 2.1 | 1.3 |
Shared Socio-Economic Pathways, SSPS|Decades | Predicted Area (×104 km2) and % of the Corresponding Current Area | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total Suitable Area | Poorly Suitable Area | Moderately Suitable Area | Highly Suitable Area | ||||||
1970–2000 | 6928.6 | 3370.16 | 2514.49 | 1043.95 | |||||
SSP126 | 2030s | 5036.05 | 72.68% | 2897.52 | 85.98% | 1458.25 | 57.99% | 680.28 | 65.16% |
2050s | 5152.71 | 74.37% | 3023.21 | 89.71% | 1500.7 | 59.68% | 628.8 | 60.23% | |
2070s | 3882.64 | 56.04% | 1833.42 | 54.40% | 1379.5 | 54.86% | 669.72 | 64.15% | |
2090s | 4605.73 | 66.47% | 2751.36 | 81.64% | 1291.93 | 51.38% | 562.44 | 53.88% | |
SSP370 | 2030s | 4685.78 | 67.63% | 2742.97 | 81.39% | 1298.16 | 51.63% | 644.65 | 61.75% |
2050s | 4501.86 | 64.98% | 2812.38 | 83.45% | 1189.22 | 47.29% | 500.26 | 47.92% | |
2070s | 4358.11 | 62.90% | 2662.02 | 78.99% | 1164.06 | 46.29% | 532.03 | 50.96% | |
2090s | 4738.31 | 68.39% | 2818.73 | 83.64% | 1347.17 | 53.58% | 572.41 | 54.83% | |
SSP585 | 2030s | 4668.12 | 67.37% | 2766.79 | 82.10% | 1280.32 | 50.92% | 621.01 | 59.49% |
2050s | 4584.71 | 66.17% | 2657.88 | 78.87% | 1356.1 | 53.93% | 570.73 | 54.67% | |
2070s | 4439.15 | 64.07% | 2703.75 | 80.23% | 1196.01 | 47.56% | 539.39 | 51.67% | |
2090s | 5222.92 | 75.38% | 3030.12 | 89.91% | 1521.97 | 60.53% | 670.83 | 64.26% |
Shared Socio-Economic Pathways, SSPs|Decades | Coordinate | Centroid Position | Migration Direction | Migration Distance/km | |
---|---|---|---|---|---|
1970–2000 | 11.601363° E, 10.831813° N | Gombe State, Nigeria | |||
SSP126 | 2030s | 10.186043° E, 11.16845° N | Bauchi, Nigeria | Northwest | 158.7 |
2050s | 9.85256° E, 12.094044° N | Deba, Gombe State, Nigeria | Northwest | 237.1 | |
2070s | 9.315015° E, 11.775609° N | Yobe State, Nigeria | Northwest | 270.3 | |
2090s | 6.566173° E, 13.510685° N | Kaduna State, Nigeria | Northwest | 623.4 | |
SSP370 | 2030s | 10.035722° E, 12.910459° N | Borno State, Nigeria | Northwest | 288.2 |
2050s | 11.999106° E, 11.434632° N | Yobe State, Nigeria | Northwest | 80.3 | |
2070s | 10.920268° E, 13.121086° N | Borno State, Nigeria | Northwest | 265.7 | |
2090s | 9.139863° E, 13.665276° N | Mora, Extrême-Nord Region | Northwest | 414.8 | |
SSP585 | 2030s | 8.046593° E, 12.482033° N | Adamawa State, Nigeria | Northwest | 430.0 |
2050s | 5.874608° E, 12.931153° N | Northwest Region, Cameroon | Northwest | 666.2 | |
2070s | 4.375465° E, 13.594002° N | East Region, Cameroon | Northwest | 839.7 | |
2090s | 2.016365° E, 13.332052° N | Atakora Department, Benin | Northwest | 1077.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Chen, C.; Wang, F.; Dai, T. Predicting the Global Distribution of Fusarium circinatum Using MaxEnt Modeling. Agronomy 2025, 15, 1913. https://doi.org/10.3390/agronomy15081913
Zhang X, Chen C, Wang F, Dai T. Predicting the Global Distribution of Fusarium circinatum Using MaxEnt Modeling. Agronomy. 2025; 15(8):1913. https://doi.org/10.3390/agronomy15081913
Chicago/Turabian StyleZhang, Xiaorui, Chao Chen, Fengqi Wang, and Tingting Dai. 2025. "Predicting the Global Distribution of Fusarium circinatum Using MaxEnt Modeling" Agronomy 15, no. 8: 1913. https://doi.org/10.3390/agronomy15081913
APA StyleZhang, X., Chen, C., Wang, F., & Dai, T. (2025). Predicting the Global Distribution of Fusarium circinatum Using MaxEnt Modeling. Agronomy, 15(8), 1913. https://doi.org/10.3390/agronomy15081913