Exploring the Fermentation Profile, Bacterial Community, and Co-Occurrence Network of Big-Bale Leymus chinensis Silage Treated with/Without Lacticaseibacillus rhamnosus and Molasses
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Material and Ensiling Preparation
2.2. Examination of Fermentation Characteristics, Microbial Populations, and Chemical Composition Profiles
2.3. Bacterial Sequencing Analysis
2.4. Statistical Analyses
3. Results and Discussion
3.1. Chemical and Microbial Composition of Fresh Leymus Chinensis
3.2. Fermentation Characteristics and Microbial Counts of Big-Bale Leymus Chinensis Silage Treated with/Without Lacticaseibacillus Rhamnosus and Molasses
3.3. Bacterial Diversity and Bacterial Community Structure of Big-Bale LEYMUS Chinensis Silage Treated with/Without Lacticaseibacillus Rhamnosus and Molasses
3.4. Co-Occurrence Networks of Bacterial Community of Big-Bale Leymus Chinensis Silage with/Without Lacticaseibacillus Rhamnosus and Molasses
3.5. Correlation Analysis Between the Bacterial Community and pH and Fermentation Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, Y.; Bai, C.; Sun, J.; Sun, L.; Chang, S.; Sun, Q.; Yu, Z.; Yin, G.; Zhao, H.; Ding, H. Effects of locations and growth stages on nutritive value and silage fermentation quality of Leymus chinensis in Eurasian steppe of northern China. Grassl. Sci. 2018, 64, 40–50. [Google Scholar] [CrossRef]
- Chen, S.; Huang, X.; Yan, X.; Liang, Y.; Wang, Y.; Li, X.; Peng, X.; Ma, X.; Zhang, L.; Cai, Y.; et al. Transcriptome analysis in sheepgrass (Leymus chinensis): A dominant perennial grass of the Eurasian Steppe. PLoS ONE 2013, 8, e67974. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, J.; Baoyin, T.; Zhang, L.; Yuan, T. The effects of different grazing periods on the functional traits of Leymus chinensis (Trin.) Tzvelev in a typical Inner Mongolia steppe. Agronomy 2024, 14, 2370. [Google Scholar] [CrossRef]
- Liu, M.; Gong, J.; Yang, B.; Ding, Y.; Zhang, Z.; Wang, B.; Zhu, C.; Hou, X. Differences in the photosynthetic and physiological responses of Leymus chinensis to different levels of grazing intensity. BMC Plant Biol. 2019, 19, 558. [Google Scholar] [CrossRef]
- Yan, R.; Chen, S.; Zhang, X.; Han, J.; Zhang, Y.; Undersander, D. Effects of replacing part of corn silage and alfalfa hay with Leymus chinensis hay on milk production and composition. J. Dairy Sci. 2011, 94, 3605–3608. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, H.; Guo, Q.; Sudu, B.; Han, H. Modulation of the microbial community and the fermentation characteristics of wrapped natural grass silage inoculated with composite bacteria. Chem. Biol. Technol. Agric. 2025, 12, 50. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.J.; Zhao, M.M.; Yu, Z. Isolating and evaluating lactic acid bacteria strains for effectiveness of Leymus chinensis silage fermentation. Lett. Appl. Microbiol. 2014, 59, 391–397. [Google Scholar] [CrossRef]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Tao, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Zhou, H.; Hou, G.; Cai, Y. Effects of sucrose, glucose, molasses and cellulase on fermentation quality and in vitrogas production of king grass silage. Anim. Feed Sci. Technol. 2014, 197, 206–212. [Google Scholar] [CrossRef]
- Huisden, C.M.; Adesogan, A.T.; Kim, S.C.; Ososanya, T. Effect of applying molasses or inoculants containing homofermentative or heterofermentative bacteria at two rates on the fermentation and aerobic stability of corn silage. J. Dairy Sci. 2009, 92, 690–697. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, J.; Guo, L.; Chen, F.; Jiang, D.; Lin, Y.; Guo, C.; Li, X.; Chen, Y.; Ni, K.; et al. Exploring the effects of different bacteria additives on fermentation quality, microbial community and in vitro gas production of forage oat silage. Animals 2022, 12, 1122. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Ai, J.; Li, T.; Qin, W.; Hu, Z.; Siqin, T.; Wu, T.; Wang, C.; Niu, H. Fermentation quality, aerobic stability, and microbiome structure and function of Caragana korshinskii silage inoculated with/without Lactobacillus rhamnosus or Lactobacillus buchneri. Front. Sustain. Food Syst. 2023, 7, 1255936. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, Z.; Yang, H.; Na, R.S. The effects of stage of growth and additives with or without cellulase on fermentation and in vitro degradation characteristics of Leymus chinensis silage. Grass Forage Sci. 2016, 71, 595–606. [Google Scholar] [CrossRef]
- Xu, H.; Sun, L.; Na, N.; Wang, C.; Yin, G.; Liu, S.; Xue, Y. Dynamics of bacterial community and fermentation quality in Leymus chinensis silage treated with lactic acid bacteria and/or water. Front. Microbiol. 2021, 12, 717120. [Google Scholar] [CrossRef]
- Li, X.; Chen, F.; Wang, X.; Xiong, Y.; Liu, Z.; Lin, Y.; Ni, K.; Yang, F. Innovative utilization of herbal residues: Exploring the diversity of mechanisms beneficial to regulate anaerobic fermentation of alfalfa. Bioresour. Technol. 2022, 360, 127429. [Google Scholar] [CrossRef]
- Wu, B.; Ren, T.; Cao, X.; Wu, T.; Hu, Z.; Ai, J.; Zhang, N.; Zhang, Y.; Yu, Z.; Du, L.; et al. Emerging and innovative utilisation of herbal medicine residues in anaerobic fermentation of corn straw: Cellulose degradation, fermentation characteristics, and microbial community structure and co-occurrence network. Ind. Crops Prod. 2025, 227, 120802. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [Google Scholar] [CrossRef]
- Yang, L.; Yuan, X.; Li, J.; Dong, Z.; Shao, T. Dynamics of microbial community and fermentation quality during ensiling of sterile and nonsterile alfalfa with or without Lactobacillus plantarum inoculant. Bioresour. Technol. 2019, 275, 280–287. [Google Scholar] [CrossRef]
- Wu, B.; Hu, Z.; Wei, M.; Yong, M.; Niu, H. Effects of inoculation of Lactiplantibacillus plantarum and Lentilactobacillus buchneri, on fermentation quality, aerobic stability, and microbial community dynamics of wilted Leymus chinensis silage. Front. Microbiol. 2022, 13, 928731. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Lu, Q.; Sun, L.; Du, S.; Liu, T.; Hou, M.; Ge, G.; Wang, Z.; Jia, Y. Effects of lactic acid bacteria additives on the quality, volatile chemicals and microbial community of Leymus chinensis silage during aerobic exposure. Front. Microbiol. 2022, 13, 938153. [Google Scholar] [CrossRef] [PubMed]
- Oude Elferink, S.J.; Krooneman, J.; Gottschal, J.C.; Spoelstra, S.F.; Faber, F.; Driehuis, F. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl. Microbiol. 2001, 67, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Danner, H.; Holzer, M.; Mayrhuber, E.; Braun, R. Acetic acid increases stability of silage under aerobic conditions. Appl. Microbiol. 2003, 69, 562–567. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Ren, T.; Li, C.; Wu, S.; Cao, X.; Mei, H.; Wu, T.; Yong, M.; Wei, M.; Wang, C. Exploring the Fermentation Products, Microbiology Communities, and Metabolites of Big-Bale Alfalfa Silage Prepared with/without Molasses and Lactobacillus rhamnosus. Agriculture 2024, 14, 1560. [Google Scholar] [CrossRef]
- Zhao, M.; Bao, J.; Wang, Z.; Du, S.; Gao, C.; Nan, D.; Yan, X.; Ge, G. Evaluation of the fermentation performance and functional properties of bacterial communities of amaranth silage supplemented with Limosilactobacillus fermentum and Latilactobacillus graminis. Chem. Biol. Technol. Agric. 2023, 10, 103. [Google Scholar] [CrossRef]
- Bach, S.J.; McAllister, T.A.; Baah, J.; Yanke, L.J.; Veira, D.M.; Gannon, V.P.; Holley, R.A. Persistence of Escherichia coli O157: H7 in barley silage: Effect of a bacterial inoculant. J. Appl. Microbiol. 2002, 93, 288–294. [Google Scholar] [CrossRef]
- Xu, Z.; He, H.; Zhang, S.; Kong, J. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci. Rep. 2017, 7, 13614. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5, 241. [Google Scholar] [CrossRef]
- Mu, L.; Xie, Z.; Hu, L.; Chen, G.; Zhang, Z. Lactobacillus plantarum and molasses alter dynamic chemical composition, microbial community, and aerobic stability of mixed (amaranth and rice straw) silage. J. Sci. Food Agric. 2021, 101, 5225–5235. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Sun, R.; Ou, W.; Chen, S.; Hou, G.; Zhou, H. Co-ensiling whole-plant cassava with corn stalk for excellent silage production: Fermentation characteristics, bacterial community, function profile, and microbial ecological network features. Agronomy 2024, 14, 501. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.; Spoelstra, S.F. Microbiology of ensiling. Silage Sci. Technol. 2003, 42, 31–93. [Google Scholar] [CrossRef]
- Muck, R.E. Silage microbiology and its control through additives. Rev. Bras. Zootec. 2010, 39, 183–191. [Google Scholar] [CrossRef]
Leymus chinensis | |
---|---|
Dry matter (g/kg) | 328 ± 5.32 |
pH | 5.68 ± 0.36 |
Crude protein (g/kg DM) | 92.21 ± 1.72 |
Neutral detergent fiber (g/kg DM) | 365.83 ± 21.53 |
Acid detergent fiber (g/kg DM) | 203.86 ± 8.52 |
Water-soluble carbohydrate (g/kg DM) | 42.98 ± 1.71 |
Lactic acid bacteria (log cfu/g) | 3.62 ± 0.73 |
Yeast (log cfu/g) | 5.34 ± 0.45 |
Enterobacteria (log cfu/g) | 5.62 ± 0.57 |
20 Days | 40 Days | 2-Way ANOVA | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C | L | M | LM | SE | C | L | M | LM | SE | Z | T | Z × T | |
Dry matter (g/kg) | 379.27 | 383.69 | 379.25 | 382.49 | 2.42 | 380.29 | 382.75 | 386.68 | 382.78 | 1.65 | NS | NS | NS |
pH | 5.53A | 4.03B | 3.81C | 3.79C | 0.12 | 4.58a | 3.97b | 3.79c | 3.73c | 0.17 | ** | ** | ** |
Lactic acid (g/kg DM) | 10.78C | 14.72B | 16.67A | 16.97A | 0.74 | 14.63c | 18.72b | 20.57a | 21.78a | 1.03 | ** | ** | ** |
Acetic acid (g/kg DM) | 5.67C | 7.23B | 9.48A | 8.36B | 0.42 | 6.31c | 8.36b | 7.83b | 9.38a | 0.48 | ** | ** | ** |
Propionic acid (g/kg DM) | 3.75C | 4.76B | 4.59B | 5.37A | 0.36 | 4.27c | 5.24b | 5.38b | 6.32a | 0.57 | ** | ** | ** |
Butyric acid (g/kg DM) | 2.43A | 0.85B | 0.78B | 0.46C | 0.28 | 2.12a | 0.82b | 0.88b | 0.93b | 0.38 | ** | ** | NS |
1,2-Propanediol (g/kg DM) | 0.67C | 0.84B | 1.35A | 1.31A | 0.16 | 0.84c | 1.23b | 1.31b | 1.82a | 0.43 | ** | ** | ** |
1-Propanol (g/kg DM) | 3.14A | 2.26B | 1.83C | 1.45C | 0.33 | 3.28a | 2.26b | 1.62c | 1.34c | 0.37 | ** | ** | ** |
Ethanol (g/kg DM) | 2.43A | 1.86B | 1.14C | 1.23C | 0.43 | 1.82a | 0.74b | 0.82b | 0.95b | 0.41 | ** | ** | ** |
Lactic acid bacteria (log cfu/g) | 6.16C | 7.21B | 7.82A | 7.87A | 0.35 | 6.32b | 7.44a | 7.76a | 7.82a | 0.28 | ** | NS | ** |
Enterobacteria (log cfu/g) | 6.37A | 5.58B | 4.74C | 4.83C | 0.31 | 5.29a | 4.55b | 4.04c | 3.83c | 0.43 | ** | ** | ** |
Yeast (log cfu/g) | 6.24A | 5.82B | 5.17C | 5.03C | 0.24 | 5.73a | 5.24b | 4.64c | 4.16d | 0.32 | ** | ** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, B.; Cao, X.; Fu, M.; Bao, Y.; Wu, T.; Liu, K.; Wen, S.; Gao, F.; Wang, H.; Mei, H.; et al. Exploring the Fermentation Profile, Bacterial Community, and Co-Occurrence Network of Big-Bale Leymus chinensis Silage Treated with/Without Lacticaseibacillus rhamnosus and Molasses. Agronomy 2025, 15, 1888. https://doi.org/10.3390/agronomy15081888
Wu B, Cao X, Fu M, Bao Y, Wu T, Liu K, Wen S, Gao F, Wang H, Mei H, et al. Exploring the Fermentation Profile, Bacterial Community, and Co-Occurrence Network of Big-Bale Leymus chinensis Silage Treated with/Without Lacticaseibacillus rhamnosus and Molasses. Agronomy. 2025; 15(8):1888. https://doi.org/10.3390/agronomy15081888
Chicago/Turabian StyleWu, Baiyila, Xue Cao, Mingshan Fu, Yuxin Bao, Tiemei Wu, Kai Liu, Shubo Wen, Fenglin Gao, Haifeng Wang, Hua Mei, and et al. 2025. "Exploring the Fermentation Profile, Bacterial Community, and Co-Occurrence Network of Big-Bale Leymus chinensis Silage Treated with/Without Lacticaseibacillus rhamnosus and Molasses" Agronomy 15, no. 8: 1888. https://doi.org/10.3390/agronomy15081888
APA StyleWu, B., Cao, X., Fu, M., Bao, Y., Wu, T., Liu, K., Wen, S., Gao, F., Wang, H., Mei, H., & Song, Y. (2025). Exploring the Fermentation Profile, Bacterial Community, and Co-Occurrence Network of Big-Bale Leymus chinensis Silage Treated with/Without Lacticaseibacillus rhamnosus and Molasses. Agronomy, 15(8), 1888. https://doi.org/10.3390/agronomy15081888