Evaluation of the Kernel Test Weight and Selection of Identification Indexes of Maize Inbred Lines
Abstract
1. Introduction
2. Materials and Methods
2.1. Plants Materials and Field Design
2.2. Phenotypic Data Collection
2.2.1. Measurement of Quality Traits
2.2.2. Measurement of Grain Shape Traits
2.3. Data and Statistical Analysis
2.3.1. Data Collation and Statistical Analysis
2.3.2. Membership Function Values of Maize Inbred Lines for Each Composite Trait
2.3.3. Weights for Each Composite Trait in Maize Inbred Lines
3. Results
3.1. Single Wavelength Spectrophotometric Standard Curve for Amylose
3.2. Descriptive Statistical Analysis of Each Trait
3.3. Principal Component Analysis Was Conducted for Each Trait
3.4. Cluster Analysis
3.5. Stepwise Regression Analysis
3.6. Comparative Characterization of Maize Inbred Lines’ Germplasm Resources
4. Discussion
4.1. Influence of Grain Quality Traits and Grain Shape Traits on Kernel Test Weight
4.2. Multivariate Statistical Analysis
4.3. Genetic Improvement and Variety Selection in Maize
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deivasigamani, S.; Swaminathan, C. Evaluation of seed test weight on major field crops. Int. J. Res. Stud. Agric. Sci. 2018, 4, 8–11. [Google Scholar] [CrossRef]
- Butts-Wilmsmeyer, C.J.; Seebauer, J.R.; Singleton, L.; Below, F.E. Weather during key growth stages explains grain quality and yield of maize. Agronomy 2019, 9, 16. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Zhang, Q.; Pan, F.F.; Cai, X.Y.; Zhang, N.; Li, X.; Huang, X.Q. Detection of quantitative trait loci for maize grain yield and kernel-related traits. J. Fudan Univ. (Nat. Sci.) 2017, 56, 421–430. [Google Scholar] [CrossRef]
- Cabral, A.L.; Jordan, M.C.; Larson, G.; Somers, D.J.; Humphreys, D.G.; McCartney, C.A. Relationship between QTL for grain shape, grain weight, test weight, milling yield, and plant height in the spring wheat cross RL4452/‘AC Domain’. PLoS ONE 2018, 13, e0190681. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.H.; Kenkel, P.; Brorsen, B.W. Pre-harvest forecasting of county wheat yield and wheat quality using weather information. Agric. For. Meteorol. 2013, 168, 26–35. [Google Scholar] [CrossRef]
- Li, Z.; Dong, S.T.; Liu, C.H.; Wang, K.J.; Zhang, J.W.; Liu, P. Correlation analysis on maize test weight, yield and quality. Sci. Agric. Sin. 2007, 40, 7. [Google Scholar]
- Shea, Z.; Singer, W.M.; Rosso, L.; Song, Q.; Zhang, B. Determining Genetic Markers and Seed Compositions Related to High Test Weight in Glycine max. Plants 2023, 12, 2997. [Google Scholar] [CrossRef]
- Holland, J.B.; Frey, K.J.; Hammond, E.G. Correlated responses of fatty acid composition, grain quality, and agronomic traits to nine cycles of recurrent selection for increased oil content in oat. Euphytica 2001, 122, 69–79. [Google Scholar] [CrossRef]
- Blandino, M.; Mancini, M.C.; Peila, A.; Rolle, L.; Vanara, F.; Reyneri, A. Determination of maize kernel hardness: Comparison of different laboratory tests to predict dry-milling performance. J. Sci. Food Agric. 2010, 90, 1870–1878. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, C.; Zhao, Y. Difference analysis of kernel test weight and nutritional quality traits in maize (Zea mays L.) germplasm resources. J. Plant Genet. Res. 2016, 17, 832–839. [Google Scholar] [CrossRef]
- Chiremba, C.; Rooney, L.W.; Taylor, J.R. Relationships between simple grain quality parameters for the estimation of sorghum and maize hardness in commercial hybrid cultivars. Cereal Chem. 2011, 88, 570–575. [Google Scholar] [CrossRef]
- Zheng, Y.; Hou, P.; Jia, X.; Zhu, L.; Zhao, Y.; Song, W.; Song, W.; Guo, J. Evaluation of the lodging resistance and the selection of identification indexes of maize inbred lines. Food Energy Secur. 2023, 12, e499. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Wang, T.; Mao, B.; Meng, Y.; Li, Y.; Qiu, Y. Near-infrared spectrometer based on scanning fiber and linear variable filter. Opt. Eng. 2021, 60, 104108. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, X.; Wang, F.; Zhao, F.; Li, X.; Fan, G.; Zhao, Z.; Guo, P. Rapid prediction of Apparent Amylose, total starch, and crude protein by near-infrared reflectance spectroscopy for foxtail millet (Setaria italica). Cereal Chem. 2020, 97, 653–660. [Google Scholar] [CrossRef]
- Leyva-Porras, C.; Cruz-Alcantar, P.; Espinosa-Solís, V.; Martínez-Guerra, E.; Piñón-Balderrama, C.I.; Compean Martínez, I.; Saavedra-Leos, M.Z. Application of differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) in food and drug industries. Polymers 2019, 12, 5. [Google Scholar] [CrossRef]
- Ping, H.; Wang, J.; Ren, G. Prediction of the total starch and amylose content in barley using near-infrared reflectance spectroscopy. Intell. Autom. Soft Comput. 2013, 19, 231–237. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, L.; Ma, C.; Zhang, Y. Thermal behavior of sweet potato starch by non-isothermal thermogravimetric analysis. Materials 2019, 12, 699. [Google Scholar] [CrossRef]
- Simsek, S.; Whitney, K.; Ohm, J.B. Analysis of cereal starches by high-performance size exclusion chromatography. Food Anal. Methods 2013, 6, 181–190. [Google Scholar] [CrossRef]
- Dupuis, J.H.; Liu, Q.; Yada, R.Y. Methodologies for increasing the resistant starch content of food starches: A review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 1219–1234. [Google Scholar] [CrossRef]
- Subroto, E.; Jeanette, G.; Meiyanasari, Y.; Luwinsky, I.; Baraddiaz, S. Review on the analysis methods of starch, amylose, amylopectinin food and agricultural products. Int. J. Emerg. Trends Eng. Res. 2020, 8, 3519–3524. [Google Scholar] [CrossRef]
- Liu, J.L.; Shang, B.; Xing, X.T.; Zhang, D.; Chang, L.; Sun, H.; Duan, X.L. Comparison of four methods for the determination of the amylose content in foxtail millet. Food Sci. 2023, 44, 217–224. [Google Scholar] [CrossRef]
- Zhang, C.L.; Phongsai, C.; Zhang, J.L.; Yu, Y.; Su, Y.H.; Yang, M.; Gao, L.; Pu, S.H.; Li, J.; Wen, J.C.; et al. Evaluation of rice germplasms for grain resistant starch content and its environmental stability. Sci. Agric. Sin. 2019, 52, 2921–2928. [Google Scholar] [CrossRef]
- Qin, R.; Cao, M.; Dong, J.; Chen, L.; Guo, H.; Guo, Q.; Cai, Y.; Han, L.; Huang, Z.; Cui, F.; et al. Fine mapping of a major QTL, qKl-1BL controlling kernel length in common wheat. Theor. Appl. Genet. 2024, 137, 67. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Deakin, G.; Ding, G.; Ali, M.; Dai, J.; Wen, Z.; Pinheiro, F.; Zhou, J.; Jackson, R. The Use of Low-Cost Drone and Multi-Trait Analysis to Identify High Nitrogen Use Lines for Wheat Improvement. Agronomy 2024, 14, 1612. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhang, T.; Qiao, W.; Liu, W.; Qiao, Y.; Li, Y.; Liu, M.; Ma, Y.; Dong, B. Optimizing canopy spacing configuration enhances foxtail millet grain yield and water productivity by improving stalk lodging resistance in the North China Plain. Eur. J. Agron. 2024, 158, 127230. [Google Scholar] [CrossRef]
- Bratianu, C.; Stanescu, D.F.; Mocanu, R. Exploring the Knowledge Management Impact on Business Education. Sustainability 2021, 13, 2313. [Google Scholar] [CrossRef]
- Yan, C.; Song, S.; Wang, W.; Wang, C.; Li, H.; Wang, F.; Li, S.; Sun, X. Screening diverse soybean genotypes for drought tolerance by membership function value based on multiple traits and drought-tolerant coefficient of yield. BMC Plant Biol. 2020, 20, 321. [Google Scholar] [CrossRef]
- Prolla, I.R.D.; Barbosa, R.G.; Veeck, A.P.L.; Augusti, P.R.; Silva, L.P.D.; Ribeiro, N.D.; Emanuelli, T. Cultivar, harvest year, and storage conditions affecting nutritional quality of common beans (Phaseolus vulgaris L.). Food Sci. Technol. 2010, 30, 96–102. [Google Scholar] [CrossRef]
- Dos Santos, A.; da Silva Matos, E.; da Silva Freddi, O.; Galbieri, R.; Lal, R. Cotton production systems in the Brazilian Cerrado: The impact of soil attributes on field-scale yield. Eur. J. Agron. 2020, 118, 126090. [Google Scholar] [CrossRef]
- Kurita, T. Principal component analysis (PCA). In Computer Vision: A Reference Guide; Springer International Publishing: Cham, Switzerland, 2021; pp. 1013–1016. [Google Scholar] [CrossRef]
- Danojević, D.; Ćurčić, Ž.; Nagl, N.; Taški-Ajduković, K.; Boćanski, J. Evaluation of sugar beet genotypes for root traits by principal component analysis and cluster analysis. Genetika 2016, 48, 339–348. [Google Scholar] [CrossRef]
- Zhangyu, Y.; Xiaoyang, C.; Yan, L.; Xinze, L.; Kangjie, B.; Yao, L.; Guangwu, Z.; Junsheng, S.; Qinghui, H. Correlation analysis of test weight and other quality traits and candidate gene mining in 517 maize germplasms. J. Zhejiang AF Univ. 2024, 41, 669–678. [Google Scholar]
- Milašinović, M. Starch composition related to physical traits in maize kernel. J. Process. Energy Agric. 2021, 25, 78–81. [Google Scholar] [CrossRef]
- Bonfil, D.J.; Abbo, S.; Svoray, T. Sowing date and wheat quality as determined by gluten index. Crop Sci. 2015, 55, 2294–2306. [Google Scholar] [CrossRef]
- Gürsoy, S.; Sessiz, A.; Malhi, S.S. Short-term effects of tillage and residue management following cotton on grain yield and quality of wheat. Field Crops Res. 2010, 119, 260–268. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Jia, A.; Rong, T. Identification of QTL for maize grain yield and kernel-related traits. J. Genet. 2016, 95, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, Y.X.; Chen, L.; Wu, X.; Qin, W.; Song, Y.; Zhang, D.; Wang, T.; Li, Y.; Shi, Y. Fine mapping of qKW7, a major QTL for kernel weight and kernel width in maize, confirmed by the combined analytic approaches of linkage and association analysis. Euphytica 2016, 210, 221–232. [Google Scholar] [CrossRef]
- Wang, K.; Fu, B.X. Inter-relationships between test weight, thousand kernel weight, kernel size distribution and their effects on durum wheat milling, semolina composition and pasta processing quality. Foods 2020, 9, 1308. [Google Scholar] [CrossRef]
- Ramya, P.; Chaubal, A.; Kulkarni, K.; Gupta, L.; Kadoo, N.; Dhaliwal, H.S.; Chhuneja, P.; Lagu, M.; Gupt, V. QTL mapping of 1000-kernel weight, kernel length, and kernel width in bread wheat (Triticum aestivum L.). J. Appl. Genet. 2010, 51, 421–429. [Google Scholar] [CrossRef]
- Xin, F.; Zhu, T.; Wei, S.; Han, Y.; Zheng, Y.; Zheng, D.; Ding, Q.; Ma, L. QTL Mapping of Kernel Traits and Validation of a Major QTL for Kernel Length-Width Ratio Using SNP and Bulked Segregant Analysis in Wheat. Sci. Rep. 2020, 10, 25. [Google Scholar] [CrossRef]
- Liu, J.; Huang, J.; Guo, H.; Lan, L.; Wang, H.; Xu, Y.; Yang, X.; Li, W.; Tong, H.; Yan, J.; et al. The conserved and unique genetic architecture of kernel size and weight in maize and rice. Plant Physiol. 2017, 175, 774–785. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philosophical transactions of the royal society A: Mathematical. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Hu, M.; Tian, H.; Yang, K.; Ding, S.; Hao, Y.; Xu, R.; Zhang, F.; Liu, H.; Zhang, D. Comprehensive evaluation and selection of 192 maize accessions from different sources. Plants 2024, 13, 1397. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Chen, S.; Bu, J.; Wei, J.; Peng, H.; Li, Y.; Li, C.; Xie, J. Response of main maize varieties to water stress and comprehensive evaluation in Hebei Province. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 108, No. 4; p. 042002. [Google Scholar] [CrossRef]
- Ren, S.; Tan, J.; Zhou, S.; Sun, H.; Li, H.; Li, W.; Li, N.; Wu, J.; Ren, X.; Yang, W.; et al. Germplasm Selection and Comprehensive Evaluation of Maize Inbred Lines at Germination and Seedling Stage for Saline–Alkali Tolerance. Agronomy 2025, 15, 626. [Google Scholar] [CrossRef]
- Tian, H.; Liu, H.; Zhang, D.; Hu, M.; Zhang, F.; Ding, S.; Yang, K. Screening of salt tolerance of maize (Zea mays L.) lines using membership function value and GGE biplot analysis. PeerJ 2024, 12, e16838. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Su, H.; Li, Y.Y.; Li, J.P.; Li, J.C.; Zhu, Y.L.; Song, Y.H. Analysis of heat tolerance of wheat with different genotypes and screening of identification indexes in Huang-Huai-Hai region. Sci. Agric. Sin. 2021, 54, 3381–3392. [Google Scholar]
- Shi, Z.; Han, G.; Gu, T.; Yan, H.; Chang, Y.; Zhuo, S.; Cao, L.; Xing, L.; Liu, Y.; An, D.; et al. Multi-Dimensional Comprehensive Evaluation Reveals the Characteristics of Quality Traits of Wheat Cultivars in the Huang-Huai Wheat Region of China. J. Integr. Agric. 2024, in press. [Google Scholar] [CrossRef]
- Han, L.; Ge, L.; Fei, L.; Huang, C.; Li, Y.; Fan, W.; Zhu, D.; Zhao, L. A Comprehensive Evaluation of Soybean Germplasm Resources for Salt Tolerance During Germination. Plants 2025, 14, 791. [Google Scholar] [CrossRef]
- Ding, W.; Lin, J.; Li, C.; Zhu, Z.; Wu, C.; Cao, J.; Liu, D.; Zhang, Y.; Yang, Q.; Zhao, J.; et al. Development of a comprehensive evaluation system and models to determine soybean seed vigor. Ind. Crops Prod. 2025, 224, 120329. [Google Scholar] [CrossRef]
- Hu, T.; Sun, Y.; Cui, R.; Liu, Y.; Cao, J.; Li, Z. Comprehensive assessment of salt-alkali tolerance of different soybean varieties at the maturation stage. Emir. J. Food Agric. (EJFA) 2024, 36, 1–6. [Google Scholar] [CrossRef]
- Baha, J.; Liu, W.; Ma, X.; Li, Y.; Zhao, X.; Zhai, X.; Cao, X.; Guo, W. Comprehensive Evaluation of 202 Cotton Varieties (Lines) and Their Physiological Drought Resistance Response During Seedling Stage. Plants 2025, 14, 1770. [Google Scholar] [CrossRef]
- Qian, S.; Zhang, S.; Ruihua, L.; Shaodong, L.; Jing, C.; Changwei, G.; Ma, H.; Zhao, X.; Yang, G.; Chaoyou, P.; et al. Construction of A Comprehensive Evaluation System and Screening of Cold Tolerance Indicators for Cold Tolerance of Cotton at Seedling Emergence Stage. Sci. Agric. Sin. 2022, 55, 4342–4355. [Google Scholar] [CrossRef]
- Wu, H.; Hou, L.; Yanfei, Z.; Zhicchao, F.; Junyi, S.; Rouzi, A.; Jusong, Z. Analysis of chilling-tolerance and determination of chilling-tolerance evaluation indicators in cotton of different genotypes. Sci. Agric. Sin. 2012, 45, 1703–1713. [Google Scholar]
- Zarei, L.; Cheghamirza, K.; Farshadfar, E. Evaluation of grain yield and some agronomic characters in durum wheat (‘Triticum turgidum’ L.) Under rainfed conditions. Aust. J. Crop Sci. 2013, 7, 609–617. [Google Scholar]
- Gao, Y.; Li, J.; Ning, R.; Zheng, Y.; Song, W.; Hou, P.; Zhu, L.; Jia, X.; Zhao, Y.; Song, W.; et al. Evaluation of Grain Moisture Content at Maturity and Screening for Identification Indexes of Maize Inbred Lines. Agronomy 2024, 14, 1480. [Google Scholar] [CrossRef]
- Chen, Z.; Shi, H.; Dong, D.; Wang, Y.; Wang, J.; Yu, B.; Wang, P.; Kang, G. Comprehensive evaluation of low phosphorus tolerance of different wheat varieties (lines) and screening of representative evaluation indexes. J. Henan Agric. Sci. 2023, 52, 21. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, G.; Wu, Y.; Tang, N.; Huang, L.; Dai, D.; Yuan, X.; Xue, C.; Chen, X. Diversity Analysis and Comprehensive Evaluation of 101 Soybean (Glycine max L.) Germplasms Based on Sprout Quality Characteristics. Foods 2024, 13, 3524. [Google Scholar] [CrossRef] [PubMed]
- Xiuxiu, W.; Aishuang, X.; Ru, Y.; Shoupu, H.; Yinhua, J.; Zhaoe, P.; Wang, L.; Du, X.; Xianliang, S. Comprehensive evaluation of phenotypic characters of nature population in upland cotton. Sci. Agric. Sin. 2022, 55, 1082–1094. [Google Scholar] [CrossRef]
- Saeed, F.; Farooq, J.; Mahmood, A.; Riaz, M.; Hussain, T.; Majeed, A. Assessment of genetic diversity for Cotton leaf curl virus (CLCuD), fiber quality and some morphological traits using different statistical procedures in ‘Gossypium hirsutum’ L. Aust. J. Crop Sci. 2014, 8, 442–447. [Google Scholar]
- Liu, Y.; Guo, J.; Zhang, D.; Zhao, Y.; Zhu, L.; Huang, Y.; Chen, J. Genetic Diversity and Linkage Disequilibrium Estimation among the Maize Breeding Germplasm for Association Mapping. Int. J. Agric. Biol. 2014, 16, 851–861. [Google Scholar]
- Zhizhai, L.; Xun, W.; Haili, L.; Yongxiang, L.; Qingchao, L.; Fengge, W.; Shi, Y.; Song, Y.; Song, W.; Tianyu, W.; et al. Genetic diversity and population structure of important Chinese maize inbred lines revealed by 40 core simple sequence repeats (SSRs). Sci. Agric. Sin. 2012, 45, 2107–2138. [Google Scholar] [CrossRef]
- Hou, Y.; Xu, X.; Kong, L.; Zhang, Y.; Zhang, L.; Wang, L. Combining time-variable controlled release urea formulations to improve spring maize yield and reduce nitrogen losses in northeastern China. Eur. J. Agron. 2024, 159, 127268. [Google Scholar] [CrossRef]
Trait | Range | Mean | SD | Skewness | Kurtosis | CV% |
---|---|---|---|---|---|---|
PC (%) | 10.12–18.46 | 13.68 | 1.59 | 0.41 | −0.02 | 11.64 |
FC (%) | 3.12–10.19 | 5.18 | 0.72 | 1.14 | 7.03 | 13.82 |
SC (%) | 59.18–74.29 | 68.22 | 2.30 | −0.36 | 0.36 | 3.37 |
AS (%) | 10.01–32.09 | 18.87 | 2.59 | 0.38 | 1.90 | 13.75 |
AP (%) | 33.49–57.23 | 49.36 | 3.04 | −0.46 | 2.12 | 6.15 |
AP/AS | 1.04–5.71 | 2.68 | 0.51 | 1.16 | 4.64 | 19.18 |
HKW (g) | 27.87–90.83 | 62.52 | 11.72 | 0.09 | −0.29 | 18.74 |
KL (mm) | 6.45–17.44 | 9.53 | 1.95 | 1.47 | 1.97 | 20.42 |
KW (mm) | 5.50–11.22 | 7.08 | 0.85 | 1.44 | 2.98 | 12.05 |
KW/KL | 1.02–1.84 | 1.34 | 0.14 | 0.98 | 0.91 | 10.45 |
KS (mm2) | 27.44–183.79 | 52.92 | 20.22 | 2.25 | 7.05 | 38.21 |
KC (mm) | 20.58–55.59 | 29.66 | 5.94 | 1.52 | 2.31 | 20.04 |
Trait | Principal Component | |||
---|---|---|---|---|
1 | 2 | 3 | 4 | |
PC (%) | −0.131 | −0.1 | −0.369 | −0.58 |
FC (%) | 0.129 | −0.353 | −0.656 | 0.18 |
SC (%) | −0.045 | 0.344 | 0.86 | −0.049 |
AS (%) | −0.026 | −0.768 | 0.546 | −0.034 |
AP (%) | −0.009 | 0.947 | 0.071 | −0.004 |
AP/AS | −0.052 | 0.67 | −0.323 | 0.028 |
HKW (g) | 0.212 | −0.061 | −0.036 | 0.764 |
KL (mm) | 0.992 | −0.012 | 0.023 | −0.061 |
KW (mm) | 0.901 | 0.074 | 0.035 | 0.123 |
KW/KL | 0.813 | −0.098 | 0.004 | −0.268 |
KS (mm2) | 0.928 | 0.108 | −0.009 | −0.071 |
KC (mm) | 0.994 | 0.008 | 0.031 | −0.029 |
Eigenvalue | 4.39 | 2.221 | 1.718 | 1.053 |
Contribution rate (%) | 36.581 | 18.506 | 14.314 | 8.775 |
Cumulative contribution rate (%) | 36.581 | 55.087 | 69.401 | 78.176 |
Group | Original Mean | ||||
---|---|---|---|---|---|
SC (%) | AP (%) | HKW (g) | KC (mm) | Number | |
I | 65.81 | 46.27 | 52.35 | 23.94 | 25 |
II | 67.53 | 48.64 | 57.96 | 25.62 | 72 |
III | 68.62 | 49.96 | 64.35 | 26.89 | 77 |
IV | 68.82 | 50.3 | 64.79 | 30.06 | 80 |
V | 68.52 | 50.11 | 64.38 | 36.64 | 51 |
VI | 68.55 | 49.44 | 72.79 | 45.91 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, T.; Li, J.; Wang, C.; Fan, H.; Zheng, Y.; Liu, Y.; Zhang, S.; Zhu, L.; Jia, X.; Zhao, Y.; et al. Evaluation of the Kernel Test Weight and Selection of Identification Indexes of Maize Inbred Lines. Agronomy 2025, 15, 1807. https://doi.org/10.3390/agronomy15081807
Shen T, Li J, Wang C, Fan H, Zheng Y, Liu Y, Zhang S, Zhu L, Jia X, Zhao Y, et al. Evaluation of the Kernel Test Weight and Selection of Identification Indexes of Maize Inbred Lines. Agronomy. 2025; 15(8):1807. https://doi.org/10.3390/agronomy15081807
Chicago/Turabian StyleShen, Tao, Jianping Li, Chao Wang, Haihong Fan, Yunxiao Zheng, Yifan Liu, Shuzhen Zhang, Liying Zhu, Xiaoyan Jia, Yongfeng Zhao, and et al. 2025. "Evaluation of the Kernel Test Weight and Selection of Identification Indexes of Maize Inbred Lines" Agronomy 15, no. 8: 1807. https://doi.org/10.3390/agronomy15081807
APA StyleShen, T., Li, J., Wang, C., Fan, H., Zheng, Y., Liu, Y., Zhang, S., Zhu, L., Jia, X., Zhao, Y., Song, W., & Guo, J. (2025). Evaluation of the Kernel Test Weight and Selection of Identification Indexes of Maize Inbred Lines. Agronomy, 15(8), 1807. https://doi.org/10.3390/agronomy15081807