Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Salinity-Stress Experiments
2.3. Determination of Proline Levels
2.4. Determination of Enzyme Activities
2.5. Effects on Plant Height, Flower Production, and Size
2.6. Statistical Analysis
3. Results
3.1. Proline Contents Under Different Salinity Levels
3.2. Enzyme Activities Under Different Salinity Levels
3.3. Effects of Salinity on Plant Height, Flower Production, and Flower Size
4. Discussion
4.1. Antioxidant and Osmoprotective Responses Under Short-Term Salinity Stress
4.2. Floral Development Is Highly Sensitive to Salinity Despite High Antioxidant Activity
4.3. Species-Specific Strategies Reflect Genotypic Variation in Tolerance
4.4. Implications of Short-Term Saline Irrigation in Ornamental Floriculture and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- DESA United Nations. The Sustainable Development Goals Report 2022|UN DESA Publications. Available online: https://desapublications.un.org/publications/sustainable-development-goals-report-2022 (accessed on 7 September 2023).
- UNESCO. Imminent Risk of a Global Water Crisis, Warns the UN World Water Development Report 2023; UNESCO: Paris, France, 2023. [Google Scholar]
- Liu, X.; Liu, W.; Tang, Q.; Liu, B.; Wada, Y.; Yang, H. Global Agricultural Water Scarcity Assessment Incorporating Blue and Green Water Availability Under Future Climate Change. Earth’s Future 2022, 10, e2021EF002567. [Google Scholar] [CrossRef]
- Wani, M.A.; Din, A.; Nazki, I.T.; Rehman, T.U.; Al-Khayri, J.M.; Jain, S.M.; Lone, R.A.; Bhat, Z.A.; Mushtaq, M. Navigating the future: Exploring technological advancements and emerging trends in the sustainable ornamental industry. Front. Environ. Sci. 2023, 11, 1188643. [Google Scholar] [CrossRef]
- White, S.A.; Owen, J.S.; Majsztrik, J.C.; Oki, L.R.; Fisher, P.R.; Hall, C.R.; Lea-Cox, J.D.; Thomas Fernandez, R. Greenhouse and Nursery Water Management Characterization and Research Priorities in the USA. Water 2019, 11, 2338. [Google Scholar] [CrossRef]
- Global Floriculture Market Size to Exceed USD 101.9 Billion. Available online: https://www.globenewswire.com/news-release/2024/01/18/2811318/0/en/Global-Floriculture-Market-Size-To-Exceed-USD-101-9-Billion-By-2032-CAGR-Of-6-6.html (accessed on 23 January 2024).
- Xia, Y.; Deng, X.; Zhou, P.; Shima, K.; da Silva, J.A.T. The world floriculture industry: Dynamics of production and markets. In Floriculture, Ornamental and Plant Biotechnology: Advances and Topical Issues; Global Science Books: Singapore, 2006; pp. 336–347. [Google Scholar]
- Lu, K.; Failler, P.; Drakeford, B.M.; Forse, A. The development of seawater agriculture: Policy options for a changing climate. Environ. Dev. 2024, 49, 100938. [Google Scholar] [CrossRef]
- Guo, J.; Shan, C.; Zhang, Y.; Wang, X.; Tian, H.; Han, G.; Zhang, Y.; Wang, B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. Front. Plant Sci. 2022, 13, 854116. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Kim, W.-Y.; Yun, D.-J. A New Insight of Salt Stress Signaling in Plant. Mol. Cells 2016, 39, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Fujita, M. Plant Responses and Tolerance to Salt Stress: Physiological and Molecular Interventions. Int. J. Mol. Sci. 2022, 23, 4810. [Google Scholar] [CrossRef] [PubMed]
- Marques, I.; Hu, H. Molecular Insight of Plants Response to Drought Stress: Perspectives and New Insights towards Food Security. Int. J. Mol. Sci. 2024, 25, 4988. [Google Scholar] [CrossRef] [PubMed]
- Laamari, I.; Marques, I.; Ribeiro-Barros, A.I.; Zoubeir, B.; Abassi, M. Can saline preconditioning enhance plant survival in degraded soils? Physiological, biochemical, and molecular responses in Casuarina glauca saplings. Plant Ecol. 2023 2023, 1, 1–15. [Google Scholar] [CrossRef]
- Singh, P.; Choudhary, K.K.; Chaudhary, N.; Gupta, S.; Sahu, M.; Tejaswini, B.; Sarkar, S. Salt stress resilience in plants mediated through osmolyte accumulation and its crosstalk mechanism with phytohormones. Front. Plant Sci. 2022, 13, 1006617. [Google Scholar] [CrossRef] [PubMed]
- Mann, A.; Lata, C.; Kumar, N.; Kumar, A.; Kumar, A.; Sheoran, P. Halophytes as new model plant species for salt tolerance strategies. Front. Plant Sci. 2023, 14, 1137211. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, A.J. Bioactive Compounds of Food: Their Role in the Prevention and Treatment of Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 3765986. [Google Scholar] [CrossRef] [PubMed]
- Villarino, G.H.; Mattson, N.S. Assessing tolerance to sodium chloride salinity in fourteen floriculture species. Horttechnology 2011, 21, 539–545. [Google Scholar] [CrossRef]
- García-Caparrós, P.; Lao, M.T. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic. 2018, 240, 430–439. [Google Scholar] [CrossRef]
- Guzman, M.R.; Marques, I. Effect of Varied Salinity on Marigold Flowers: Reduced Size and Quantity Despite Enhanced Antioxidant Activity. Agronomy 2023, 13, 3076. [Google Scholar] [CrossRef]
- Marković, M.; Šoštarić, J.; Kojić, A.; Popović, B.; Bubalo, A.; Bošnjak, D.; Stanisavljević, A. Zinnia (Zinnia elegans L.) and Periwinkle (Catharanthus roseus (L.) G. Don) Responses to Salinity Stress. Water 2022, 14, 1066. [Google Scholar] [CrossRef]
- Zapryanova, N.; Atanassova, B. Effects of salt stress on growth and flowering of ornamental annual species. Biotechnol. Biotechnol. Equip. 2009, 23, 177–179. [Google Scholar] [CrossRef]
- Ayad, J.; Othman, Y.; Al Antary, T. Irrigation water salinity and potassium enrichment influenced growth and flower quality of Asiatic lily. Fresenius Environ. Bull. 2019, 28, 8900–8905. [Google Scholar]
- Adamipour, N.; Khosh-Khui, M.; Salehi, H.; Rho, H. Effect of vermicompost on morphological and physiological performances of pot marigold (Calendula officinalis L.) under salinity conditions. Adv. Hortic. Sci. 2019, 33, 345–358. [Google Scholar] [CrossRef]
- Guzman, M.R.; Marques, I. Divergent Impacts of Moderate and Severe Drought on the Antioxidant Response of Calendula officinalis L. Leaves and Flowers. Biol. Life Sci. Forum 2023, 27, 53. [Google Scholar] [CrossRef]
- Yuan, F.; Guo, J.; Shabala, S.; Wang, B. Reproductive physiology of halophytes: Current standing. Front. Plant Sci. 2019, 9, 432034. [Google Scholar] [CrossRef] [PubMed]
- Ventura, Y.; Myrzabayeva, M.; Alikulov, Z.; Omarov, R.; Khozin-Goldberg, I.; Sagi, M. Effects of salinity on flowering, morphology, biomass accumulation and leaf metabolites in an edible halophyte. AoB Plants 2014, 6, plu053. [Google Scholar] [CrossRef] [PubMed]
- Cortinhas, A.; Caperta, A.D.; Teixeira, G.; Carvalho, L.; Abreu, M.M. Harnessing sediments of coastal aquaculture ponds through technosols construction for halophyte cultivation using saline water irrigation. J. Environ. Manag. 2020, 261, 109907. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.J.; Monteiro, I.; Castañeda-Loaiza, V.; Placines, C.; Conceição Oliveira, M.; Reis, C.; Caperta, A.D.; Soares, F.; Pousão-Ferreira, P.; Pereira, C.; et al. Growth performance, in vitro antioxidant properties and chemical composition of the halophyte Limonium algarvense Erben are strongly influenced by the irrigation salinity. Ind. Crops Prod. 2020, 143, 111930. [Google Scholar] [CrossRef]
- Elomaa, P.; Zhao, Y.; Zhang, T. Flower heads in Asteraceae—Recruitment of conserved developmental regulators to control the flower-like inflorescence architecture. Hortic. Res. 2018, 5, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Snyder, R.L. Climate change impacts on water use in horticulture. Horticulturae 2017, 3, 27. [Google Scholar] [CrossRef]
- Soliman, W.S.; El-Soghayer, M.H.; Salaheldin, S.; Abbas, A.M.; Gahory, A.A. Salinity Stress in Calendula officinalis: Negative Growth Impacts Offset by Increased Flowering Yield and the Mitigating Role of Zinc. Horticulturae 2024, 10, 1357. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Z.; Jiang, X.; Qin, Y. Effects of salt stress on photosynthetic fluorescence characteristics, antioxidant system, and osmoregulation of Coreopsis tinctoria Nutt. HortScience 2021, 59, 1066–1072. [Google Scholar] [CrossRef]
- Wu, S.; Sun, Y.; Niu, G.; Altland, J.; Cabrera, R. Response of 10 Aster Species to Saline Water Irrigation. HortScience 2016, 51, 197–201. [Google Scholar] [CrossRef]
- Khedr, A.H.A.; Abbas, M.A.; Abdel Wahid, A.A.; Quick, W.P.; Abogadallah, G.M. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J. Exp. Bot. 2003, 54, 2553–2562. [Google Scholar] [CrossRef] [PubMed]
- Chrysargyris, A.; Tzionis, A.; Xylia, P.; Tzortzakis, N. Effects of salinity on tagetes growth, physiology, and shelf life of edible flowers stored in passive modified atmosphere packaging or treated with ethanol. Front. Plant Sci. 2018, 9, 1765. [Google Scholar] [CrossRef] [PubMed]
- Tarchoune, I.; Sgherri, C.; Izzo, R.; Lachaal, M.; Ouerghi, Z.; Navari-Izzo, F. Antioxidative responses of Ocimum basilicum to sodium chloride or sodium sulphate salinization. Plant Physiol. Biochem. PPB 2010, 48, 772–777. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yu, J. Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Gupta, B.; Huang, B. Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. Int. J. Genom. 2014, 2014, 701596. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.U.; Nawaz, M.; Barbanti, L.; Masood, S. Editorial: Enhancing salinity tolerance in crop plants through agronomic, genetic, molecular, and physiological approaches. Front. Plant Sci. 2025, 16, 1554509. [Google Scholar] [CrossRef] [PubMed]
- Al Hassan, M.; Estrelles, E.; Soriano, P.; López-Gresa, M.P.; Bellés, J.M.; Boscaiu, M.; Vicente, O. Unraveling salt tolerance mechanisms in halophytes: A comparative study on four mediterranean Limonium species with different geographic distribution patterns. Front. Plant Sci. 2017, 8, 277135. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Blumwald, E. Developing salt-tolerant crop plants: Challenges and opportunities. Trends Plant Sci. 2005, 10, 615–620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Han, B.; Wang, T.; Chen, S.; Li, H.; Zhang, Y.; Dai, S. Mechanisms of plant salt response: Insights from proteomics. J. Proteome Res. 2012, 11, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Van Breusegem, F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.X.; Wirtz, M.; Phua, S.Y.; Estavillo, G.M.; Pogson, B.J. Balancing metabolites in drought: The sulfur assimilation conundrum. Trends Plant Sci. 2013, 18, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Passardi, F.; Penel, C.; Dunand, C. Performing the paradoxical: How plant peroxidases modify the cell wall. Trends Plant Sci. 2004, 9, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Kunert, K.J.; Foyer, C.H. The ascorbate/glutathione cycle. In Advances in Botanical Research; Academic Press: Cambridge, MA, USA, 2022; Volume 105, pp. 77–112. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Azeem, M.; Pirjan, K.; Qasim, M.; Mahmood, A.; Javed, T.; Muhammad, H.; Yang, S.; Dong, R.; Ali, B.; Rahimi, M. Salinity stress improves antioxidant potential by modulating physio-biochemical responses in Moringa oleifera Lam. Sci. Rep. 2023, 13, 2895. [Google Scholar] [CrossRef] [PubMed]
- Serrat, X.; Quello, A.; Manikan, B.; Lino, G.; Nogués, S. Comparative Salt-Stress Responses in Salt-Tolerant (Vikinga) and Salt-Sensitive (Regalona) Quinoa Varieties. Physiological, Anatomical and Biochemical Perspectives. Agronomy 2024, 14, 3003. [Google Scholar] [CrossRef]
- Shalata, A.; Mittova, V.; Volokita, M.; Guy, M.; Tal, M. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress: The root antioxidative system. Physiol. Plant. 2001, 112, 487–494. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, H.; Feng, D.; Cao, C.; Zheng, C.; Dang, H.; Li, K.; Gao, Y.; Sun, C. Evaluating the impacts of long-term saline water irrigation on soil salinity and cotton yield under plastic film mulching: A 15-year field study. Agric. Water Manag. 2024, 293, 108703. [Google Scholar] [CrossRef]
- Zait, Y.; Shtein, I.; Schwartz, A. Long-term acclimation to drought, salinity and temperature in the thermophilic tree Ziziphus spina-christi: Revealing different tradeoffs between mesophyll and stomatal conductance. Tree Physiol. 2019, 39, 701–716. [Google Scholar] [CrossRef] [PubMed]
- Othman, Y.A.; A’Saf, T.S.; Ayad, J.Y.; Al-Ajlouni, M.G. Comparative analysis of lily responses to elevated salinity in irrigation water: Effects on physiology, anatomy, and postharvest flower quality. Not. Bot. Horti Agrobot. 2024, 52, 14102. [Google Scholar] [CrossRef]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed]
- Aizaz, M.; Lubna; Hashmi, S.S.; Khan, M.A.; Jan, R.; Bilal, S.; Kim, K.M.; Al-Harrasi, A.; Asaf, S. Unraveling the Complexities of Flowering in Ornamental Plants: The Interplay of Genetics, Hormonal Networks, and Microbiome. Plants 2025, 14, 1131. [Google Scholar] [CrossRef] [PubMed]
- Trivellini, A.; Carmassi, G.; Scatena, G.; Vernieri, P.; Ferrante, A. Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars. Mol. Hortic. 2023, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lee, H. Salinity-Triggered Responses in Plant Apical Meristems for Developmental Plasticity. Int. J. Mol. Sci. 2023, 24, 6647. [Google Scholar] [CrossRef] [PubMed]
- Bigot, S.; Martínez, J.P.; Lutts, S.; Quinet, M. Impact of Salinity on Sugar Composition and Partitioning in Relation to Flower Fertility in Solanum lycopersicum and Solanum chilense. Horticulturae 2025, 11, 285. [Google Scholar] [CrossRef]
- Ryu, J.Y.; Lee, H.J.; Seo, P.J.; Jung, J.H.; Ahn, J.H.; Park, C.M. The arabidopsis floral repressor BFT delays flowering by competing with FT for FD binding under high salinity. Mol. Plant 2014, 7, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Hunt, K.; Hauser, B.A. Ovule abortion in arabidopsis triggered by stress. Plant Physiol. 2004, 135, 2358–2367. [Google Scholar] [CrossRef] [PubMed]
- Mheni, N.T.; Kilasi, N.; Quiloy, F.A.; Heredia, M.C.; Bilaro, A.; Meliyo, J.; Dixit, S.; Nchimbi Msolla, S. Breeding rice for salinity tolerance and salt-affected soils in Africa: A review. Cogent Food Agric. 2024, 10, 2327666. [Google Scholar] [CrossRef]
- Solis, C.A.; Yong, M.T.; Vinarao, R.; Jena, K.; Holford, P.; Shabala, L.; Zhou, M.; Shabala, S.; Chen, Z.H. Back to the Wild: On a Quest for Donors Toward Salinity Tolerant Rice. Front. Plant Sci. 2020, 11, 323. [Google Scholar] [CrossRef] [PubMed]
- Kotula, L.; Khan, H.A.; Quealy, J.; Turner, N.C.; Vadez, V.; Siddique, K.H.M.; Clode, P.L.; Colmer, T.D. Salt sensitivity in chickpea (Cicer arietinum L.): Ions in reproductive tissues and yield components in contrasting genotypes. Plant Cell Environ. 2015, 38, 1565–1577. [Google Scholar] [CrossRef] [PubMed]
- Kibria, M.G.; Hossain, M.; Murata, Y.; Hoque, M.A. Antioxidant Defense Mechanisms of Salinity Tolerance in Rice Genotypes. Rice Sci. 2017, 24, 155–162. [Google Scholar] [CrossRef]
- Rajabi Dehnavi, A.; Zahedi, M.; Piernik, A. Understanding salinity stress responses in sorghum: Exploring genotype variability and salt tolerance mechanisms. Front. Plant Sci. 2023, 14, 1296286. [Google Scholar] [CrossRef] [PubMed]
- Shillo, R.; Ding, M.; Pasternak, D.; Zaccai, M. Cultivation of cut flower and bulb species with saline water. Sci. Hortic. 2002, 92, 41–54. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzman, M.R.; Rojas-Ruilova, X.; Gomes-Domingues, C.; Marques, I. Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species. Agronomy 2025, 15, 1802. https://doi.org/10.3390/agronomy15081802
Guzman MR, Rojas-Ruilova X, Gomes-Domingues C, Marques I. Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species. Agronomy. 2025; 15(8):1802. https://doi.org/10.3390/agronomy15081802
Chicago/Turabian StyleGuzman, María Rita, Xavier Rojas-Ruilova, Catarina Gomes-Domingues, and Isabel Marques. 2025. "Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species" Agronomy 15, no. 8: 1802. https://doi.org/10.3390/agronomy15081802
APA StyleGuzman, M. R., Rojas-Ruilova, X., Gomes-Domingues, C., & Marques, I. (2025). Using Saline Water for Sustainable Floriculture: Identifying Physiological Thresholds and Floral Performance in Eight Asteraceae Species. Agronomy, 15(8), 1802. https://doi.org/10.3390/agronomy15081802