Pollen–Pistil Interaction During Distant Hybridization in Plants
Abstract
1. Introduction
2. Pollen–Pistil System
2.1. PG Adhesion
2.2. PG Hydration
2.3. PG Germination and PT Growth
2.4. PT Ingrowth into the Ovary and Gamete Fusion
3. Classification of IRBs
3.1. Premating IRBs
3.2. Postmating IRBs
3.2.1. Prezygotic Postmating IRBs
3.2.2. Postzygotic Postmating IRBs
3.2.3. Incongruity
4. Similarities and Differences in the Function of SI Barriers and IRBs. Unilateral Incompatibility (UI)
5. Physiological and Biochemical Control of IRBs
5.1. PG Adhesion in IRBs
5.2. PG Hydration in IRBs
5.3. PG Germination and PT Growth in IRBs
5.4. PT Ingrowth into the Embryo Sac in IRBs
6. Overcoming IRBs
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
IRB | Interspecific reproductive barrier |
RALF23/33 | RAPID ALKALINIZATION FACTOR 23/33 |
RBOHD | Respiratory burst oxidase homolog D |
PCP-B | POLLEN COAT PROTEIN B-class |
LLG1 | LORELEI (LRE)-LIKE GLYCOSYLPHOSPHATIDYLINOSITOL (GPI) ANCHORED PROTEIN 1 |
GABA | Gamma-aminobutyric acid |
TTS | Transmitting tissue-specific |
PT | Pollen tube |
PG | Pollen grain |
UI | Unilateral incompatibility |
SI | Self-incompatibility |
SC | Self-compatible |
PCD | Programmed cell death |
ROS | Reactive oxygen species |
CLP | Caspase-like protease |
Et | Ethylene |
CK | Cytokinin |
PELP | Pistil extension-like protein |
CUL1 | Cullin1 |
ABA | Abscisic acid |
References
- Gradziel, T.M. Exotic Genes for Solving Emerging Peach Production Challenges. Sci. Hortic. 2022, 295, 110801. [Google Scholar] [CrossRef]
- Mudhalvan, S.; Ramesh, P.K.; Lakshmi, B.; Vamsi, B.K.; Ajmal, H.; Pandiyaraj, P.; Jeyaprabha, J. A Review on Role of Wide Hybridization in Crop Improvement. Int. J. Plant Soil Sci. 2024, 36, 652–658. [Google Scholar] [CrossRef]
- Morimoto, T.; Ohta, D.; Matsuda, Y.; Sekiguchi, R.; Zhang, L.; Koike, Y.; Nagasaka, K.; Nakano, R.; Itai, A. Effects of Species and Varietal Differences on Intergeneric Cross-Compatibility between Apple and Pear. Sci. Hortic. 2023, 321, 112346. [Google Scholar] [CrossRef]
- Ke, M.; Si, H.; Qi, Y.; Sun, Y.; El-Kassaby, Y.A.; Wu, Z.; Li, S.; Liu, K.; Yu, H.; Hu, R.; et al. Characterization of Pollen Tube Development in Distant Hybridization of Chinese Cork Oak (Quercus variabilis L.). Planta 2023, 258, 110. [Google Scholar] [CrossRef] [PubMed]
- Yaegaki, H.; Yamaguchi, M.; Haji, T.; Suesada, Y.; Miyake, M.; Kihara, T.; Suzuki, K.; Uchida, M. New Japanese Apricot Cultivar ‘Tsuyuakane’. Bull. NARO Inst. Fruit Tree Sci. 2012, 13, 1–6. [Google Scholar]
- Wang, Y.Q.; Du, K.; Yang, Z.W.; Tao, L.; Yang, Q.; Fan, J.X.; Deng, R.J. Advances in the Studies of Distant Hybridization in Fruit Crops. J. Fruit Sci. 2012, 29, 440–446. [Google Scholar]
- Morimoto, T.; Kitamura, Y.; Numaguchi, K.; Akagi, T.; Tao, R. Characterization of Post-Mating Interspecific Cross-Compatibility in Prunus (Rosaceae). Sci. Hortic. 2019, 246, 693–699. [Google Scholar] [CrossRef]
- Zenkteler, M. In vitro pollination of angiosperm ovules with gymnosperm pollen grains. Vitr. Cell. Dev. Biol. Plant 2000, 36, 125–127. [Google Scholar] [CrossRef]
- Moyle, L.C.; Jewell, C.P.; Kostyun, J.L. Fertile Approaches to Dissecting Mechanisms of Premating and Postmating Prezygotic Reproductive Isolation. Curr. Opin. Plant Biol. 2014, 18, 16–23. [Google Scholar] [CrossRef]
- Chen, J.; Luo, M.; Li, S.; Tao, M.; Ye, X.; Duan, W.; Zhang, C.; Qin, Q.; Xiao, J.; Liu, S. A Comparative Study of Distant Hybridization in Plants and Animals. Sci. China Life Sci. 2018, 61, 285–309. [Google Scholar] [CrossRef]
- Bedinger, P.A.; Broz, A.K.; Tovar-Mendez, A.; McClure, B. Pollen-Pistil Interactions and Their Role in Mate Selection. Plant Physiol. 2017, 173, 79–90. [Google Scholar] [CrossRef]
- Berbeć, A. Experimental Interspecific Hybrids in Nicotiana and Barriers to Hybridization. In A Century of Interspecific Hybridization and Introgression in Tobacco; Berbeć, A., Ed.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 31–115. ISBN 978-3-031-54964-9. [Google Scholar]
- Widmer, A.; Lexer, C.; Cozzolino, S. Evolution of Reproductive Isolation in Plants. Heredity 2009, 102, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Hernández, T.; Miller, E.C.; Román-Palacios, C.; Wiens, J.J. Speciation across the Tree of Life. Biol. Rev. 2021, 96, 1205–1242. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, J.M. The Role of Hybrid Seed Inviability in Angiosperm Speciation. Am. J. Bot. 2023, 110, e16135. [Google Scholar] [CrossRef] [PubMed]
- Callaway, T.D.; Singh-Cundy, A. HD-AGPs as Speciation Genes: Positive Selection on a Proline-Rich Domain in Non-Hybridizing Species of Petunia, Solanum, and Nicotiana. Plants 2019, 8, 211. [Google Scholar] [CrossRef]
- Karpechenko, G.D. Polyploid Hybrids of Raphanus sativus L. X Brassica oleracea L. Z. Vererbungslehre 1928, 48, 1–85. [Google Scholar] [CrossRef]
- Ge, Z.; Cheung, A.Y.; Qu, L.-J. Pollen Tube Integrity Regulation in Flowering Plants: Insights from Molecular Asemblies on the Pollen Tube Surface. New Phytol. 2019, 222, 687–693. [Google Scholar] [CrossRef]
- Yu, C.Y.; Zhang, H.K.; Wang, N.; Gao, X.-Q. Glycosylphosphatidylinositol-Anchored Proteins Mediate the Interactions between Pollen/Pollen Tube and Pistil Tissues. Planta 2021, 253, 19. [Google Scholar] [CrossRef]
- Huang, J.; Yang, L.; Yang, L.; Wu, X.; Cui, X.; Zhang, L.; Hui, J.; Zhao, Y.; Yang, H.; Liu, S.; et al. Stigma Receptors Control Intraspecies and Interspecies Barriers in Brassicaceae. Nature 2023, 614, 303–308. [Google Scholar] [CrossRef]
- Batygina, T.B. Embryology of Flowering Plants: Terminology and Concepts. Volume 3: Reproductive Systems; Science Publishers, Inc.: Long Island, NY, USA, 2009; p. 576. ISBN 978-1-57808-265-0. [Google Scholar]
- Xue, J.; Du, Q.; Yang, F.; Chen, L.-Y. The Emerging Role of Cysteine-Rich Peptides in Pollen-Pistil Interactions. J. Exp. Bot. 2024, 75, 6228–6243. [Google Scholar] [CrossRef]
- Clarke, A.E.; Gleeson, P.A. Molecular Aspects of Recognition and Response in the Pollen-Stigma Interaction. In The Phytochemistry of Cell Recognition and Cell Surface Interactions; Loewus, F.A., Ryan, C.A., Eds.; Springer US: Boston, MA, USA, 1981; pp. 161–211. ISBN 978-1-4684-3986-1. [Google Scholar]
- Moon, S.; Jung, K.-H. First Steps in the Successful Fertilization of Rice and Arabidopsis: Pollen Longevity, Adhesion and Hydration. Plants 2020, 9, 956. [Google Scholar] [CrossRef]
- Zinkl, G.M.; Zwiebel, B.I.; Grier, D.G.; Preuss, D. Pollen-Stigma Adhesion in Arabidopsis: A Species-Specific Interaction Mediated by Lipophilic Molecules in the Pollen Exine. Development 1999, 126, 5431–5440. [Google Scholar] [CrossRef]
- Edlund, A.F.; Swanson, R.; Preuss, D. Pollen and Stigma Structure and Function: The Role of Diversity in Pollination. Plant Cell 2004, 16, S84–S97. [Google Scholar] [CrossRef]
- Wang, R.; Dobritsa, A.A. Exine and Aperture Patterns on the Pollen Surface: Their Formation and Roles in Plant Reproduction. Annu. Plant Rev. Online 2018, 1, 589–628. [Google Scholar] [CrossRef]
- Heizmann, P.; Luu, D.T.; Dumas, C. Pollen-Stigma Adhesion in the Brassicaceae. Ann. Bot. 2000, 85, 23–27. [Google Scholar] [CrossRef]
- Quilichini, T.D.; Grienenberger, E.; Douglas, C.J. The Biosynthesis, Composition and Assembly of the Outer Pollen Wall: A Tough Case to Crack. Phytochemistry 2015, 113, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Nasrallah, J.B. Stop and Go Signals at the Stigma–Pollen Interface of the Brassicaceae. Plant Physiol. 2023, 193, 927–948. [Google Scholar] [CrossRef]
- Nepi, M.; Franchi, G.G.; Padni, E. Pollen Hydration Status at Dispersal: Cytophysiological Features and Strategies. Protoplasma 2001, 216, 171–180. [Google Scholar] [CrossRef]
- McClure, B.A.; Franklin-Tong, V. Gametophytic Self-Incompatibility: Understanding the Cellular Mechanisms Involved in “Self” Pollen Tube Inhibition. Planta 2006, 224, 233–245. [Google Scholar] [CrossRef]
- Sarker, R.H.; Elleman, C.J.; Dickinson, H.G. Control of Pollen Hydration in Brassica Requires Continued Protein Synthesis, and Glycosylation Is Necessary for Intraspecific Incompatibility. Proc. Natl. Acad. Sci. USA 1988, 85, 4340–4344. [Google Scholar] [CrossRef]
- Ferrari, T.E.; Best, V.; More, T.A.; Comstock, P.; Muhammad, A.; Wallace, D.H. Intercellular Adhesions in the Pollen-Stigma System: Pollen Capture, Grain Binding, and Tube Attachments. Am. J. Bot. 1985, 72, 1466–1474. [Google Scholar] [CrossRef]
- Safavian, D.; Goring, D.R. Secretory Activity Is Rapidly Induced in Stigmatic Papillae by Compatible Pollen, but Inhibited for Self-Incompatible Pollen in the Brassicaceae. PLoS ONE 2013, 8, e84286. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Y.-Y.; Zhao, X.; Zhang, C.; Liu, D.-K.; Lan, S.; Yin, W.; Liu, Z.-J. Molecular Insights into Self-Incompatibility Systems: From Evolution to Breeding. Plant Commun. 2024, 5, 100719. [Google Scholar] [CrossRef] [PubMed]
- He, Y.J.; Xu, S.; Zhang, K.M.; Zhang, Y.; Liu, X.J.; Liu, C. Multiple gatekeeping steps in pollination lock species specificity. J. Exp. Bot. 2024, 76, 1510–1523. [Google Scholar] [CrossRef]
- Abhinandan, K.; Sankaranarayanan, S.; Macgregor, S.; Goring, D.R.; Samuel, M.A. Cell-Cell Signaling during the Brassicaceae Self-Incompatibility Response. Trends Plant Sci. 2022, 27, 472–487. [Google Scholar] [CrossRef]
- Goring, D.R. Exocyst, Exosomes, and Autophagy in the Regulation of Brassicaceae Pollen-Stigma Interactions. J. Exp. Bot. 2018, 69, 69–78. [Google Scholar] [CrossRef]
- Su, S.; Dai, H.; Wang, X.; Wang, C.; Zeng, W.; Huang, J.; Duan, Q. Ethylene Negatively Mediates Self-Incompatibility Response in Brassica Rapa. Biochem. Biophys. Res. Commun. 2020, 525, 600–606. [Google Scholar] [CrossRef]
- Huang, J.; Su, S.; Dai, H.; Liu, C.; Wei, X.; Zhao, Y.; Wang, Z.; Zhang, X.; Yuan, Y.; Yu, X.; et al. Programmed Cell Death in Stigmatic Papilla Cells Is Associated With Senescence-Induced Self-Incompatibility Breakdown in Chinese Cabbage and Radish. Front. Plant Sci. 2020, 11, 586901. [Google Scholar] [CrossRef]
- Jin, X.; Mizukami, A.G.; Okuda, S.; Higashiyama, T. Investigating Vesicle-Mediated Regulation of Pollen Tube Growth through BFA Inhibition and AS-ODN Targeting of TfRABA4D in Torenia fournieri. Hortic. Res. 2025, 12, uhaf018. [Google Scholar] [CrossRef]
- Parry, C.; Turnbull, C.; Gill, R.J. Tracking Pollen Tube and Ovule Development in Vivo Reveals Rapid Responses to Pollination in Brassica Napus. AoB PLANTS 2025, 17, plaf002. [Google Scholar] [CrossRef]
- Delaney, L.; Igic, B. The Phylogenetic Distribution and Frequency of Self-Incompatibility in Fabaceae. Int. J. Plant Sci. 2022, 183, 30–42. [Google Scholar] [CrossRef]
- Foubert-Mendes, S.; Silva, J.; Ferreira, M.J.; Pereira, L.G.; Coimbra, S. A Review on the Function of Arabinogalactan-Proteins during Pollen Grain Development. Plant Reprod. 2025, 38, 8. [Google Scholar] [CrossRef] [PubMed]
- Cai, G.; Del Duca, S. Pollen Tube and Plant Reproduction. Int. J. Mol. Sci. 2019, 20, 531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, C.; Xie, M.; Liu, J.; Kong, Z.; Su, H. Actin Bundles in The Pollen Tube. Int. J. Mol. Sci. 2018, 19, 3710. [Google Scholar] [CrossRef]
- Zheng, Y.-Y.; Lin, X.-J.; Liang, H.-M.; Wang, F.-F.; Chen, L.-Y. The Long Journey of Pollen Tube in the Pistil. Int. J. Mol. Sci. 2018, 19, 3529. [Google Scholar] [CrossRef]
- Herrera, S.; Rodrigo, J.; Hormaza, J.I.; Lora, J. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and S-RNase Sequencing in Apricot. Int. J. Mol. Sci. 2018, 19, 3612. [Google Scholar] [CrossRef]
- Bente, H.; Köhler, C. Molecular Basis and Evolutionary Drivers of Endosperm-Based Hybridization Barriers. Plant Physiol. 2024, 195, 155–169. [Google Scholar] [CrossRef]
- He, H.; Shiragaki, K.; Tezuka, T. Understanding and Overcoming Hybrid Lethality in Seed and Seedling Stages as Barriers to Hybridization and Gene Flow. Front. Plant Sci. 2023, 14, 1219417. [Google Scholar] [CrossRef]
- Cheung, A.Y. Pollen—Pistil Interactions during Pollen-Tube Growth. Trends Plant Sci. 1996, 1, 45–51. [Google Scholar] [CrossRef]
- Palanivelu, R.; Brass, L.; Edlund, A.F.; Preuss, D. Pollen Tube Growth and Guidance Is Regulated by POP2, an Arabidopsis Gene That Controls GABA Levels. Cell 2003, 114, 47–59. [Google Scholar] [CrossRef]
- Shimizu, K.K.; Okada, K. Attractive and Repulsive Interactions between Female and Male Gametophytes in Arabidopsis Pollen Tube Guidance. Development 2000, 127, 4511–4518. [Google Scholar] [CrossRef] [PubMed]
- Ren, C.; Kermode, A.R. An Increase in Pectin Methyl Esterase Activity Accompanies Dormancy Breakage and Germination of Yellow Cedar Seeds1. Plant Physiol. 2000, 124, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Fu, Y.; Dowd, P.; Li, S.; Vernoud, V.; Gilroy, S.; Yang, Z. A Rho Family GTPase Controls Actin Dynamics and Tip Growth via Two Counteracting Downstream Pathways in Pollen Tubes. J. Cell Biol. 2005, 169, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.-L.; Yang, Z. The Rop GTPase Switch Turns on Polar Growth in Pollen. Trends Plant Sci. 2000, 5, 298–303. [Google Scholar] [CrossRef]
- Krichevsky, A.; Kozlovsky, S.V.; Tian, G.-W.; Chen, M.-H.; Zaltsman, A.; Citovsky, V. How Pollen Tubes Grow. Dev. Biol. 2007, 303, 405–420. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, F.; Liu, Z.; Zhang, H.; Zhang, L.; Chen, D. The Role of Female and Male Genes in Regulating Pollen Tube Guidance in Flowering Plants. Genes 2024, 15, 1367. [Google Scholar] [CrossRef]
- Susaki, D.; Izumi, R.; Oi, T.; Takeuchi, H.; Shin, J.M.; Sugi, N.; Kinoshita, T.; Higashiyama, T.; Kawashima, T.; Maruyama, D. F-Actin Regulates the Polarized Secretion of Pollen Tube Attractants in Arabidopsis Synergid Cells. Plant Cell 2023, 35, 1222–1240. [Google Scholar] [CrossRef]
- Zhong, S.; Zhao, P.; Peng, X.; Li, H.-J.; Duan, Q.; Cheung, A.Y. From Gametes to Zygote: Mechanistic Advances and Emerging Possibilities in Plant Reproduction. Plant Physiol. 2024, 195, 4–35. [Google Scholar] [CrossRef]
- Baek, Y.S.; Covey, P.A.; Petersen, J.J.; Chetelat, R.T.; McClure, B.; Bedinger, P.A. Testing the SI × SC Rule: Pollen-Pistil Interactions in Interspecific Crosses between Members of the Tomato Clade (Solanum Section Lycopersicon, Solanaceae). Am. J. Bot. 2015, 102, 302–311. [Google Scholar] [CrossRef]
- Lafon-Placette, C.; Köhler, C. Endosperm-Based Postzygotic Hybridization Barriers: Developmental Mechanisms and Evolutionary Drivers. Mol. Ecol. 2016, 25, 2620–2629. [Google Scholar] [CrossRef]
- Ishikawa, R.; Ohnishi, T.; Kinoshita, Y.; Eiguchi, M.; Kurata, N.; Kinoshita, T. Rice Interspecies Hybrids Show Precocious or Delayed Developmental Transitions in the Endosperm without Change to the Rate of Syncytial Nuclear Division. Plant J. 2011, 65, 798–806. [Google Scholar] [CrossRef]
- Rebernig, C.A.; Lafon-Placette, C.; Hatorangan, M.R.; Slotte, T.; Köhler, C. Non-Reciprocal Interspecies Hybridization Barriers in the Capsella Genus Are Established in the Endosperm. PLoS Genet. 2015, 11, e1005295. [Google Scholar] [CrossRef]
- Flores-Vergara, M.A.; Oneal, E.; Costa, M.; Villarino, G.; Roberts, C.; De Luis Balaguer, M.A.; Coimbra, S.; Willis, J.; Franks, R.G. Developmental Analysis of Mimulus Seed Transcriptomes Reveals Functional Gene Expression Clusters and Four Imprinted, Endosperm-Expressed Genes. Front. Plant Sci. 2020, 11, 132. [Google Scholar] [CrossRef] [PubMed]
- Sears, E.R. Cytological Phenomena Connected with Self-Sterility in the Flowering Plants. Genetics 1937, 22, 130–181. [Google Scholar] [CrossRef] [PubMed]
- Baack, E.; Melo, M.C.; Rieseberg, L.H.; Ortiz-Barrientos, D. The Origins of Reproductive Isolation in Plants. New Phytol. 2015, 207, 968–984. [Google Scholar] [CrossRef] [PubMed]
- Russo, L.; Carneiro, L.T.; Williams, J.N.; Barker, D.A.; Murray, A.; Arceo-Gómez, G. Differential Effects of Pollen Nutritional Quality on Male and Female Reproductive Success within a Diverse Co-Flowering Community. Funct. Ecol. 2025, 39, 226–237. [Google Scholar] [CrossRef]
- Venail, J.; Dell’Olivo, A.; Kuhlemeier, C. Speciation Genes in the Genus Petunia. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 461–468. [Google Scholar] [CrossRef]
- Hoballah, M.E.; Gübitz, T.; Stuurman, J.; Broger, L.; Barone, M.; Mandel, T.; Dell’Olivo, A.; Arnold, M.; Kuhlemeier, C. Single Gene-Mediated Shift in Pollinator Attraction in Petunia. Plant Cell 2007, 19, 779–790. [Google Scholar] [CrossRef]
- Brosi, B.J. Pollinator Specialization: From the Individual to the Community. New Phytol. 2016, 210, 1190–1194. [Google Scholar] [CrossRef]
- Dell’Olivo, A.; Hoballah, M.E.; Gübitz, T.; Kuhlemeier, C. Isolation Barriers between Petunia axillaris and Petunia integrifolia (Solanaceae). Evolution 2011, 65, 1979–1991. [Google Scholar] [CrossRef]
- Batista, R.A.; Durand, E.; Mörchen, M.; Azevedo-Favory, J.; Simon, S.; Dubin, M.; Kumar, V.; Lacoste, E.; Cruaud, C.; Blassiau, C. Dominance Modifiers at the Arabidopsis Self-Incompatibility Locus Retain Proto-miRNA Features and Act through Non-Canonical Pathways. Nat. Commun. 2024, 15, 1234. [Google Scholar] [CrossRef]
- Coughlan, J.M.; Matute, D.R. The Importance of Intrinsic Postzygotic Barriers throughout the Speciation Process. Philos. Trans. R. Soc. B Biol. Sci. 2020, 375, 20190533. [Google Scholar] [CrossRef]
- Butel, N.; Köhler, C. Flowering Plant Reproduction. Curr. Biol. 2024, 34, R308–R312. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.B.; Page, L.E.; McClure, B.A.; Holtsford, T.P. Post-Pollination Hybridization Barriers in Nicotiana Section Alatae. Sex. Plant Reprod. 2008, 21, 183–195. [Google Scholar] [CrossRef]
- Fujii, S.; Kubo, K.; Takayama, S. Non-Self- and Self-Recognition Models in Plant Self-Incompatibility. Nat. Plants 2016, 2, 16130. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.H.; Rao, M.J.; Hu, J.; Xu, Q.; Liu, C.; Cao, Z.; Larkin, R.M.; Deng, X.; Bosch, M.; Chai, L. Systems and Breakdown of Self-Incompatibility. Crit. Rev. Plant Sci. 2022, 41, 209–239. [Google Scholar] [CrossRef]
- Igic, B.; Kohn, J.R. The Distribution of Plant Mating Systems: Study Bias against Obligately Outcrossing Species. Evolution 2006, 60, 1098–1103. [Google Scholar] [CrossRef]
- Goring, D.; Cruz-Garcia, F.; Franklin-Tong, V. Self-Incompatibility. Els 2022, 3, 1–12. [Google Scholar] [CrossRef]
- de Nettancourt, D. The Genetics of Self-Incompatibility. In Incompatibility and Incongruity in Wild and Cultivated Plants; de Nettancourt, D., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 25–72. [Google Scholar] [CrossRef]
- Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom; D. Appleton: New York, NY, USA, 1877; ISBN 0404084133/9780404084134. [Google Scholar]
- Suvarna, R.Y.; Kuchanur, P.H.; Raghavendra, V.C. Molecular Basis of Self-Incompatibility in Plants: Unraveling Nature’s Genetic Check Against Self-Fertilization. Int. J. Environ. Clim. Change 2024, 14, 330–340. [Google Scholar] [CrossRef]
- Tovar-Méndez, A.; Lu, L.; McClure, B. HT Proteins Contribute to S-RNase-independent Pollen Rejection in Solanum. Plant J. 2017, 89, 718–729. [Google Scholar] [CrossRef]
- Baek, Y.S.; Royer, S.M.; Broz, A.K.; Covey, P.A.; López-Casado, G.; Nuñez, R.; Kear, P.J.; Bonierbale, M.; Orillo, M.; Van Der Knaap, E.; et al. Interspecific Reproductive Barriers between Sympatric Populations of Wild Tomato Species (Solanum Section Lycopersicon). Am. J. Bot. 2016, 103, 1964–1978. [Google Scholar] [CrossRef]
- Roda, F.; Hopkins, R. Correlated Evolution of Self and Interspecific Incompatibility across the Range of a Texas Wildflower. New Phytol. 2019, 221, 553–564. [Google Scholar] [CrossRef]
- de Nettancourt, D. Incompatibility. In Cellular Interactions; Linskens, H.F., Heslop-Harrison, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 624–639. ISBN 978-3-642-69299-4. [Google Scholar]
- Liu, B.; Li, M.; Qiu, J.; Xue, J.; Liu, W.; Cheng, Q.; Zhao, H.; Xue, Y.; Nasrallah, M.E.; Nasrallah, J.B. A Pollen Selection System Links Self and Interspecific Incompatibility in the Brassicaceae. Nat. Ecol. Evol. 2024, 8, 1129–1139. [Google Scholar] [CrossRef]
- Takada, Y.; Mihara, A.; He, Y.; Xie, H.; Ozaki, Y.; Nishida, H.; Hong, S.; Lim, Y.-P.; Takayama, S.; Suzuki, G. Genetic Diversity of Genes Controlling Unilateral Incompatibility in Japanese Cultivars of Chinese Cabbage. Plants 2021, 10, 2467. [Google Scholar] [CrossRef] [PubMed]
- Takada, Y.; Murase, K.; Shimosato-Asano, H.; Sato, T.; Nakanishi, H.; Suwabe, K.; Shimizu, K.K.; Lim, Y.P.; Takayama, S.; Suzuki, G. Duplicated Pollen-Pistil Recognition Loci Control Intraspecific Unilateral Incompatibility in Brassica rapa. Nat. Plants 2017, 3, 17096. [Google Scholar] [CrossRef] [PubMed]
- Murfett, J.; Strabala, T.J.; Zurek, D.M.; Mou, B.; Beecher, B.; McClure, B.A. S RNase and Interspecific Pollen Rejection in the Genus Nicotiana: Multiple Pollen-Rejection Pathways Contribute to Unilateral Incompatibility between Self-Incompatible and Self-Compatible Species. Plant Cell 1996, 8, 943–958. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.F. Contributions of Domesticated Plant Studies to Our Understanding of Plant Evolution. Ann. Bot. 2005, 96, 953–963. [Google Scholar] [CrossRef]
- Tovar-Méndez, A.; Kumar, A.; Kondo, K.; Ashford, A.; Baek, Y.S.; Welch, L.; Bedinger, P.A.; McClure, B.A. Restoring Pistil-side Self-incompatibility Factors Recapitulates an Interspecific Reproductive Barrier between Tomato Species. Plant J. 2014, 77, 727–736. [Google Scholar] [CrossRef]
- Lewis, D.; Crowe, K. Unilateral Interspecific Incompatibility in Flowering Plants. Heredity 1958, 12, 233–256. [Google Scholar] [CrossRef]
- Eberle, C.A. Interspecific Prezygotic Reproductive Barriers in Nicotiana. Doctoral Dissertation, University of Minnesota, Miniapolis, MN, USA, 2012. [Google Scholar]
- Eberle, C.A.; Anderson, N.O.; Clasen, B.M.; Hegeman, A.D.; Smith, A.G. PELPIII: The Class III Pistil-specific Extensin-like Nicotiana Tabacum Proteins Are Essential for Interspecific Incompatibility. Plant J. 2013, 74, 805–814. [Google Scholar] [CrossRef]
- Martin, F.W. The Inheritance of Self-Incompatibility in Hybrids of Lycopersicon Esculentum Mill. × L. Chilense Dun. Genetics 1961, 46, 1443–1454. [Google Scholar] [CrossRef]
- Covey, P.A.; Kondo, K.; Welch, L.; Frank, E.; Sianta, S.; Kumar, A.; Nuñez, R.; Lopez-Casado, G.; Van Der Knaap, E.; Rose, J.K.C.; et al. Multiple Features That Distinguish Unilateral Incongruity and Self-Incompatibility in the Tomato Clade. Plant J. 2010, 64, 367–378. [Google Scholar] [CrossRef]
- Chalivendra, S.C.; Lopez-Casado, G.; Kumar, A.; Kassenbrock, A.R.; Royer, S.; Tovar-Mèndez, A.; Covey, P.A.; Dempsey, L.A.; Randle, A.M.; Stack, S.M.; et al. Developmental Onset of Reproductive Barriers and Associated Proteome Changes in Stigma/Styles of Solanum Pennellii. J. Exp. Bot. 2013, 64, 265–279. [Google Scholar] [CrossRef]
- Muñoz-Sanz, J.V.; Tovar-Méndez, A.; Lu, L.; Dai, R.; McClure, B. A Cysteine-Rich Protein, SpDIR1L, Implicated in S-RNase-Independent Pollen Rejection in the Tomato (Solanum Section Lycopersicon) Clade. Int. J. Mol. Sci. 2021, 22, 13067. [Google Scholar] [CrossRef]
- Noyszewski, A.K.; Liu, Y.-C.; Tamura, K.; Smith, A.G. Polymorphism and Structure of Style-Specific Arabinogalactan Proteins as Determinants of Pollen Tube Growth in Nicotiana. BMC Evol. Biol. 2017, 17, 186. [Google Scholar] [CrossRef] [PubMed]
- Twomey, M.C. Characterization of PhPRP1, an Extracellular Arabinogalactan Protein from Petunia hybrida Pistils; Western Washington University: Bellingham, WA, USA, 2012. [Google Scholar] [CrossRef]
- Aguiar, B.; Vieira, J.; Cunha, A.E.; Vieira, C.P. No Evidence for Fabaceae Gametophytic Self-Incompatibility Being Determined by Rosaceae, Solanaceae, and Plantaginaceae S-RNase Lineage Genes. BMC Plant Biol. 2015, 15, 129. [Google Scholar] [CrossRef] [PubMed]
- Ono, K.; Masui, K.; Tao, R. Artificial Control of the Prunus Self-Incompatibility System Using Antisense Oligonucleotides Against Pollen Genes. Hortic. J. 2022, 91, 437–447. [Google Scholar] [CrossRef]
- Hua, Z.; Kao, T. Identification and Characterization of Components of a Putative Petunia S-Locus F-Box-Containing E3 Ligase Complex Involved in S-RNase-Based Self-Incompatibility. Plant Cell 2006, 18, 2531–2553. [Google Scholar] [CrossRef]
- Zhang, Z.; Lin, X.; Yue, J.; Xu, Y.; Miao, L.; Tang, W.; Guo, W.; Xiao, J. Reshaping Epigenomic Landscapes in Facilitating the Speciation of Bread Wheat. Biorxiv 2024. [Google Scholar] [CrossRef]
- Zhang, L.-Q.; Liu, D.-C.; Zheng, Y.-L.; Yan, Z.-H.; Dai, S.-F.; Li, Y.-F.; Jiang, Q.; Ye, Y.-Q.; Yen, Y. Frequent Occurrence of Unreduced Gametes in Triticum turgidum-Aegilops tauschii Hybrids. Euphytica 2010, 172, 285–294. [Google Scholar] [CrossRef]
- Patel, B.M.; Vachhani, J.H.; Godhani, P.P.; Sapovadiya, M.H. Combining Ability for Fruit Yield and Its Components in Okra [Abelmoschus esculentus (L.) Moench]. J. Pharmacogn. Phytochem. 2021, 10, 247–251. [Google Scholar]
- Kovaleva, L.V.; Zakharova, E.V. Hormonal Status of the Pollen-Pistil System at the Progamic Phase of Fertilization after Compatible and Incompatible Pollination in Petunia hybrida L. Sex. Plant Reprod. 2003, 16, 191–196. [Google Scholar] [CrossRef]
- Kovaleva, L.V.; Voronkov, A.S.; Zakharova, E.V.; Minkina, Y.u.V.; Timofeeva, G.V.; Andreev, I.M. Exogenous IAA and ABA Stimulate Germination of Petunia Male Gametophyte by Activating Ca2+-Dependent K+-Channels and by Modulating the Activity of Plasmalemma H+-ATPase and Actin Cytoskeleton. Russ. J. Dev. Biol. 2016, 47, 109–121. [Google Scholar] [CrossRef]
- Kovaleva, L.V.; Zakharova, E.V.; Voronkov, A.S.; Timofeeva, G.V.; Andreev, I.M. Role of Abscisic Acid and Ethylene in the Control of Water Transport-Driving Forces in Germinating Petunia Male Gametophyte. Russ. J. Plant Physiol. 2017, 64, 782–793. [Google Scholar] [CrossRef]
- Zakharova, E.V.; Khanina, T.; Knyazev, A.; Milyukova, N.; Kovaleva, L.V. Hormonal Signaling during dPCD: Cytokinin as the Determinant of RNase-Based Self-Incompatibility in Solanaceae. Biomolecules 2023, 13, 1033. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, E.V.; Demyanchuk, I.S.; Sobolev, D.S.; Golivanov, Y.Y.; Baranova, E.N.; Khaliluev, M.R. Ac-DEVD-CHO (Caspase-3/DEVDase Inhibitor) Suppresses Self-Incompatibility-Induced Programmed Cell Death in the Pollen Tubes of Petunia (Petunia hybrida E. Vilm.). Cell Death Discov. 2024, 10, 59. [Google Scholar] [CrossRef] [PubMed]
- Zakharova, E.V.; Khaliluev, M.R.; Kovaleva, L.V. Hormonal Signaling in the Progamic Phase of Fertilization in Plants. Horticulturae 2022, 8, 365. [Google Scholar] [CrossRef]
- Zakharova, E.V.; Golivanov, Y.Y.; Molchanova, T.P.; Ulianov, A.I.; Gazieva, I.I.; Muratova, O.A. The Role of Reactive Oxygen Species in the In Vivo Germination and Growth of Petunia (Petunia hybrida E. Vilm.) Male Gametophyte in the Progamic Phase of Fertilization. Horticulturae 2024, 10, 1234. [Google Scholar] [CrossRef]
- Hogenboom, N.G. Incongruity: Non-Functioning of Intercellular and Intracellular Partner Relationships Through Non-Matching Information. In Cellular Interactions; Linskens, H.F., Heslop-Harrison, J., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; pp. 640–654. ISBN 978-3-642-69301-4. [Google Scholar]
- Feller, A.F.; Burgin, G.; Lewis, N.F.; Prabhu, R.; Hopkins, R. Mismatch between Pollen and Pistil Size Causes Asymmetric Mechanical Reproductive Isolation across Phlox Species. Evolution 2024, 78, 1936–1948. [Google Scholar] [CrossRef]
- Boavida, L.C.; Silva, J.P.; Feijó, J.A. Sexual Reproduction in the Cork Oak (Quercus suber L). II. Crossing Intra- and Interspecific Barriers. Sex. Plant Reprod. 2001, 14, 143–152. [Google Scholar] [CrossRef]
- Broz, A.K.; Bedinger, P.A. Pollen-Pistil Interactions as Reproductive Barriers. Annu. Rev. Plant Biol. 2021, 72, 615–639. [Google Scholar] [CrossRef]
- Bhalla, H.; Sudarsanam, K.; Srivastava, A.; Sankaranarayanan, S. Structural Insights into the Recognition of RALF Peptides by FERONIA Receptor Kinase during Brassicaceae Pollination. Plant Mol. Biol. 2025, 115, 17. [Google Scholar] [CrossRef]
- Lan, Z.; Song, Z.; Wang, Z.; Li, L.; Liu, Y.; Zhi, S.; Wang, R.; Wang, J.; Li, Q.; Bleckmann, A. Antagonistic RALF Peptides Control an Intergeneric Hybridization Barrier on Brassicaceae Stigmas. Cell 2023, 186, 4773–4787. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Jin, K.; Franklin-Tong, N. Peptides: Opening the Door. Mol. Plant 2024, 17, 8–10. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Shen, L.; Xiao, Y.; Vyshedsky, D.; Peng, C.; Sun, X.; Liu, Z.; Cheng, L.; Zhang, H.; Han, Z.; et al. Pollen PCP-B Peptides Unlock a Stigma Peptide–Receptor Kinase Gating Mechanism for Pollination. Science 2021, 372, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Tovar, J.R.; Vázquez-Santana, S.; Valverde, P.L.; Mandujano, M. Do Pollen Donors Limit the Reproductive Success of a Self-Incompatible Cactus? Authorea 2025, preprint. [Google Scholar] [CrossRef]
- Somoza, S.C.; Boccardo, N.A.; Santin, F.; Sede, A.R.; Wengier, D.L.; Boisson-Dernier, A.; Muschietti, J.P. Arabidopsis RALF4 Rapidly Halts Pollen Tube Growth by Increasing ROS and Decreasing Calcium Cytoplasmic Tip Levels. Biomolecules 2024, 14, 1375. [Google Scholar] [CrossRef]
- Kim, E.; Kim, J.; Hong, W.; Kim, E.Y.; Kim, M.; Lee, S.K.; Min, C.W.; Kim, S.T.; Park, S.K.; Jung, K.; et al. Rice Pollen-specific OsRALF17 and OsRALF19 Are Essential for Pollen Tube Growth. J. Integr. Plant Biol. 2023, 65, 2218–2236. [Google Scholar] [CrossRef]
- Márton, M.L.; Fastner, A.; Uebler, S.; Dresselhaus, T. Overcoming Hybridization Barriers by the Secretion of the Maize Pollen Tube Attractant ZmEA1 from Arabidopsis Ovules. Curr. Biol. 2012, 22, 1194–1198. [Google Scholar] [CrossRef]
- Takeuchi, H.; Higashiyama, T. Tip-Localized Receptors Control Pollen Tube Growth and LURE Sensing in Arabidopsis. Nature 2016, 531, 245–248. [Google Scholar] [CrossRef]
- Haghighatnia, M.; Machac, A.; Schmickl, R.; Lafon Placette, C. Darwin’s ‘Mystery of Mysteries’: The Role of Sexual Selection in Plant Speciation. Biol. Rev. 2023, 98, 1928–1944. [Google Scholar] [CrossRef] [PubMed]
- Sogo, A.; Tobe, H. Mode of Pollen Tube Growth in Pistils of Ticodendron incognitum (Ticodendraceae, Fagales) and the Evolution of Chalazogamy. Bot. J. Linn. Soc. 2008, 157, 621–631. [Google Scholar] [CrossRef]
- Boavida, L.C.; Varela, M.C.; Feijó, J.A. Sexual Reproduction in the Cork Oak (Quercus suber L.). I. The Progamic Phase. Sex. Plant Reprod. 1999, 11, 347–353. [Google Scholar] [CrossRef]
- Burgarella, C.; Lorenzo, Z.; Jabbour-Zahab, R.; Lumaret, R.; Guichoux, E.; Petit, R.J.; Soto, Á.; Gil, L. Detection of Hybrids in Nature: Application to Oaks (Quercus suber and Q. ilex). Heredity 2009, 102, 442–452. [Google Scholar] [CrossRef]
- Sogo, A.; Tobe, H. Mode of Pollen-Tube Growth in Pistils of Myrica rubra (Myricaceae): A Comparison with Related Families. Ann. Bot. 2006, 97, 71–77. [Google Scholar] [CrossRef]
- Deng, M.; Yao, K.; Shi, C.; Shao, W.; Li, Q. Development of Quercus acutissima (Fagaceae) Pollen Tubes inside Pistils during the Sexual Reproduction Process. Planta 2022, 256, 16. [Google Scholar] [CrossRef]
- Cao, Z.; Guo, Y.; Yang, Q.; He, Y.; Fetouh, M.I.; Warner, R.M.; Deng, Z. Genome-Wide Identification of Quantitative Trait Loci for Important Plant and Flower Traits in Petunia Using a High-Density Linkage Map and an Interspecific Recombinant Inbred Population Derived from Petunia integrifolia and P. Axillaris. Hortic. Res. 2019, 6, 27. [Google Scholar] [CrossRef]
- Cheung, A.Y.; Duan, Q.; Li, C.; James Liu, M.-C.; Wu, H.-M. Pollen-Pistil Interactions: It Takes Two to Tangle but a Molecular Cast of Many to Deliver. Curr. Opin. Plant Biol. 2022, 69, 102279. [Google Scholar] [CrossRef]
- Okuda, S.; Suzuki, T.; Kanaoka, M.M.; Mori, H.; Sasaki, N.; Higashiyama, T. Acquisition of LURE-Binding Activity at the Pollen Tube Tip of Torenia fournieri. Mol. Plant 2013, 6, 1074–1090. [Google Scholar] [CrossRef]
- Sui, W.; Ding, X.D.; Huo, J.W.; Chi, H.M. Preliminary Studies on Distant Cross-Incompatibility between Cerasus fruticosa Pall. and C. avium. J. North. Agr. Univ. 1999, 30, 148–153. [Google Scholar]
- Rieseberg, L.H. Hybrid Origins of Plant Species. Annu. Rev. Ecol. Evol. Syst. 1997, 28, 359–389. [Google Scholar] [CrossRef]
- Dutta, M. Distant Hybridization in Tree Improvement. Adv. For. Res. India 2009, 30, 95–105. [Google Scholar]
- Wu, J.-Y.; Zhang, S.-L.; Jiang, D.-H.; Wu, J.; Liu, L.-M. In Situ Germination and Pollen Tube Growth of Distant Pollens in Pear. Acta Bot. Boreali-Occident. Sin. 2006, 26, 2197–2220. [Google Scholar]
- Yang, Q.; Fu, Y. Cut-Style Pollination Can Effectively Overcome Prefertilization Barriers of Distant Hybridization in Loquat. HortScience 2020, 55, 287–293. [Google Scholar] [CrossRef]
- Kovaleva, L.V.; Zakharova, E.V.; Timofeeva, G.V.; Andreev, I.M.; Golivanov, Y.a.Y.u.; Bogoutdinova, L.R.; Baranova, E.N.; Khaliluev, M.R. Aminooxyacetic Acid (AOA), Inhibitor of 1-Aminocyclopropane-1-Carboxilic Acid (ACC) Synthesis, Suppresses Self-Incompatibility-Induced Programmed Cell Death in Self-Incompatible Petunia hybrida L. Pollen Tubes. Protoplasma 2020, 257, 213–227. [Google Scholar] [CrossRef]
- Wȩdzony, M.; Marcińska, I.; Ponitka, A.; ŚLusarkiewicz-Jarzina, A.; Woźna, J. Production of Doubled Haploids in Triticale (× Triticosecale Wittm.) by Means of Crosses with Maize (Zea mays L.) Using Picloram and Dicamba. Plant Breed. 1998, 117, 211–215. [Google Scholar] [CrossRef]
- Bosch, M.; Franklin-Tong, V.E. Self-Incompatibility in Papaver: Signalling to Trigger PCD in Incompatible Pollen. J. Exp. Bot. 2008, 59, 481–490. [Google Scholar] [CrossRef]
- Pease, J.B.; Guerrero, R.F.; Sherman, N.A.; Hahn, M.W.; Moyle, L.C. Molecular Mechanisms of Postmating Prezygotic Reproductive Isolation Uncovered by Transcriptome Analysis. Mol. Ecol. 2016, 25, 2592–2608. [Google Scholar] [CrossRef]
- Hepler, P.K.; Rounds, C.M.; Winship, L.J. Control of Cell Wall Extensibility during Pollen Tube Growth. Mol. Plant 2013, 6, 998–1017. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, S.-L.; Xie, L.-F.; Puah, C.S.; Zhang, X.-Q.; Yang, W.-C.; Sundaresan, V.; Ye, D. VANGUARD1 Encodes a Pectin Methylesterase That Enhances Pollen Tube Growth in the Arabidopsis Style and Transmitting Tract. Plant Cell 2005, 17, 584–596. [Google Scholar] [CrossRef]
- Zhou, X.; Lu, J.; Zhang, Y.; Guo, J.; Lin, W.; Norman, J.M.V.; Qin, Y.; Zhu, X.; Yang, Z. Membrane Receptor-Mediated Mechano-Transduction Maintains Cell Integrity during Pollen Tube Growth within the Pistil. Dev. Cell 2021, 56, 1030–1042.e6. [Google Scholar] [CrossRef]
- Rotman, N.; Gourgues, M.; Guitton, A.-E.; Faure, J.-E.; Berger, F. A Dialogue between the Sirène Pathway in Synergids and the Fertilization Independent Seed Pathway in the Central Cell Controls Male Gamete Release during Double Fertilization in Arabidopsis. Mol. Plant 2008, 1, 659–666. [Google Scholar] [CrossRef]
- Escobar Restrepo, J.M. Molecular Control of Pollen Tube Reception by the Feronia Receptor-Like Kinase in Arabidopsis thaliana. Doctoral Dissertation, University of Zurich, Zurich, Switzerland, 2007. [Google Scholar]
- Kessler, S.A.; Shimosato-Asano, H.; Keinath, N.F.; Wuest, S.E.; Ingram, G.; Panstruga, R.; Grossniklaus, U. Conserved Molecular Components for Pollen Tube Reception and Fungal Invasion. Science 2010, 330, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Capron, A.; Gourgues, M.; Neiva, L.S.; Faure, J.-E.; Berger, F.; Pagnussat, G.; Krishnan, A.; Alvarez-Mejia, C.; Vielle-Calzada, J.-P.; Lee, Y.-R.; et al. Maternal Control of Male-Gamete Delivery in Arabidopsis Involves a Putative GPI-Anchored Protein Encoded by the LORELEI Gene. Plant Cell 2008, 20, 3038–3049. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wang, C.; Xi, Y.; Shao, Q.; Li, L.; Luan, S. A Receptor-Channel Trio Conducts Ca2+ Signalling for Pollen Tube Reception. Nature 2022, 607, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Galindo-Trigo, S.; Blanco-Touriñán, N.; DeFalco, T.A.; Wells, E.S.; Gray, J.E.; Zipfel, C.; Smith, L.M. CrRLK1L Receptor-like Kinases HERK1 and ANJEA Are Female Determinants of Pollen Tube Reception. EMBO Rep. 2020, 21, e48466. [Google Scholar] [CrossRef]
- Leydon, A.R.; Weinreb, C.; Venable, E.; Reinders, A.; Ward, J.M.; Johnson, M.A. The Molecular Dialog between Flowering Plant Reproductive Partners Defined by SNP-Informed RNA-Sequencing. Plant Cell 2017, 29, 984–1006. [Google Scholar] [CrossRef]
- Patil, P.; Malik, S.K.; Negi, K.S.; John, J.; Yadav, S.; Chaudhari, G.; Bhat, K.V. Pollen Germination Characteristics, Pollen-Pistil Interaction and Reproductive Behaviour in Interspecific Crosses among Abelmoschus esculentus Moench and Its Wild Relatives. Grana 2013, 52, 1–14. [Google Scholar] [CrossRef]
- Ram, S.G.; Thiruvengadam, V.; Ramakrishnan, S.H.; Kannan Bapu, J.R. Investigation on Pre-Zygotic Barriers in the Interspecific Crosses Involving Gossypium Barbadense and Four Diploid Wild Species. Euphytica 2008, 159, 241–248. [Google Scholar] [CrossRef]
- Badiger, M.; Yadav, R.K.; Sharma, B.B.; Bhat, K.V.; Tomar, B.S.; Lata, S.; Vinay, N.D.; Das, A. Pollen Germination, Pollen–Pistil Interaction and Crossability Studies in Interspecific and Induced Colchiploid Population of Abelmoschus Species. Genet. Resour. Crop. Evol. 2024, 71, 107–127. [Google Scholar] [CrossRef]
- Zenkteler, M.; Relska-Roszak, D. Bidirectional pollination of angiosperm and gymnosperm ovules. Acta Biol. Crac. Ser. Bot. 2003, 45, 77–81. [Google Scholar]
- Owens, J.N.; Takaso, T.; Runions, C.J. Pollination in conifers. Trends Plant Sci. 1998, 3, 479–485. [Google Scholar] [CrossRef]
- Yang, J.; Yu, X.Y. Adhesion and directional growth of pollen tubes in the compatible pollination of plant. Plant Physiol. Commun. 2004, 6, 659–665. [Google Scholar]
- Chen, X.S.; Yang, H.H.; Liu, H.F. Employing Distant Hybridization to Create New Germplasm of Stone Fruit Trees. Deciduous Fruit 2004, 36, 4–7. [Google Scholar]
- Zhao, Y.H.; Hu, Y.L.; Guo, Y.S.; Zhou, J.; Fu, J.X.; Liu, C.M.; Zhu, J.; Zhang, M.J. Intergeneric Hybrids Obtained from Cross between Litchi and Longan Cultivars and Their Molecular Identification. J. Fruit Sci. 2008, 25, 950–952. [Google Scholar]
- Xie, X.B.; Qiu, Y.; Zheng, X.L.; Qi, X.J.; Qiu, L.J.; Huang, Z.P.; Wang, T.; Liang, S.M. Studies on the Crossing between Myrica rubra and M. nana and Embryo Culture in Vitro of Its Hybrid F1. J. Fruit Sci. 2009, 26, 507–510. [Google Scholar]
- Yang, H.H.; Chen, X.S.; Feng, B.C.; Liu, H.F. Creating New Germplasm by Distant Hybridization in Stone Fruits: II-Embryo Rescue and Hybrid Identification between Plum and Apricot. Agr. Sci. China 2004, 3, 656–662. [Google Scholar]
- Chimoyo, H.M. The Effect of Ultraviolet Irradiation, Toluidine Blue, and Environment on Maternal Haploid Frequencies from the Cross between Nicotiana tabacum and N. africana. Doctoral Dissertation, Clemson University, Clemson, SC, USA, 1988. [Google Scholar]
- van de Wiel, C.; Schaart, J.; Niks, R.; Visser, R. Traditional Plant Breeding Methods. Wagening. UR 2010, 40, 19. [Google Scholar]
- Zhou, P.; Li, J.; Jiang, H.; Yang, Z.; Sun, C.; Wang, H.; Su, Q.; Jin, Q.; Wang, Y.; Xu, Y. Hormone and Transcriptomic Analysis Revealed That ABA and BR Are Key Factors in the Formation of Inter-subgeneric Hybridization Barrier in Water Lily. Physiol. Plant. 2024, 176, e14177. [Google Scholar] [CrossRef]
- Rogo, U.; Fambrini, M.; Pugliesi, C. Embryo Rescue in Plant Breeding. Plants 2023, 12, 3106. [Google Scholar] [CrossRef]
- Van Tuyl, J.M.; Van Diën, M.P.; Van Creij, M.G.M.; Van Kleinwee, T.C.M.; Franken, J.; Bino, R.J. Application of in Vitro Pollination, Ovary Culture, Ovule Culture and Embryo Rescue for Overcoming Incongruity Barriers in Interspecific Lilium Crosses. Plant Sci. 1991, 74, 115–126. [Google Scholar] [CrossRef]
- Koutecký, P.; Badurová, T.; Štech, M.; Košnar, J.; Karásek, J. Hybridization between Diploid Centaurea pseudophrygia and Tetraploid C. Jacea (Asteraceae): The Role of Mixed Pollination, Unreduced Gametes, and Mentor Effects. Biol. J. Linn. Soc. 2011, 104, 93–106. [Google Scholar] [CrossRef]
- Ranaware, A.S.; Kunchge, N.S.; Lele, S.S.; Ochatt, S.J. Protoplast Technology and Somatic Hybridisation in the Family Apiaceae. Plants 2023, 12, 1060. [Google Scholar] [CrossRef]
- Koide, Y.; Matsubara, K.; Tao, D.; McNally, K.L. Editorial: Reproductive Barriers and Gene Introgression in Rice Species, Volume II. Front. Plant Sci. 2022, 13, 974613. [Google Scholar] [CrossRef]
- Raut, V.K.; Yadav, A.; Kaur, V.; Rao, M.; Pathania, P.; Wankhede, D.; Singh, M.; Singh, G.P. Pollen-Pistil Interactions in Divergent Wide Crosses Lead to Spatial and Temporal Pre-Fertilization Reproductive Barrier in Flax (Linum usitatissimum L.). Sci. Rep. 2025, 15, 6806. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zakharova, E.V.; Ulianov, A.I.; Golivanov, Y.Y.; Molchanova, T.P.; Orlova, Y.V.; Muratova, O.A. Pollen–Pistil Interaction During Distant Hybridization in Plants. Agronomy 2025, 15, 1732. https://doi.org/10.3390/agronomy15071732
Zakharova EV, Ulianov AI, Golivanov YY, Molchanova TP, Orlova YV, Muratova OA. Pollen–Pistil Interaction During Distant Hybridization in Plants. Agronomy. 2025; 15(7):1732. https://doi.org/10.3390/agronomy15071732
Chicago/Turabian StyleZakharova, Ekaterina V., Alexej I. Ulianov, Yaroslav Yu. Golivanov, Tatiana P. Molchanova, Yuliya V. Orlova, and Oksana A. Muratova. 2025. "Pollen–Pistil Interaction During Distant Hybridization in Plants" Agronomy 15, no. 7: 1732. https://doi.org/10.3390/agronomy15071732
APA StyleZakharova, E. V., Ulianov, A. I., Golivanov, Y. Y., Molchanova, T. P., Orlova, Y. V., & Muratova, O. A. (2025). Pollen–Pistil Interaction During Distant Hybridization in Plants. Agronomy, 15(7), 1732. https://doi.org/10.3390/agronomy15071732