Fungi in Horticultural Crops: Promotion, Pathogenicity and Monitoring
Abstract
1. Introduction
2. Benefits of Fungi on Horticultural Crops
2.1. On Nutrient Organs
2.2. On Reproductive Organs
3. Hazardous Fungi on Horticultural Crops
3.1. On Nutrient Organs
3.2. On Reproductive Organs
4. Techniques and Applications of Spectral Analysis for Detecting Fungi in Horticultural Crops
4.1. Techniques of Spectral Analysis for Detecting Fungi in Horticultural Crops
4.2. Application of Fungi in Horticultural Crops
5. Perspectives for Future Research and Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Li, X.; Kou, Y. Ectomycorrhizal Fungi: Participation in Nutrient Turnover and Community Assembly Pattern in Forest Ecosystems. Forests 2020, 11, 453. [Google Scholar] [CrossRef]
- Hyde, K.D.; Xu, J.; Rapior, S.; Jeewon, R.; Lumyong, S.; Niego, A.G.T.; Abeywickrama, P.D.; Aluthmuhandiram, J.V.S.; Brahamanage, R.S.; Brooks, S.; et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 2019, 97, 1–136. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Petropoulos, S.A.; Sun, W. Survey of the Influences of Microbial Biostimulants on Horticultural Crops: Case Studies and Successful Paradigms. Horticulturae 2023, 9, 193. [Google Scholar] [CrossRef]
- Jain, A.; Sarsaiya, S.; Wu, Q.; Lu, Y.; Shi, J. A review of plant leaf fungal diseases and its environment speciation. Bioengineered 2019, 10, 409–424. [Google Scholar] [CrossRef]
- Carris, L.M.; Little, C.R.; Stiles, C.M. Introduction to fungi. Plant Health Instr. 2012, 48. [Google Scholar] [CrossRef]
- Johnston-Monje, D.M.; Lazarovits, G.; Turnbull, A. Plant Health Management: Biological Control of Plant Pathogens. In Encyclopedia of Agriculture and Food Systems; Academic Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Kanto, T.; Maekawa, K.; Aino, M. Suppression of conidial germination and appressorial formation by silicate treatment in powdery mildew of strawberry. J. Gen. Plant Pathol. 2007, 73, 1–7. [Google Scholar] [CrossRef]
- Bu, S.W.; Munir, S.; He, P.F.; Li, Y.M.; Wu, Y.X.; Li, X.Y.; Kong, B.H.; He, P.B.; He, Y.Q. Bacillus subtilis L1-21 as a biocontrol agent for postharvest gray mold of tomato caused by Botrytis cinerea. Biol. Control 2021, 157, 104568. [Google Scholar] [CrossRef]
- Mahlein, A.K.; Kuska, M.T.; Behmann, J.; Polder, G.; Walter, A. Hyperspectral Sensors and Imaging Technologies in Phytopathology: State of the Art. Annu. Rev. Phytopathol. 2018, 56, 535–558. [Google Scholar] [CrossRef]
- Mahlein, A.-K.; Steiner, U.; Hillnhuetter, C.; Dehne, H.-W.; Oerke, E.-C. Hyperspectral imaging for small-scale analysis of symptoms caused by different sugar beet diseases. Plant Methods 2012, 8, 3. [Google Scholar] [CrossRef]
- Rogalski, A.; Chrzanowski, K. Infrared devices and techniques. In Handbook of Optoelectronics; CRC Press: Boca Raton, FL, USA, 2017; pp. 633–686. [Google Scholar]
- Garriga, M.; Retamales, J.B.; Romero-Bravo, S.; Caligari, P.D.S.; Lobos, G.A. Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress. J. Integr. Plant Biol. 2014, 56, 505–515. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 2007, 43, 13–25. [Google Scholar] [CrossRef]
- Jiang, Q.Y.; Wu, G.S.; Tian, C.F.; Li, N.; Yang, H.; Bai, Y.H.; Zhang, B.H. Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features. Infrared Phys. Technol. 2021, 118, 103898. [Google Scholar] [CrossRef]
- Latchoumane, L.; Ecarnot, M.; Bendoula, R.; Roger, J.-M.; Mas-Garcia, S.; Tavernier, F.; Ryckewaert, M.; Gorretta, N.; Roumet, P.; Ballini, E.; et al. Early detection of Zymoseptoria tritici infection on wheat leaves using hyperspectral imaging data. Data Brief 2025, 59, 111404. [Google Scholar] [CrossRef]
- Khaled, A.Y.; Abd Aziz, S.; Bejo, S.K.; Nawi, N.M.; Abu Seman, I. Artificial intelligence for spectral classification to identify the basal stem rot disease in oil palm using dielectric spectroscopy measurements. Trop. Plant Pathol. 2022, 47, 140–151. [Google Scholar] [CrossRef]
- Zhou, L.S.; Tang, K.; Guo, S.X. The Plant Growth-Promoting Fungus (PGPF) Alternaria sp A13 Markedly Enhances Salvia miltiorrhiza Root Growth and Active Ingredient Accumulation under Greenhouse and Field Conditions. Int. J. Mol. Sci. 2018, 19, 270. [Google Scholar] [CrossRef]
- Murali, M.; Naziya, B.; Ansari, M.A.; Alomary, M.N.; AlYahya, S.; Almatroudi, A.; Thriveni, M.C.; Gowtham, H.G.; Singh, S.B.; Aiyaz, M.; et al. Bioprospecting of Rhizosphere-Resident Fungi: Their Role and Importance in Sustainable Agriculture. J. Fungi 2021, 7, 314. [Google Scholar] [CrossRef]
- El-Sharkawy, H.H.A.; Abo-El-Wafa, T.S.A.; Ibrahim, S.A.A. Biological control agents improve the productivity and induce the resistance against downy mildew of grapevine. J. Plant Pathol. 2018, 100, 33–42. [Google Scholar] [CrossRef]
- Jogaiah, S.; Abdelrahman, M.; Tran, L.-S.P.; Shin-ichi, I. Characterization of rhizosphere fungi that mediate resistance in tomato against bacterial wilt disease. J. Exp. Bot. 2013, 64, 3829–3842. [Google Scholar] [CrossRef]
- Jogaiah, S.; Shetty, H.S.; Ito, S.; Tran, L.S.P. Enhancement of downy mildew disease resistance in pearl millet by the G_app7 bioactive compound produced by Ganoderma applanatum. Plant Physiol. Biochem. 2016, 105, 109–117. [Google Scholar] [CrossRef]
- El-Maraghy, S.S.; Tohamy, A.T.; Hussein, K.A. Plant protection properties of the Plant Growth-Promoting Fungi (PGPF): Mechanisms and potentiality. Curr. Res. Environ. Appl. Mycol.-J. Fungal Biol. 2021, 11, 391–415. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Miyazawa, M.; Hyakumachi, M. The Plant Growth-promoting Fungus Penicillium spp. GP15-1 Enhances Growth and Confers Protection against Damping-off and Anthracnose in the Cucumber. J. Oleo Sci. 2014, 63, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Muslim, A.; Hyakumachi, M.; Kageyama, K.; Suwandi, S. Induction of Systemic Resistance in Cucumber by Hypovirulent Binucleate Rhizoctonia against Anthracnose Caused by Colletotrichum orbiculare. Trop. Life Sci. Res. 2019, 30, 109–122. [Google Scholar] [CrossRef] [PubMed]
- Baiyee, B.; Ito, S.; Sunpapao, A. Trichoderma asperellum T1 mediated antifungal activity and induced defense response against leaf spot fungi in lettuce (Lactuca sativa L.). Physiol. Mol. Plant Pathol. 2019, 106, 96–101. [Google Scholar] [CrossRef]
- Hou, W.G.; Lian, B.; Dong, H.L.; Jiang, H.C.; Wu, X.L. Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions. Geosci. Front. 2012, 3, 351–356. [Google Scholar] [CrossRef]
- Jentschke, G.; Goldbold, D.L. Metal toxicity and ectomycorrhizas. Physiol. Plant. 2000, 109, 107–116. [Google Scholar] [CrossRef]
- Kayama, M.; Yamanaka, T. Growth characteristics of ectomycorrhizal seedlings of Quercus glauca, Quercus salicina, and Castanopsis cuspidata planted on acidic soil. Trees-Struct. Funct. 2014, 28, 569–583. [Google Scholar] [CrossRef]
- van Schöll, L.; Kuyper, T.W.; Smits, M.M.; Landeweert, R.; Hoffland, E.; van Breemen, N. Rock-eating mycorrhizas: Their role in plant nutrition and biogeochemical cycles. Plant Soil 2008, 303, 35–47. [Google Scholar] [CrossRef]
- Lee, Y.I.; Zahn, F.E.; Xie, Q.Y.; Wu, S.H.; Gebauer, G. Diverse mycorrhizal associations and nutrition in Didymoplexis orchids. Mycorrhiza 2025, 35, 34. [Google Scholar] [CrossRef]
- Schüssler, A.; Schwarzott, D.; Walker, C. A new fungal phylum, the Glomeromycota: Phylogeny and evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef]
- Vályi, K.; Mardhiah, U.; Rillig, M.C.; Hempel, S. Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J. 2016, 10, 2341–2351. [Google Scholar] [CrossRef]
- Smith, F.A.; Smith, S.E. Tansley Review No. 96 Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol. 1997, 137, 373–388. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.S.; Xia, R.X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J. Plant Physiol. 2006, 163, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Porcel, R.; Barea, J.M.; Ruiz-Lozano, J.M. Antioxidant activities in mycorrhizal soybean plants under drought stress and their possible relationship to the process of nodule senescence. New Phytol. 2003, 157, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Lozano, J.M. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 2003, 13, 309–317. [Google Scholar] [CrossRef]
- RuizLozano, J.M.; Azcon, R. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol. Plant. 1995, 95, 472–478. [Google Scholar] [CrossRef]
- Gómez-Falcón, N.; Sáenz-Carbonell, L.A.; Andrade-Torres, A.; Lara-Pérez, L.A.; Narváez, M.; Oropeza, C. Arbuscular mycorrhizal fungi increase the survival and growth of micropropagated coconut (Cocos nucifera L.) plantlets. Vitr. Cell. Dev. Biol.-Plant 2023, 59, 401–412. [Google Scholar] [CrossRef]
- Baslam, M.; Garmendia, I.; Goicoechea, N. Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhouse-grown lettuce. J. Agric. Food Chem. 2011, 59, 5504–5515. [Google Scholar] [CrossRef]
- Shi, S.-M.; Chen, K.; Gao, Y.; Liu, B.; Yang, X.-H.; Huang, X.-Z.; Liu, G.-X.; Zhu, L.-Q.; He, X.-H. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings. Front. Microbiol. 2016, 7, 1030. [Google Scholar] [CrossRef]
- Cartmill, A.D.; Alarcón, A.; Valdez-Aguilar, L.A. Arbuscular Mycorrhizal Fungi Enhance Tolerance of Rosa multiflora cv. Burr to Bicarbonate in Irrigation Water. J. Plant Nutr. 2007, 30, 1517–1540. [Google Scholar] [CrossRef]
- Forrest, J.; Miller-Rushing, A.J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. B-Biol. Sci. 2010, 365, 3101–3112. [Google Scholar] [CrossRef]
- Bona, E.; Lingua, G.; Manassero, P.; Cantamessa, S.; Marsano, F.; Todeschini, V.; Copetta, A.; D’Agostino, G.; Massa, N.; Avidano, L.; et al. AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 2015, 25, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Chang, Y.C.; Baker, R.; Kleifeld, O.; Chet, I. Increased growth of plants in the presence of the biological-control agent trichoderma-harzianum. Plant Dis. 1986, 70, 145–148. [Google Scholar] [CrossRef]
- Ousley, M.A.; Lynch, J.M.; Whipps, J.M. The Effects of Addition of Trichoderma Inocula on Flowering and Shoot Growth of Bedding Plants. Sci. Hortic. 1994, 59, 147–155. [Google Scholar] [CrossRef]
- Zavala-Gonzalez, E.A.; Escudero, N.; Lopez-Moya, F.; Aranda-Martinez, A.; Exposito, A.; Ricano-Rodriguez, J.; Naranjo-Ortiz, M.A.; Ramirez-Lepe, M.; Lopez-Llorca, L.V. Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. Ann. Appl. Biol. 2015, 166, 472–483. [Google Scholar] [CrossRef]
- Yedidia, I.; Srivastva, A.K.; Kapulnik, Y.; Chet, I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant Soil 2001, 235, 235–242. [Google Scholar] [CrossRef]
- Vujanovic, V.; Goh, Y.K. qPCR quantification of Sphaerodes mycoparasitica biotrophic mycoparasite interaction with Fusarium graminearum: In vitro and in planta assays. Arch. Microbiol. 2012, 194, 707–717. [Google Scholar] [CrossRef]
- Islam, S.; Akanda, A.M.; Prova, A.; Sultana, F.; Hossain, M.M. Growth promotion effect of Fusarium spp. PPF1 from bermudagrass (Cynodon dactylon) rhizosphere on Indian spinach (Basella alba) seedlings are linked to root colonisation. Arch. Phytopathol. Plant Prot. 2014, 47, 2319–2331. [Google Scholar] [CrossRef]
- Islam, S.; Akanda, A.M.; Sultana, F.; Hossain, M.M. Chilli rhizosphere fungus Aspergillus spp. PPA1 promotes vegetative growth of cucumber (Cucumis sativus) plants upon root colonisation. Arch. Phytopathol. Plant Prot. 2014, 47, 1231–1238. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. A classification system for seed dormancy. Seed Sci. Res. 2004, 14, 1–16. [Google Scholar] [CrossRef]
- Jensen, B.; Knudsen, I.M.B.; Madsen, M.; Jensen, D.F. Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 2004, 94, 551–560. [Google Scholar] [CrossRef]
- Bennett, A.J.; Mead, A.; Whipps, J.M. Performance of carrot and onion seed primed with beneficial microorganisms in glasshouse and field trials. Biol. Control 2009, 51, 417–426. [Google Scholar] [CrossRef]
- Szopinska, D.; Jensen, B.; Knudsen, I.M.B.; Tylkowska, K.; Dorna, H. Non-Chemical Methods for Controlling Seedborne Fungi in Carrot with Special Reference to Alternaria Radicina. J. Plant Prot. Res. 2010, 50, 184–192. [Google Scholar] [CrossRef]
- Gupta, R.; Chakrabarty, S.K. Gibberellic acid in plant Still a mystery unresolved. Plant Signal. Behav. 2013, 8, e25504. [Google Scholar] [CrossRef]
- Chou, L.C.; Chang, D.C.N. Asymbiotic and symbiotic seed germination of Anoectochilus formosanus and Haemaria discolor and their F1 hybrids. Bot. Bull. Acad. Sin. 2004, 45, 143–147. [Google Scholar]
- Dady, E.R.; Kleczewski, N.; Ugarte, C.M.; Ngumbi, E. Plant Variety, Mycorrhization, and Herbivory Influence Induced Volatile Emissions and Plant Growth Characteristics in Tomato. J. Chem. Ecol. 2023, 49, 710–724. [Google Scholar] [CrossRef] [PubMed]
- Torres-Ortega, R.; Guillén-Alonso, H.; Alcalde-Vázquez, R.; Ramírez-Chávez, E.; Molina-Torres, J.; Winkler, R. In Vivo Low-Temperature Plasma Ionization Mass Spectrometry (LTP-MS) Reveals Regulation of 6-Pentyl-2H-Pyran-2-One (6-PP) as a Physiological Variable during Plant-Fungal Interaction. Metabolites 2022, 12, 1231. [Google Scholar] [CrossRef]
- Toffano, L.; Fialho, M.B.; Pascholati, S.F. Potential of fumigation of orange fruits with volatile organic compounds produced by Saccharomyces cerevisiae to control citrus black spot disease at postharvest. Biol. Control 2017, 108, 77–82. [Google Scholar] [CrossRef]
- Mendgen, K.; Hahn, M.; Deising, H. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol. 1996, 34, 367–386. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wang, Y.; Han, J.; Cai, B. Analyses of the community compositions of root rot pathogenic fungi in the soybean rhizosphere soil. Chil. J. Agric. Res. 2016, 76, 179–187. [Google Scholar] [CrossRef]
- Yadeta, K.; Thomma, B.P.H.J. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 2013, 4, 97. [Google Scholar] [CrossRef]
- Lievens, B.; Rep, M.; Thomma, B.P. Recent developments in the molecular discrimination of formae speciales of Fusarium oxysporum. Pest Manag. Sci. 2010, 64, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Turra, D.; El Ghalid, M.; Rossi, F.; Di Pietro, A. Fungal pathogen uses sex pheromone receptor for chemotropic sensing of host plant signals. Nature 2015, 527, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Perez-Nadales, E.; Di Pietro, A. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum. Mol. Plant Pathol. 2015, 16, 593–603. [Google Scholar] [CrossRef]
- Sebaihia, M.; Bocsanczy, A.M.; Biehl, B.S.; Quail, M.A.; Perna, N.T.; Glasner, J.D.; DeClerck, G.A.; Cartinhour, S.; Schneider, D.J.; Bentley, S.D.; et al. Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946. J. Bacteriol. 2010, 192, 2020–2021. [Google Scholar] [CrossRef]
- Dean, R.; Van Kan, J.A.L.; Pretorius, Z.A.; Hammond-Kosack, K.E.; Di Pietro, A.; Spanu, P.D.; Rudd, J.J.; Dickman, M.; Kahmann, R.; Ellis, J.; et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 2012, 13, 414–430. [Google Scholar] [CrossRef]
- Redkar, A.; Sabale, M.; Zuccaro, A.; Di Pietro, A. Determinants of endophytic and pathogenic lifestyle in root colonizing fungi. Curr. Opin. Plant Biol. 2022, 67, 102226. [Google Scholar] [CrossRef]
- Asai, S.; Ayukawa, Y.; Gan, P.; Shirasu, K. Draft genome resources for Brassicaceae pathogens Fusarium oxysporum f. sp. raphani and Fusarium oxysporum f. sp. rapae. Mol. Plant-Microbe Interact. 2021, 34, 1316–1319. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.P.; Ranjan, J.K.; Tomar, B.S.; Lata, S.; Singh, J.; Mishra, G.P.; Akhtar, J.; Kumar, P.; Tiwari, R.; Ranjan, P.; et al. Phenotypic Reaction of Cultivated and Wild Brinjal Genotypes to Fusarium Wilt Under Sick Plot and Artificially Inoculated Pot Conditions. J. Phytopathol. 2025, 173, e70018. [Google Scholar] [CrossRef]
- Jbir, T.G.; Zitnick-Anderson, K.; Pasche, J.S.; Kalil, A.K. Characterization of Fusarium oxysporum f. sp. pisi Associated with Root Rot of Field Pea in North Dakota and the Effects of Temperature on Aggressiveness. Plant Dis. 2024, 108, 365–374. [Google Scholar] [CrossRef]
- Cao, S.; Yang, N.B.; Zhao, C.; Liu, J.; Han, C.G.; Wu, X.H. Diversity of Fusarium species associated with root rot of sugar beet in China. J. Gen. Plant Pathol. 2018, 84, 321–329. [Google Scholar] [CrossRef]
- Scruggs, A.C.; Quesada-Ocampo, L.M. Etiology and Epidemiological Conditions Promoting Fusarium Root Rot in Sweetpotato. Phytopathology 2016, 106, 909–919. [Google Scholar] [CrossRef] [PubMed]
- Beckman, T.G.; Chavez, D.J.; Scherm, H.; Taylor, K. Evaluation of chemical, genetic and biological control strategies for Armillaria root rot of peach. In Proceedings of the 9th International Peach Symposium, Bucharest, Romania, 2–6 July 2017; pp. 355–359. [Google Scholar]
- Naqvi, S. Diagnosis and management of certain important fungal diseases of citrus. In Diseases of Fruits and Vegetables Volume I: Diagnosis and Management; Springer: Berlin/Heidelberg, Germany, 2004; pp. 247–290. [Google Scholar]
- Wright, G.F.K.; Guest, D.I.; Wimalajeewa, D.L.S.; vanHeeswijck, R. Characterisation of Fusarium oxysporum isolated from carnation in Australia based on pathogenicity, vegetative compatibility and random amplified polymorphic DNA (RAPD) assay. Eur. J. Plant Pathol. 1996, 102, 451–457. [Google Scholar] [CrossRef]
- Jin-Ai, Y.; Peng, H.; Cheng-Zhong, L.; De-Yi, Y. Stem rot on Cymbidium ensifolium (Orchidaceae) caused by Fusarium oxysporum in China. Can. J. Plant Pathol. 2018, 40, 105–108. [Google Scholar] [CrossRef]
- Vakalounakis, D.J.; Wang, Z.; Fragkiadakis, G.A.; Skaracis, G.N.; Li, D.B. Characterization of Fusarium oxysporum isolates obtained from cucumber in China by pathogenicity, VCG, and RAPD. Plant Dis. 2004, 88, 645–649. [Google Scholar] [CrossRef]
- Kondo, T.; Chu, E.; Kageyama, K.; Sugiyama, S. Stem canker and wilt of delphinium caused by Fusarium oxysporum f. sp delphinii in Japan. J. Gen. Plant Pathol. 2013, 79, 370–373. [Google Scholar] [CrossRef]
- Hossain, M.M.; Sultana, F.; Li, W.Q.; Tran, L.S.P.; Mostofa, M.G. Sclerotinia sclerotiorum (Lib.) de Bary: Insights into the Pathogenomic Features of a Global Pathogen. Cells 2023, 12, 1063. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Avtar, R.; Kumar, N.; Punia, R.; Lakra, N.; Kumari, N.; Bishnoi, M.; Rohit, R.; Choudhary, R.R.; Khedwal, R.S.; et al. Assessment of Sclerotinia Stem and Leaf Rot Resistance and its Association with Physical Strength Attributes in Brassicaceae with Special Emphasis on Brassica Juncea. J. Plant Growth Regul. 2023, 42, 6021–6037. [Google Scholar] [CrossRef]
- Sharma, P.; Meena, P.D.; Chauhan, J.S. First Report of Nigrospora oryzae (Berk. & Broome) Petch Causing Stem Blight on Brassica juncea in India. J. Phytopathol. 2013, 161, 439–441. [Google Scholar] [CrossRef]
- Zhang, L.Q.; Jiang, S.; Meng, J.J.; An, H.S.; Zhang, X.Y. First Report of Leaf Spot Caused by Nigrospora oryzae on Blueberry in Shanghai, China. Plant Dis. 2019, 103, 2473–2474. [Google Scholar] [CrossRef]
- Van Laethem, S.; Frans, M.; Aerts, R.; Ceusters, J. pH modulation of the environment by Stagonosporopsis cucurbitacearum, an important pathogen causing fruit rot in Cucurbitaceae. Eur. J. Plant Pathol. 2021, 159, 235–245. [Google Scholar] [CrossRef]
- Mahapatra, S.; Rao, E.S.; Gm, S.K.; Sriram, S.; Varalakshmi, B.; Reddy, D.C.L. Identification of sources of resistance to an Indian isolate causing Gummy stem blight in watermelon. Australas. Plant Pathol. 2022, 51, 419–428. [Google Scholar] [CrossRef]
- Pan, J.J.; Meng, J.; Zhang, D.M.; Zeng, C.F.; Wang, X.K.; Wang, F.; Zhu, K.J.; Li, G.H.; Liu, J.W. Genome Sequence Resource of Botryosphaeria dothidea Strain XNHG241, a Causal Agent of Peach Gummosis. Plant Dis. 2023, 107, 2205–2208. [Google Scholar] [CrossRef]
- Zhong, L.-C.; Ai, Y.-J.; Chun, R.-H.; Yi, Y.-D. Identification of Curvularia clavata causing leaf spot on pineapple (Ananas comosus) in China. Can. J. Plant Pathol. 2016, 38, 250–253. [Google Scholar] [CrossRef]
- Armand, A.; Hyde, K.D.; Jayawardena, R.S. First report of Colletotrichum fructicola causing fruit rot and leaf-tip dieback on pineapple in Northern Thailand. Plants 2023, 12, 971. [Google Scholar] [CrossRef] [PubMed]
- Adikaram, N. Diseases of major tropical and subtropical fruit plants. In Agrios’ Plant Pathology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 807–821. [Google Scholar]
- Toome-Heller, M.; Baskarathevan, J.; Burnip, G.; Alexander, B. First report of apple leaf blotch caused by Alternaria arborescens complex in New Zealand. N. Z. J. Crop. Hortic. Sci. 2018, 46, 354–359. [Google Scholar] [CrossRef]
- Fang, P.H.; Shi, S.C.; Liu, X.T.; Zhang, Z. First report of Alternaria black spot of rose caused by Alternaria alternata in China. J. Plant Pathol. 2020, 102, 273. [Google Scholar] [CrossRef]
- hee, l.y.; Kim, S.M.; Lee, S.B.; Kim, S.H.; Yunbyungwook; Hong, J.K. Disease Resistance-Based Management of Alternaria Black Spot in Cruciferous Crops. Res. Plant Dis. 2023, 29, 363–376. [Google Scholar]
- Fu, Y.; Zhang, X.F.; Liu, S.J.H.; Hu, K.L.; Wu, X.H. Characterization of Alternaria species associated with black spot of strawberry in Beijing municipality of China. Can. J. Plant Pathol. 2020, 42, 235–242. [Google Scholar] [CrossRef]
- Weiland, J.; Koch, G. Sugarbeet leaf spot disease (Cercospora beticola Sacc.). Mol. Plant Pathol. 2004, 5, 157–166. [Google Scholar] [CrossRef]
- Hammouda, A.M. A new leaf-spot of pepper caused by cladosporium-oxysporum. Plant Dis. 1992, 76, 536–537. [Google Scholar] [CrossRef]
- Kalisz, S.; Oszmiański, J.; Wojdyło, A. Increased content of phenolic compounds in pear leaves after infection by the pear rust pathogen. Physiol. Mol. Plant Pathol. 2015, 91, 113–119. [Google Scholar] [CrossRef]
- Srivastava, J.; Singh, A.; Sharma, R. Diseases of apples and their management. In Diseases of Fruits and Vegetable Crops; Apple Academic Press: Cambridge, MA, USA, 2020; pp. 19–39. [Google Scholar]
- Koledenkova, K.; Esmaeel, Q.; Jacquard, C.; Nowak, J.; Clément, C.; Ait Barka, E. Plasmopara viticola the causal agent of downy mildew of grapevine: From its taxonomy to disease management. Front. Microbiol. 2022, 13, 889472. [Google Scholar] [CrossRef]
- Qin, S.Z.; Chen, X.Y.L.; Zhou, X.H.; Zhao, J.; Baccelli, I.; Cernava, T. First report of Camellia oleifera leaf blight caused by Nigrospora chinensis. J. Plant Pathol. 2021, 103, 711–712. [Google Scholar] [CrossRef]
- Wang, M.; Liu, F.; Crous, P.W.; Cai, L. Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia 2017, 39, 118–142. [Google Scholar] [CrossRef]
- Kittimorakul, J.; Pornsuriya, C.; Sunpapao, A.; Petcharat, V. Survey and incidence of leaf blight and leaf spot diseases of oil palm seedlings in Southern Thailand. Plant Pathol. J. 2013, 12, 149–153. [Google Scholar] [CrossRef]
- Flood, J. A review of Fusarium wilt of oil palm caused by Fusarium oxysporum f. sp. elaeidis. Phytopathology 2006, 96, 660–662. [Google Scholar] [CrossRef] [PubMed]
- Aderungboye, F.O. Diseases of the Oil Palm. Pans 1977, 23, 305–326. [Google Scholar] [CrossRef]
- Suwannarach, N.; Kumla, J.; Lumyong, S. First report of Alternaria leaf blight disease on oil palm caused by Alternaria longipes in Thailand. Phytoparasitica 2015, 43, 57–59. [Google Scholar] [CrossRef]
- Piperkova, N.; Vassilev, A. Ultrastructural changes in mesophyll cells in peach leaves infected by Taphrina deformans (Berk/Tul). Acta Agrobot. 2023, 76, 172969. [Google Scholar] [CrossRef]
- Lebeda, A.; Lobin, K.K.; Mieslerová, B.; Krivánková, T.; Kitner, M. Occurrence and epidemiological consequences of Erysiphe neolycopersici on tomato plants in Mauritius. Mycol. Prog. 2024, 23, 53. [Google Scholar] [CrossRef]
- Hussein, M.A.M.; Abdel-Aal, A.M.K.; Rawa, M.J.; Mousa, M.A.A.; Moustafa, Y.M.M.; Abo-Elyousr, K.A.M. Enhancing chili pepper (Capsicum annuum L.) resistance and yield against powdery mildew (Leveillula taurica) with beneficial bacteria. Egypt. J. Biol. Pest Control 2023, 33, 114. [Google Scholar] [CrossRef]
- Sarhan, E.A.D.; Abd-Elsyed, M.H.F.; Ebrahiem, A.M.Y. Biological control of cucumber powdery mildew (Podosphaera xanthii) (Castagne) under greenhouse conditions. Egypt. J. Biol. Pest Control 2020, 30, 65. [Google Scholar] [CrossRef]
- Gadoury, D.M.; Cadle-Davidson, L.; Wilcox, W.F.; Dry, I.B.; Seem, R.C.; Milgroom, M.G. Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol. Plant Pathol. 2012, 13, 1–16. [Google Scholar] [CrossRef]
- Turechek, W.W. Apple diseases and their management. In Diseases of Fruits and Vegetables Volume I: Diagnosis and Management; Springer: Dordrecht, The Netherlands, 2004; pp. 1–108. [Google Scholar]
- Sardella, D.; Muscat, A.; Brincat, J.-P.; Gatt, R.; Decelis, S.; Valdramidis, V. A comprehensive review of the pear fungal diseases. Int. J. Fruit Sci. 2016, 16, 351–377. [Google Scholar] [CrossRef]
- Tenhovirta, S. Studies on the resistance of the strawberry powdery mildew (Podosphaera macularis). Pro Gradu-tutkielma. Kasvipatologia. Hels. Yliop. Haettu 2012, 2, 2018. [Google Scholar]
- Tomas, A.; Wearing, A.H.; Joyce, D.C. Botrytis cinerea: A causal agent of premature flower drop in packaged Geraldton waxflower. Australas. Plant Pathol. 1995, 24, 26–28. [Google Scholar] [CrossRef]
- Taylor, M.N.; Wearing, A.H.; Joyce, D.C.; Simons, D.H. Alternaria alternata causes petal blight and flower drop in harvested Geraldton waxflower. Australas. Plant Pathol. 1998, 27, 207–210. [Google Scholar] [CrossRef]
- Moreira, R.R.; Caus, G.; Figueiredo, J.A.G.; de Mio, L.L.M. Phomopsis rot caused by Diaporthe infecunda on fruit and flowers of Passiflora edulis in Brazil. Australas. Plant Pathol. 2020, 49, 141–145. [Google Scholar] [CrossRef]
- Alken, N.; Fortes, A.M. Insights into molecular and metabolic events associated with fruit response to post-harvest fungal pathogens. Front. Plant Sci. 2015, 6, 889. [Google Scholar] [CrossRef]
- Johnson, G.I.; Mead, A.J.; Cooke, A.W.; Dean, J.R. Mango stem end rot pathogens-fruit infection by endophytic colonization of the inflorescence and pedicel. Ann. Appl. Biol. 1992, 120, 225–234. [Google Scholar] [CrossRef]
- Diskin, S.; Feygenberg, O.; Maurer, D.; Droby, S.; Prusky, D.; Alkan, N. Microbiome Alterations Are Correlated with Occurrence of Postharvest Stem-End Rot in Mango Fruit. Phytobiomes J. 2017, 1, 117–127. [Google Scholar] [CrossRef]
- Prusky, D.; Alkan, N.; Mengiste, T.; Fluhr, R. Quiescent and Necrotrophic Lifestyle Choice During Postharvest Disease Development. Annu. Rev. Phytopathol. 2013, 51, 155–176. [Google Scholar] [CrossRef]
- Galsurker, O.; Diskin, S.; Maurer, D.; Feygenberg, O.; Alkan, N. Fruit Stem-End Rot. Horticulturae 2018, 4, 50. [Google Scholar] [CrossRef]
- Feygenberg, O.; Diskin, S.; Maurer, D.; Alkan, N. Effect of Biological and Chemical Treatments During Flowering on Stem-End Rot Disease, and Mango Yield. Plant Dis. 2021, 105, 1602–1609. [Google Scholar] [CrossRef] [PubMed]
- Schmey, T.; Tominello-Ramirez, C.S.; Brune, C.; Stam, R. Alternaria diseases on potato and tomato. Mol. Plant Pathol. 2024, 25, e13435. [Google Scholar] [CrossRef]
- Tashiro, N.; Noguchi, M.; Ide, Y.; Kuchiki, F. Sooty spot caused by Cladosporium cladosporioides in postharvest Satsuma mandarin grown in heated greenhouses. J. Gen. Plant Pathol. 2013, 79, 158–161. [Google Scholar] [CrossRef]
- Cheng, Y.; Lin, Y.; Cao, H.; Li, Z. Citrus postharvest green mold: Recent advances in fungal pathogenicity and fruit resistance. Microorganisms 2020, 8, 449. [Google Scholar] [CrossRef]
- Lei, Y.; Li, Y.; Li, L.; Runsheng, D.; Hui, D. Integrated Prevention and Control Technology of Major Diseases and Insect Pests of Strawberry. Plant Dis. Pests 2020, 11, 31. [Google Scholar]
- Atak, A.; Göksel, Z.; Yilmaz, Y. Changes in Major Phenolic Compounds of Seeds, Skins, and Pulps from Various Vitis spp. and the Effect of Powdery and Downy Mildew Diseases on Their Levels in Grape Leaves. Plants 2021, 10, 2554. [Google Scholar] [CrossRef]
- Xu, X.D.; Chen, Z.B.; Wang, W.R.; Pan, K. The effect of selenium biological enhancement on cucumber growth and powdery mildew control under greenhouse conditions. Sci. Rep. 2025, 15, 10363. [Google Scholar] [CrossRef]
- Dwivedi, M.; Singh, P.; Pandey, A.K. Botrytis fruit rot management: What have we achieved so far? Food Microbiol. 2024, 122, 104564. [Google Scholar] [CrossRef] [PubMed]
- Kassemeyer, H.-H. Fungi of grapes. In Biology of Microorganisms on Grapes, in Must and in Wine; Springer: Cham, Switzerland, 2017; pp. 103–132. [Google Scholar]
- Li, P.; Song, Z.Q.; Liu, D. First reported postharvest disease of Pisum sativum var. saccharatum fruits caused by Botrytis cinerea in China. J. Plant Pathol. 2025, 107, 745–746. [Google Scholar] [CrossRef]
- Gül, E.; Karakaya, A.; Ergül, A. Determination of the frequency and virulence of some Botrytis cinerea isolates and a new Botrytis prunorum cryptic species causing grey mould disease on greenhouse tomatoes. Plant Pathol. 2023, 72, 1226–1235. [Google Scholar] [CrossRef]
- Yong, D.J.; Li, Y.; Gong, K.; Yu, Y.Y.; Zhao, S.; Duan, Q.; Ren, C.L.; Li, A.Y.; Fu, J.; Ni, J.F.; et al. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Front. Microbiol. 2022, 13, 1051730. [Google Scholar] [CrossRef] [PubMed]
- Sansala, M.; Kuwabo, K.; Hamabwe, S.M.; Kachapulula, P.; Parker, T.; Mukuma, C.; Kamfwa, K. Race Structure and Molecular Diversity of Colletotrichum lindemuthianum of Common Bean in Zambia. Plant Dis. 2024, 108, 857–865. [Google Scholar] [CrossRef]
- Yarmeeva, M.; Kutuzova, I.; Kurchaev, M.; Chudinova, E.; Kokaeva, L.; Belosokhov, A.; Belov, G.; Elansky, A.; Pobedinskaya, M.; Tsindeliani, A.; et al. Colletotrichum Species on Cultivated Solanaceae Crops in Russia. Agriculture 2023, 13, 511. [Google Scholar] [CrossRef]
- Kim, S.; Hong, S.-H.; Kim, J.H.; Oh, M.-K.; Eom, T.J.; Park, Y.H.; Shin, G.H.; Yim, S.-Y. Early on–site detection of strawberry anthracnose using portable Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 303, 123150. [Google Scholar] [CrossRef]
- Jaouad, M.; Moinina, A.; Ezrari, S.; Lahlali, R. Key pests and diseases of citrus trees with emphasis on root rot diseases: An overview. Moroc. J. Agric. Sci. 2020, 1, 1–17. [Google Scholar]
- Tan, Q.; Schnabel, G.; Chaisiri, C.; Yin, L.F.; Yin, W.X.; Luo, C.X. Colletotrichum Species Associated with Peaches in China. J. Fungi 2022, 8, 313. [Google Scholar] [CrossRef]
- Skolik, P.; McAinsh, M.R.; Martin, F.L. ATR-FTIR spectroscopy non-destructively detects damage-induced sour rot infection in whole tomato fruit. Planta 2019, 249, 925–939. [Google Scholar] [CrossRef]
- Khodadadi, F.; González, J.B.; Martin, P.L.; Giroux, E.; Bilodeau, G.J.; Peter, K.A.; Doyle, V.P.; Aćimović, S.G. Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov. Sci. Rep. 2020, 10, 11043. [Google Scholar]
- Xu, C.; Wang, C.; Ju, L.; Zhang, R.; Biggs, A.R.; Tanaka, E.; Li, B.; Sun, G. Multiple locus genealogies and phenotypic characters reappraise the causal agents of apple ring rot in China. Fungal Divers. 2015, 71, 215–231. [Google Scholar] [CrossRef]
- Pingping, S.; Jianchao, C.; Xiaohui, J.; Wenhui, W. Isolation and characterization of Bacillus amyloliquefaciens L-1 for biocontrol of pear ring rot. Hortic. Plant J. 2017, 3, 183–189. [Google Scholar]
- Iqbal, S.; Abbas, A.; Mubeen, I.; Sathish, M.; Razaq, Z.; Mubeen, M.; Kamran, M.; Haroon, M.; Syed, S.A.; Naqvi, S.A.H.; et al. Taxonomy, distribution, epidemiology, disease cycle and management of brown rot disease of peach (Monilinia spp.). Not. Bot. Horti Agrobot. Cluj-Napoca 2022, 50, 12630. [Google Scholar] [CrossRef]
- Gadotti, G.I.; da Silva, R.N.O.; de Farias, C.R.J.; da Silva, J.G.; Padao, H.L. Fungal and seed treatment interference in the viability of coriander seeds. Hortic. Bras. 2021, 39, 376–382. [Google Scholar] [CrossRef]
- Sun, B.; Chen, Q.; He, X.; Shi, Y.; Ding, S.; Li, H. A new multiplex polymerase chain reaction assay for simultaneous detection of five soil-borne fungal pathogens in winter wheat. J. Plant Dis. Prot. 2018, 125, 319–324. [Google Scholar] [CrossRef]
- Dong, G.; Pan, Y.; Wang, Y.; Ahmed, S.; Liu, Z.; Peng, D.; Yuan, Z. Preparation of a broad-spectrum anti-zearalenone and its primary analogues antibody and its application in an indirect competitive enzyme-linked immunosorbent assay. Food Chem. 2018, 247, 8–15. [Google Scholar] [CrossRef]
- Salman, A.; Tsror, L.; Pomerantz, A.; Moreh, R.; Mordechai, S.; Huleihel, M. FTIR spectroscopy for detection and identification of fungal phytopathogenes. Spectrosc.-Int. J. 2010, 24, 261–267. [Google Scholar] [CrossRef]
- Shen, F.; Zhao, T.; Jiang, X.; Liu, X.; Fang, Y.; Liu, Q.; Hu, Q.; Liu, X. On-line detection of toxigenic fungal infection in wheat by visible/near infrared spectroscopy. Lwt-Food Sci. Technol. 2019, 109, 216–224. [Google Scholar] [CrossRef]
- Patel, D.; Bhise, S.; Kapdi, S.S.; Bhatt, T. Non-destructive hyperspectral imaging technology to assess the quality and safety of food: A review. Food Prod. Process. Nutr. 2024, 6, 69. [Google Scholar] [CrossRef]
- Mukrimin, M.; Conrad, A.O.; Kovalchuk, A.; Julkunen-Tiitto, R.; Bonello, P.; Asiegbu, F.O. Fourier-transform infrared (FT-IR) spectroscopy analysis discriminates asymptomatic and symptomatic Norway spruce trees. Plant Sci. 2019, 289, 110247. [Google Scholar] [CrossRef]
- Zarnowiec, P.; Czerwonka, G.; Kaca, W. Fourier Transform Infrared Spectroscopy as a Tool in Analysis of Proteus mirabilis Endotoxins. Microb. Toxins Methods Protoc. 2017, 1600, 113–124. [Google Scholar]
- Kacuráková, M.; Capek, P.; Sasinková, V.; Wellner, N.; Ebringerová, A. FT-IR study of plant cell wall model compounds: Pectic polysaccharides and hemicelluloses. Carbohydr. Polym. 2000, 43, 195–203. [Google Scholar] [CrossRef]
- Kozarski, M.; Klaus, A.; Niksic, M.; Jakovljevic, D.; Helsper, J.P.F.G.; Van Griensven, L.J.L.D. Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food Chem. 2011, 129, 1667–1675. [Google Scholar] [CrossRef]
- Ridgway, C.; Chambers, J. Detection of insects inside wheat kernels by NIR imaging. In Proceedings of the 8th Conference of the International-Committee-for-Near-Infrared-Spectroscopy, Essen, Germany, 15–19 September 1997; pp. 115–119. [Google Scholar]
- Dong, D.; Zhao, C.; Zheng, W.; Wang, W.; Zhao, X.; Jiao, L. Analyzing strawberry spoilage via its volatile compounds using longpath Fourier transform infrared spectroscopy. Sci. Rep. 2013, 3, 2585. [Google Scholar] [CrossRef] [PubMed]
- Minaei, S.; Jafari, M.; Safaie, N. Design and Development of a Rose Plant Disease-Detection and Site-Specific Spraying System based on a Combination of Infrared and Visible Images. J. Agric. Sci. Technol. 2018, 20, 23–36. [Google Scholar]
- Durmus, E.; Gunes, A.; Kalkan, H. Detection of aflatoxin and surface mould contaminated figs by using Fourier transform near-infrared reflectance spectroscopy. J. Sci. Food Agric. 2017, 97, 317–323. [Google Scholar] [CrossRef]
- Schmidtke, L.M.; Schwarz, L.J.; Schueuermann, C.; Steel, C.C. Discrimination of Aspergillus spp., Botrytis cinerea, and Penicillium expansum in Grape Berries by ATR-FTIR Spectroscopy. Am. J. Enol. Vitic. 2019, 70, 68–76. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Zhang, S.K.; Xu, J.J.; Ke, X.Y.; Peng, C.; Li, Z.; Chen, B.; Pan, S.; Gu, T.T. Monitoring the infection of powdery mildew pathogen on strawberry leaves by ATR-IR technique. J. Phytopathol. 2022, 170, 579–587. [Google Scholar] [CrossRef]
- Erukhimovitch, V.; Tsror, L.; Hazanovsky, M.; Talyshinsky, M.; Souprun, Y.; Huleihel, M. Early and rapid detection of potato’s fungal infection by Fourier transform infrared microscopy. Appl. Spectrosc. 2007, 61, 1052–1056. [Google Scholar] [CrossRef]
- Nouri, M.; Gorretta, N.; Vaysse, P.; Giraud, M.; Germain, C.; Keresztes, B.; Roger, J.M. Near infrared hyperspectral dataset of healthy and infected apple tree leaves images for the early detection of apple scab disease. Data Brief 2018, 16, 967–971. [Google Scholar] [CrossRef]
- Teena, M.A.; Manickavasagan, A.; Ravikanth, L.; Jayas, D.S. Near infrared (NIR) hyperspectral imaging to classify fungal infected date fruits. J. Stored Prod. Res. 2014, 59, 306–313. [Google Scholar] [CrossRef]
- Brdar, S.; Panic, M.; Echtelt, E.H.-V.; Mensink, M.; Grbovic, Z.; Woltering, E.; Chauhan, A. Predicting sensitivity of recently harvested tomatoes and tomato sepals to future fungal infections. Sci. Rep. 2021, 11, 23109. [Google Scholar] [CrossRef] [PubMed]
- Modesti, M.; Alfieri, G.; Chieffo, C.; Mencarelli, F.; Vannini, A.; Catalani, A.; Chilosi, G.; Bellincontro, A. Destructive and non-destructive early detection of postharvest noble rot (Botrytis cinerea) in wine grapes aimed at producing high-quality wines. J. Sci. Food Agric. 2024, 104, 2314–2325. [Google Scholar] [CrossRef]
- Vitalis, F.; Nugraha, D.T.; Aouadi, B.; Bósquez, J.P.A.; Bodor, Z.; Zaukuu, J.-L.Z.; Kocsis, T.; Zsom-Muha, V.; Gillay, Z.; Kovacs, Z. Detection of Monilia Contamination in Plum and Plum Juice with NIR Spectroscopy and Electronic Tongue. Chemosensors 2021, 9, 355. [Google Scholar] [CrossRef]
- Sirakov, I.; Velichkova, K.; Dinev, T.; Slavcheva-Sirakova, D.; Valkova, E.; Yorgov, D.; Veleva, P.; Atanasov, V.; Atanassova, S. Detection of Fungal Diseases in Lettuce by VIR-NIR Spectroscopy in Aquaponics. Microorganisms 2023, 11, 2348. [Google Scholar] [CrossRef] [PubMed]
- Velásquez, C.; Prieto, F.; Palou, L.; Cubero, S.; Blasco, J.; Aleixos, N. New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis. J. Food Meas. Charact. 2023, 18, 560–570. [Google Scholar] [CrossRef]
- Kılıç, C.; Özer, H.; Inner, B. Real-time detection of aflatoxin-contaminated dried figs using lights of different wavelengths by feature extraction with deep learning. Food Control 2024, 156, 110150. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Z.; Wang, W.; Wang, X.; Zhang, C.; Dong, J.; Bai, M.; Hui, T. Research Progress of Rapid Non-Destructive Detection Technology in the Field of Apple Mold Heart Disease. Molecules 2023, 28, 7966. [Google Scholar] [CrossRef]
- Lin, Y.J.; Lin, H.K.; Lin, Y.H. Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan. PLoS ONE 2020, 15, e0230330. [Google Scholar] [CrossRef]
- Parlamas, S.; Goetze, P.K.; Humpal, D.; Kurouski, D.; Jo, Y.K. Raman Spectroscopy Enables Confirmatory Diagnostics of Fusarium Wilt in Asymptomatic Banana. Front. Plant Sci. 2022, 13, 922254. [Google Scholar] [CrossRef] [PubMed]
- Munera, S.; Ancillo, G.; Prieto, A.; Palou, L.; Aleixos, N.; Cubero, S.; Blasco, J. Quantifying the ultraviolet-induced fluorescence intensity in green mould lesions of diverse citrus varieties: Towards automated detection of citrus decay in postharvest. Postharvest Biol. Technol. 2023, 204, 112468. [Google Scholar] [CrossRef]
- Zhang, C.; Feng, X.P.; Wang, J.; Liu, F.; He, Y.; Zhou, W.J. Mid-infrared spectroscopy combined with chemometrics to detect Sclerotinia stem rot on oilseed rape (Brassica napus L.) leaves. Plant Methods 2017, 13, 39. [Google Scholar] [CrossRef]
- Erukhimovitch, V.; Tsror, L.; Hazanovsky, M.; Huleihel, M. Direct identification of potato’s fungal phyto-pathogens by Fourier-transform infrared (FTIR) microscopy. Spectrosc.-Int. J. 2010, 24, 609–619. [Google Scholar] [CrossRef]
- Liaghat, S.; Mansor, S.; Ehsani, R.; Shafri, H.Z.M.; Meon, S.; Sankaran, S. Mid-infrared spectroscopy for early detection of basal stem rot disease in oil palm. Comput. Electron. Agric. 2014, 101, 48–54. [Google Scholar] [CrossRef]
- Seehanam, P.; Sonthiya, K.; Maniwara, P.; Theanjumpol, P.; Ruangwong, O.; Nakano, K.; Ohashi, S.; Kramchote, S.; Suwor, P. Ability of near infrared spectroscopy to detect anthracnose disease early in mango after harvest. Hortic. Environ. Biotechnol. 2024, 65, 581–591. [Google Scholar] [CrossRef]
- Watt, M.S.; Bartlett, M.; Soewarto, J.; de Silva, D.; Estarija, H.J.C.; Massam, P.; Cajes, D.; Yorston, W.; Graevskaya, E.; Dobbie, K.; et al. Previsual and Early Detection of Myrtle Rust on Rose Apple Using Indices Derived from Thermal Imagery and Visible-to-Short-Infrared Spectroscopy. Phytopathology 2023, 113, 1405–1416. [Google Scholar] [CrossRef]
- Chu, X.; Zhang, K.; Wei, H.; Ma, Z.; Fu, H.; Miao, P.; Jiang, H.; Liu, H. A Vis/NIR spectra-based approach for identifying bananas infected with Colletotrichum musae. Front. Plant Sci. 2023, 14, 1180203. [Google Scholar] [CrossRef]
- Saletnik, A.; Saletnik, B.; Puchalski, C. Raman Method in Identification of Species and Varieties, Assessment of Plant Maturity and Crop Quality—A Review. Molecules 2022, 27, 4454. [Google Scholar] [CrossRef]
- Haynes, C.L.; McFarland, A.D.; Van Duyne, R.P. Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2005, 77, 338A–346A. [Google Scholar] [CrossRef]
- Nekvapil, F.; Brezestean, I.; Barchewitz, D.; Glamuzina, B.; Chiş, V.; Cintă Pinzaru, S. Citrus fruits freshness assessment using Raman spectroscopy. Food Chem. 2018, 242, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Saletnik, A.; Saletnik, B.; Puchalski, C. Overview of Popular Techniques of Raman Spectroscopy and Their Potential in the Study of Plant Tissues. Molecules 2021, 26, 1537. [Google Scholar] [CrossRef] [PubMed]
- Gudkov, S.V.; Matveeva, T.A.; Sarimov, R.M.; Simakin, A.V.; Stepanova, E.V.; Moskovskiy, M.N.; Dorokhov, A.S.; Izmailov, A.Y. Optical Methods for the Detection of Plant Pathogens and Diseases (Review). AgriEngineering 2023, 5, 1789–1812. [Google Scholar] [CrossRef]
- Liao, S.; Wu, Y.; Hu, X.; Weng, S.; Hu, Y.; Zheng, L.; Lei, Y.; Tang, L.; Wang, J.; Wang, H.; et al. Detection of apple fruit damages through Raman spectroscopy with cascade forest. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 296, 122668. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, A.; Azmat, M.; Sharma, A.; Shen, G.X.; Ding, X.T. Melamine detection in liquid milk based on selective porous polymer monolith mediated with gold nanospheres by using surface enhanced Raman scattering. Food Chem. 2019, 277, 624–631. [Google Scholar] [CrossRef]
- Wang, H.Q.; Liu, M.J.; Zhao, H.M.; Ren, X.F.; Lin, T.F.; Zhang, P.; Zheng, D.W. Rapid detection and identification of fungi in grain crops using colloidal Au nanoparticles based on surface-enhanced Raman scattering and multivariate statistical analysis. World J. Microbiol. Biotechnol. 2023, 39, 26. [Google Scholar] [CrossRef]
- Hong, S.J.; Koo, T.H.; Yun, S.C. Controlling Botrytis elliptica Leaf Blight on Hybrid Lilies through the Application of Convergent Chemical X-ray Irradiation. Plant Pathol. J. 2016, 32, 77–84. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Talluri, S.; Beebi, S.K.; Rajesh Kumar, B. Magnetic Resonance Imaging for Quality Evaluation of Fruits: A Review. Food Anal. Methods 2018, 11, 2943–2960. [Google Scholar] [CrossRef]
- Barragan-Ocana, A.; del Carmen del-Valle-Rivera, M. Rural development and environmental protection through the use of biofertilizers in agriculture: An alternative for underdeveloped countries? Technol. Soc. 2016, 46, 90–99. [Google Scholar] [CrossRef]
- Vessey, J.K. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Fitriatin, B.; Dewi, V.; Yuniarti, A. The impact of biofertilizers and NPK fertilizers application on soil phosphorus availability and yield of upland rice in tropic dry land. E3S Web Conf. 2021, 232, 03012. [Google Scholar] [CrossRef]
- Ye, L.; Zhao, X.; Bao, E.; Li, J.; Zou, Z.; Cao, K. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality. Sci. Rep. 2020, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Verzeaux, J.; Hirel, B.; Dubois, F.; Lea, P.J.; Tetu, T. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. Plant Sci. 2017, 264, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Malusa, E.; Vassilev, N. A contribution to set a legal framework for biofertilisers. Appl. Microbiol. Biotechnol. 2014, 98, 6599–6607. [Google Scholar] [CrossRef]
- Yadav, A.N. Beneficial plant-microbe interactions for agricultural sustainability. J. Appl. Biol. Biotechnol. 2021, 9, I–IV. [Google Scholar] [CrossRef]
- Tomati, U.; Grappelli, A.; Galli, E. The hormone-like effect of earthworm casts on plant-growth. Biol. Fertil. Soils 1988, 5, 288–294. [Google Scholar] [CrossRef]
- Easmin, S.; Hoque, M.; Saikat, M.; Kayesh, E. Influence of Organic and Inorganic Fertilizers on Growth, Yield and Physio-Chemical Properties of Papaya. Ann. Bangladesh Agric. 2020, 24, 69–83. [Google Scholar] [CrossRef]
- Aldas-Vargas, A.; van der Vooren, T.; Rijnaarts, H.H.M.; Sutton, N.B. Biostimulation is a valuable tool to assess pesticide biodegradation capacity of groundwater microorganisms. Chemosphere 2021, 280, 130793. [Google Scholar] [CrossRef] [PubMed]
- Samada, L.H.; Tambunan, U.S.F. Biopesticides as promising alternatives to chemical pesticides: A review of their current and future status. Online J. Biol. Sci. 2020, 20, 66–76. [Google Scholar] [CrossRef]
- Zaki, O.; Weekers, F.; Thonart, P.; Tesch, E.; Kuenemann, P.; Jacques, P. Limiting factors of mycopesticide development. Biol. Control 2020, 144, 104220. [Google Scholar] [CrossRef]
- Arthurs, S.; Dara, S.K. Microbial biopesticides for invertebrate pests and their markets in the United States. J. Invertebr. Pathol. 2019, 165, 13–21. [Google Scholar] [CrossRef] [PubMed]
Detection Method | Crops Affected | Pathogen Fungus | References |
---|---|---|---|
ATR-IR | strawberry | Podosphaera aphanis | [158] |
ATR-Mid-IR | tomato | Geotrichum candidum | [138] |
IR | rose | Podosphaera pannosa, Botrytis cinerea | [155] |
FTIR | tomato | Geotrichum candidum | [138] |
potato | Fusarium spp., Rhizoctonia solani | [159] | |
grape | Aspergillus spp., Botrytis cinerea, Penicillium expansum | [157] | |
fig | Aspergillus flavus | [156] | |
NIR | apple | Venturia inaequalis | [160] |
date fruit (Phoenix dactylifera) | Aspergillus flavus | [161] | |
tomato | Penicillium, Aspergillus, Mucor | [162] | |
grapes | Botrytis cinerea | [163] | |
plum | Monilinia fructigena | [164] | |
Vis-NIR | lettuce | Aspergillus niger, Fusarium oxysporum, Alternaria alternata | [165] |
mango | Colletotrichum gloeosporioides | [166] | |
UV-Vis | fig | Aspergillus flavus | [167] |
Raman | apple | Rhizopus stolonifer, Botrytis cinerea | [168] |
banana | Fusarium oxysporum f. sp. cubense | [169,170] | |
Fluorescence | citrus | Penicillium digitatum | [171] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Han, Y.; Yu, Z.; Tian, S.; Sun, P.; Shi, Y.; Peng, C.; Gu, T.; Li, Z. Fungi in Horticultural Crops: Promotion, Pathogenicity and Monitoring. Agronomy 2025, 15, 1699. https://doi.org/10.3390/agronomy15071699
Wang Q, Han Y, Yu Z, Tian S, Sun P, Shi Y, Peng C, Gu T, Li Z. Fungi in Horticultural Crops: Promotion, Pathogenicity and Monitoring. Agronomy. 2025; 15(7):1699. https://doi.org/10.3390/agronomy15071699
Chicago/Turabian StyleWang, Quanzhi, Yibing Han, Zhaoyi Yu, Siyuan Tian, Pengpeng Sun, Yixiao Shi, Chao Peng, Tingting Gu, and Zhen Li. 2025. "Fungi in Horticultural Crops: Promotion, Pathogenicity and Monitoring" Agronomy 15, no. 7: 1699. https://doi.org/10.3390/agronomy15071699
APA StyleWang, Q., Han, Y., Yu, Z., Tian, S., Sun, P., Shi, Y., Peng, C., Gu, T., & Li, Z. (2025). Fungi in Horticultural Crops: Promotion, Pathogenicity and Monitoring. Agronomy, 15(7), 1699. https://doi.org/10.3390/agronomy15071699