Inversion Studies on the Heavy Metal Content of Farmland Soils Based on Spectroscopic Techniques: A Review
Abstract
1. Introduction
- (1)
- What is the spatial distribution of heavy metals in farmland soil, and what is the difference from other soils?
- (2)
- How can we determine the physical and chemical values of heavy metals in farmland soil (i.e., how can we obtain the model output value of the established inversion model)?
- (3)
- What are the ways to obtain spectral data (i.e., how can we obtain the model input value of the established inversion model)?
- (4)
- How can we reduce the influence of noise and interference in the obtained spectral data on the establishment of the inversion model?
- (5)
- How can we mitigate the problem of redundant information and dimension disasters in spectral data?
- (6)
- What are the current modeling methods used for heavy metal content in farmland soil based on spectral technology? How can we judge the quality of the model?
- (7)
- What are the problems in the current field? What are the research trends?
2. Data Acquisition and Platforms
2.1. Heterogeneity of Farmland Soils and Its Impact on Spectral Inversion
2.1.1. Soil Particle Size
2.1.2. Soil Layering
2.1.3. Soil Organic Matter
2.1.4. pH
2.2. Acquisition of Physical and Chemical Values
2.2.1. Pretreatment
2.2.2. Digestion
2.2.3. Instrumental Analysis
2.3. Inversion Platform Based on Spectroscopy
2.3.1. Proximal Sensing Spectroscopy
2.3.2. Airborne and Drone Spectral Remote Sensing
2.3.3. Spaceborne Hyperspectral Remote Sensing
3. Analysis of Spectral Data
3.1. Preprocessing of Spectral Data
3.1.1. Smoothing
3.1.2. Feature Enhancement
3.1.3. Correction for Sample Heterogeneity
3.2. Spectral Response Characteristics
3.2.1. Mechanism of Spectral Inversion
3.2.2. Feature Extraction
3.2.3. Spectral Index
3.3. Machine Learning Modeling Methods
3.3.1. Linear Regression Models
3.3.2. Nonlinear Models
3.3.3. Evaluation of Model Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviations | Full Name |
HM | Heavy Metal. |
HCA | Wet Chemical Analysis. |
AAS | Atomic Absorption Spectrometry. |
ICP-OES | Inductively Coupled Plasma Emission Spectrometry. |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry. |
XRF | X-ray Fluorescence Spectrometry. |
UV | Ultraviolet. |
VIS | Visible. |
NIR | Near-Infrared. |
SWIR | Short-Wave Infrared. |
VIS-NIR | Visible–Near Infrared. |
HRS | Hyperspectral Remote Sensing. |
USDA | United States Department of Agriculture. |
AFS | Atomic Fluorescence Spectrometry. |
ICP-AES | Inductively Coupled Plasma Atomic Emission Spectrometry. |
UAV | Unmanned Aerial Vehicle. |
VTOL | Vertical Take-Off and Landing. |
IFOV | Instantaneous Field of View. |
SHRS | Spaceborne Hyperspectral Remote Sensing. |
GF | Gaofen Series. |
OHS | Zhuhai No. 1. |
MODIS | Moderate Resolution Imaging Spectroradiometer. |
NDVI | Normalized Difference Vegetation Index. |
SG | Savitzky–Golay Smoothing. |
WT | Wavelet Transform. |
LOESS | Localized Weighted Regression. |
EMD | Empirical Modal Decomposition. |
CR | Continuum Removal. |
FD | First Derivative. |
SD | Second Derivative. |
FOD | Fractional-Order Derivative. |
FWHM | Full Width at Half Maximum. |
SNV | Standard Normal Variable. |
MSC | Multivariate Scattering Correction. |
EPO | External Parameter Orthogonalization. |
DS | Direct Standardization. |
SOC | Soil Organic Carbon. |
NCL | Normalized by Closure. |
PLSR | Partial Least Squares Regression. |
VIF | Variance Inflation Factor. |
MIR | Mid-Infrared. |
PCA | Principal Component Analysis. |
UVE | Uninformative Variable Elimination. |
SPA | Successive Projection Algorithm. |
GA | Genetic Algorithm. |
CARS | Competitive Adaptive Reweighted Sampling. |
DIs | Difference Indices. |
RIs | Ratio Indices. |
NDIs | Normalized Difference Indices. |
MLR | Multiple Linear Regression. |
SAVI | Soil Adjusted Vegetation Index. |
RVSI | Red-edge Vegetation Stress Index. |
HMSVI | Heavy Metal Vegetation Stress Index. |
REP | Red-edge Position. |
PCR | Principal Component Regression. |
RF | Random Forest. |
SVM | Support Vector Machine. |
BRNNs | Bayesian Regularized Neural Networks. |
RR | Ridge Regression. |
GBDT | Gradient Boosted Decision Tree. |
XGBoost | eXtreme Gradient Boosting. |
ANNs | Artificial Neural Networks. |
BPNN | Back-Propagation Neural Network. |
ELM | Extreme Learning Machine. |
RPD | Residual Prediction Deviation. |
RMSE | Root Mean Square Error. |
RPIQ | Ratio of Performance to Quartiles. |
GRNN | Generalized Regression Neural Network. |
References
- Chen, W.; Yang, Y.; Xie, T.; Wang, M.; Peng, C.; Wang, R. Challenges and countermeasures for heavy metal pollution control in farmlands of China. Acta Pedol. Sin. 2018, 55, 261–272. [Google Scholar]
- M. Tahat, M.; M. Alananbeh, K.; A. Othman, Y.; I. Leskovar, D. Soil health and sustainable agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; Ma, Y.; Zhu, Y.-G.; Tang, Z.; McGrath, S.P. Soil contamination in China: Current status and mitigation strategies. Environ. Sci. Technol. 2015, 49, 750–759. [Google Scholar] [CrossRef]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A.; et al. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Huang, L.; Wu, H.; van der Kuijp, T.J. The health effects of exposure to arsenic-contaminated drinking water: A review by global geographical distribution. Int. J. Environ. Health Res. 2015, 25, 432–452. [Google Scholar] [CrossRef] [PubMed]
- Teng, Y.; Ni, S.; Wang, J.; Zuo, R.; Yang, J. A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China. J. Geochem. Explor. 2010, 104, 118–127. [Google Scholar] [CrossRef]
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- Sharma, S.; Srushtideep, A. Precision Agriculture and Its Future. Int. J. Plant Soil Sci. 2022, 34, 200–204. [Google Scholar] [CrossRef]
- Shi, T.; Liu, H.; Wang, J.; Chen, Y.; Fei, T.; Wu, G. Monitoring arsenic contamination in agricultural soils with reflectance spectroscopy of rice plants. Environ. Sci. Technol. 2014, 48, 6264–6272. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Kästner, F.; Sut-Lohmann, M.; Ramezany, S.; Raab, T.; Feilhauer, H.; Chabrillat, S. Estimating heavy metal concentrations in Technosols with reflectance spectroscopy. Geoderma 2022, 406, 115512. [Google Scholar] [CrossRef]
- Cheng, H.; Shen, R.; Chen, Y.; Wan, Q.; Shi, T.; Wang, J.; Wan, Y.; Hong, Y.; Li, X. Estimating heavy metal concentrations in suburban soils with reflectance spectroscopy. Geoderma 2019, 336, 59–67. [Google Scholar] [CrossRef]
- Wang, Y.L.; Zou, B.; Chai, L.Y.; Lin, Z.; Feng, H.H.; Tang, Y.Q.; Tian, R.C.; Tu, Y.L.; Zhang, B.; Zou, H.J. Monitoring of soil heavy metals based on hyperspectral remote sensing: A review. Earth-Sci. Rev. 2024, 254, 104814. [Google Scholar] [CrossRef]
- Jia, X.Y.; O’Connor, D.; Shi, Z.; Hou, D.Y. VIRS based detection in combination with machine learning for mapping soil pollution. Environ. Pollut. 2021, 268, 115845. [Google Scholar] [CrossRef] [PubMed]
- Kemper, T.; Sommer, S. Use of airborne hyperspectral data to estimate residual heavy metal contamination and acidification potential in the Guadiamar floodplain Andalusia, Spain after the Aznacollar mining accident. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IV, Maspalomas, Spain, 14–16 September 2004; pp. 224–234. [Google Scholar]
- Yuan, X.; Xue, N.; Han, Z. A meta-analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years. J. Environ. Sci. 2021, 101, 217–226. [Google Scholar] [CrossRef]
- Yu, H.; Li, C.; Yan, J.; Ma, Y.; Zhou, X.; Yu, W.; Kan, H.; Meng, Q.; Xie, R.; Dong, P. A review on adsorption characteristics and influencing mechanism of heavy metals in farmland soil. RSC Adv. 2023, 13, 3505–3519. [Google Scholar] [CrossRef]
- Wang, N.; Luo, Y.; Liu, Z.; Sun, Y. Spatial distribution characteristics and evaluation of soil pollution in coal mine areas in Loess Plateau of northern Shaanxi. Sci. Rep. 2022, 12, 16440. [Google Scholar] [CrossRef]
- Zhang, S.; Shen, Q.; Nie, C.; Huang, Y.; Wang, J.; Hu, Q.; Ding, X.; Zhou, Y.; Chen, Y. Hyperspectral inversion of heavy metal content in reclaimed soil from a mining wasteland based on different spectral transformation and modeling methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 211, 393–400. [Google Scholar] [CrossRef]
- Yu, X.; Liu, Q.; Wang, Y.; Liu, X.; Liu, X. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula. Catena 2016, 137, 340–349. [Google Scholar] [CrossRef]
- Huang, B.; Li, Z.; Huang, J.; Guo, L.; Nie, X.; Wang, Y.; Zhang, Y.; Zeng, G. Adsorption characteristics of Cu and Zn onto various size fractions of aggregates from red paddy soil. J. Hazard. Mater. 2014, 264, 176–183. [Google Scholar] [CrossRef]
- Li, Q.; Tian, R.; Yang, Q. Insight into mechanisms of heavy metal-induced natural clay aggregation. Appl. Clay Sci. 2023, 231, 106746. [Google Scholar] [CrossRef]
- Chau, J.F.; Bagtzoglou, A.C.; Willig, M.R. The effect of soil texture on richness and diversity of bacterial communities. Environ. Forensics 2011, 12, 333–341. [Google Scholar] [CrossRef]
- Acosta, J.A.; Cano, A.F.; Arocena, J.; Debela, F.; Martínez-Martínez, S. Distribution of metals in soil particle size fractions and its implication to risk assessment of playgrounds in Murcia City (Spain). Geoderma 2009, 149, 101–109. [Google Scholar] [CrossRef]
- Ljung, K.; Selinus, O.; Otabbong, E.; Berglund, M. Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Appl. Geochem. 2006, 21, 1613–1624. [Google Scholar] [CrossRef]
- Zhao, Y.; Hou, Y.; Wang, F. Ecological Risk and Pollution Assessment of Heavy Metals in Farmland Soil Profile with Consideration of Atmosphere Deposition in Central China. Toxics 2024, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Zhong, K.; Xu, R.-k.; Zhao, A.-z.; Jiang, J.; Tiwari, D.; Li, H. Adsorption and desorption of Cu (II) and Cd (II) in the tropical soils during pedogenesis in the basalt from Hainan, China. Carbonates Evaporites 2010, 25, 27–34. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, H.; Liu, F.; Ju, X.; Dinis, F.; Yu, E.; Yu, Z. Source identification and superposition effect of heavy metals (HMs) in agricultural soils at a high geological background area of Karst: A case study in a typical watershed. Int. J. Environ. Res. Public Health 2022, 19, 11374. [Google Scholar] [CrossRef]
- Yuan, G.; Lavkulich, L. Sorption behavior of copper, zinc, and cadmium in response to simulated changes in soil properties. Commun. Soil Sci. Plant Anal. 1997, 28, 571–587. [Google Scholar] [CrossRef]
- Sharma, V.; Chauhan, R.; Kumar, R. Spectral characteristics of organic soil matter: A comprehensive review. Microchem. J. 2021, 171, 106836. [Google Scholar] [CrossRef]
- Yang, S.; Taylor, D.; Yang, D.; He, M.; Liu, X.; Xu, J. A synthesis framework using machine learning and spatial bivariate analysis to identify drivers and hotspots of heavy metal pollution of agricultural soils. Environ. Pollut. 2021, 287, 117611. [Google Scholar] [CrossRef]
- Khanlari, Z.V.; Jalali, M. Concentrations and chemical speciation of five heavy metals (Zn, Cd, Ni, Cu, and Pb) in selected agricultural calcareous soils of Hamadan Province, western Iran. Arch. Agron. Soil Sci. 2008, 54, 19–32. [Google Scholar] [CrossRef]
- Mustapha, A.; Aris, A.Z. Multivariate Statistical Analysis and Environmental Modeling of Heavy Metals Pollution by Industries. Pol. J. Environ. Stud. 2012, 21, 1359–1367. [Google Scholar]
- Zhang, H.; Liu, J.; Li, F. Spatial distributions and controlled factors of heavy metals in surface soils in Guangdong based on the regional geology. Ecol. Environ. 2011, 20, 646. [Google Scholar]
- Uchimiya, M.; Bannon, D.; Nakanishi, H.; McBride, M.B.; Williams, M.A.; Yoshihara, T. Chemical speciation, plant uptake, and toxicity of heavy metals in agricultural soils. J. Agric. Food Chem. 2020, 68, 12856–12869. [Google Scholar] [CrossRef]
- Kemper, T.; Sommer, S. Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ. Sci. Technol. 2002, 36, 2742–2747. [Google Scholar] [CrossRef]
- da Silva, Y.J.A.B.; do Nascimento, C.W.A.; Biondi, C.M. Comparison of USEPA digestion methods to heavy metals in soil samples. Environ. Monit. Assess. 2014, 186, 47–53. [Google Scholar] [CrossRef]
- Akhter, P.; Khan, Z.I.; Hussain, M.I.; Ahmad, K.; Farooq Awan, M.U.; Ashfaq, A.; Chaudhry, U.K.; Fahad Ullah, M.; Abideen, Z.; Almaary, K.S. Assessment of heavy metal accumulation in soil and garlic influenced by waste-derived organic amendments. Biology 2022, 11, 850. [Google Scholar] [CrossRef]
- Yang, X.; Cheng, B.; Gao, Y.; Zhang, H.; Liu, L. Heavy metal contamination assessment and probabilistic health risks in soil and maize near coal mines. Front. Public Health 2022, 10, 1004579. [Google Scholar] [CrossRef]
- Jalbani, N.; Kazi, T.G.; Arain, B.M.; Jamali, M.K.; Afridi, H.I.; Sarfraz, R.A. Application of factorial design in optimization of ultrasonic-assisted extraction of aluminum in juices and soft drinks. Talanta 2006, 70, 307–314. [Google Scholar] [CrossRef]
- Stanciu-Burileanu, M.M.; Stroe, V.M.; Rizea, N.; Musat, M. Comparison of digestion methods for total content of microelements in soil samples by HG-AAS. Rom. Biotechnol. Lett. 2015, 20, 10107–10113. [Google Scholar]
- Huang, X.; Wang, X.; Wu, Q.; Zhang, Z.; Yang, H.; Wen, X. Effects of Multiple-Metal-Compound Contamination on the Soil Microbial Community in Typical Karst Tea Plantations. Forests 2023, 14, 1840. [Google Scholar] [CrossRef]
- Zheng, S.; Wang, Q.; Yuan, Y.; Sun, W. Human health risk assessment of heavy metals in soil and food crops in the Pearl River Delta urban agglomeration of China. Food Chem. 2020, 316, 126213. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Jiang, C.; Ma, Q.; Zhou, H.; Xu, Y.; Yu, W. Study on Contents and Budgets of Cu, Zn and Cd in an Arable Soil Using AAS. Guang Pu Xue Yu Guang Pu Fen Xi= Guang Pu 2015, 35, 3505–3509. [Google Scholar]
- Mahmood, A.; Mahmoud, A.H.; El-Abedein, A.I.Z.; Ashraf, A.; Almunqedhi, B.M. A comparative study of metals concentration in agricultural soil and vegetables irrigated by wastewater and tube well water. J. King Saud Univ. Sci. 2020, 32, 1861–1864. [Google Scholar] [CrossRef]
- Nolos, R.C.; Agarin, C.J.M.; Domino, M.Y.R.; Bonifacio, P.B.; Chan, E.B.; Mascareñas, D.R.; Senoro, D.B. Health risks due to metal concentrations in soil and vegetables from the six municipalities of the Island Province in the Philippines. Int. J. Environ. Res. Public Health 2022, 19, 1587. [Google Scholar] [CrossRef]
- Rossel, R.V.; Adamchuk, V.; Sudduth, K.; McKenzie, N.; Lobsey, C. Proximal soil sensing: An effective approach for soil measurements in space and time. Adv. Agron. 2011, 113, 243–291. [Google Scholar]
- Kooistra, L.; Wanders, J.; Epema, G.; Leuven, R.; Wehrens, R.; Buydens, L. The potential of field spectroscopy for the assessment of sediment properties in river floodplains. Anal. Chim. Acta 2003, 484, 189–200. [Google Scholar] [CrossRef]
- Rossel, R.V.; Cattle, S.; Ortega, A.; Fouad, Y. In situ measurements of soil colour, mineral composition and clay content by vis–NIR spectroscopy. Geoderma 2009, 150, 253–266. [Google Scholar] [CrossRef]
- Pandit, C.M.; Filippelli, G.M.; Li, L. Estimation of heavy-metal contamination in soil using reflectance spectroscopy and partial least-squares regression. Int. J. Remote Sens. 2010, 31, 4111–4123. [Google Scholar] [CrossRef]
- Tan, K.; Ye, Y.; Cao, Q.; Du, P.; Dong, J. Estimation of arsenic contamination in reclaimed agricultural soils using reflectance spectroscopy and ANFIS model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2540–2546. [Google Scholar] [CrossRef]
- Xu, X.; Chen, S.; Ren, L.; Han, C.; Lv, D.; Zhang, Y.; Ai, F. Estimation of heavy metals in agricultural soils using vis-NIR spectroscopy with fractional-order derivative and generalized regression neural network. Remote Sens. 2021, 13, 2718. [Google Scholar] [CrossRef]
- Zhang, X.; Sun, W.; Cen, Y.; Zhang, L.; Wang, N. Predicting cadmium concentration in soils using laboratory and field reflectance spectroscopy. Sci. Total Environ. 2019, 650, 321–334. [Google Scholar] [CrossRef]
- Yi, X.-s.; Lan, A.-j.; Wen, X.-m.; Zhang, Y.; Li, Y. Monitoring of heavy metals in farmland soils based on ASD and GaiaSky-mini. Chin. J. Ecol. 2018, 37, 1781. [Google Scholar]
- Ning, J.; Zou, B.; Tu, Y.L.; Zhang, X.; Wang, Y.L.; Tian, R.C. Evaluation of Soil As Concentration Estimation Method Based on Spectral Indices. Spectrosc. Spectr. Anal. 2024, 44, 1472–1481. [Google Scholar]
- Marín-González, O.; Kuang, B.Y.; Quraishi, M.Z.; Munóz-García, M.A.; Mouazen, A.M. On-line measurement of soil properties without direct spectral response in near infrared spectral range. Soil Tillage Res. 2013, 132, 21–29. [Google Scholar] [CrossRef]
- Farrand, W.H.; Harsanyi, J.C. Mapping the distribution of mine tailings in the Coeur d’Alene River Valley, Idaho, through the use of a constrained energy minimization technique. Remote Sens. Environ. 1997, 59, 64–76. [Google Scholar] [CrossRef]
- Tan, K.; Wang, H.; Chen, L.; Du, Q.; Du, P.; Pan, C. Estimation of the spatial distribution of heavy metal in agricultural soils using airborne hyperspectral imaging and random forest. J. Hazard. Mater. 2020, 382, 120987. [Google Scholar] [CrossRef]
- Alvarez-Vanhard, E.; Corpetti, T.; Houet, T. UAV & satellite synergies for optical remote sensing applications: A literature review. Sci. Remote Sens. 2021, 3, 100019. [Google Scholar]
- Huang, Z.Q.; Huang, W.X.; Li, S.; Ni, B.; Zhang, Y.L.; Wang, M.W.; Chen, M.L.; Zhu, F.X. Inversion Evaluation of Rare Earth Elements in Soil by Visible-Shortwave Infrared Spectroscopy. Remote Sens. 2021, 13, 4886. [Google Scholar] [CrossRef]
- Ge, W.Y.; Li, X.X.; Jing, L.H.; Han, J.Q.; Wang, F. Monitoring canopy-scale autumn leaf phenology at fine-scale using unmanned aerial vehicle (UAV) photography. Agric. For. Meteorol. 2023, 332, 109372. [Google Scholar] [CrossRef]
- Lin, N.; Shao, X.; Wu, H.; Jiang, R.; Wu, M. Heavy Metal Concentration Estimation for Different Farmland Soils Based on Projection Pursuit and LightGBM with Hyperspectral Images. Sensors 2024, 24, 3251. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Y.; Wang, X.; Wang, S.; Zhang, L. Advances in spaceborne hyperspectral remote sensing in China. Geo-Spat. Inf. Sci. 2021, 24, 95–120. [Google Scholar] [CrossRef]
- Singh, P.; Pandey, P.C.; Petropoulos, G.P.; Pavlides, A.; Srivastava, P.K.; Koutsias, N.; Deng, K.A.K.; Bao, Y. Hyperspectral remote sensing in precision agriculture: Present status, challenges, and future trends. In Hyperspectral Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2020; pp. 121–146. [Google Scholar]
- Guo, H.; Yang, K.; Wu, F.; Chen, Y.; Shen, J. Regional inversion of soil heavy metal Cr content in agricultural land using Zhuhai-1 hyperspectral images. Sensors 2023, 23, 8756. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chen, S.; Dai, X.; Li, D.; Jiang, H.; Jia, K. Coupled retrieval of heavy metal nickel concentration in agricultural soil from spaceborne hyperspectral imagery. J. Hazard. Mater. 2023, 446, 130722. [Google Scholar] [CrossRef]
- Yao, L.W.; Xu, M.J.; Liu, Y.H.; Niu, R.Q.; Wu, X.L.; Song, Y.X. Estimating of heavy metal concentration in agricultural soils from hyperspectral satellite sensor imagery: Considering the sources and migration pathways of pollutants. Ecol. Indic. 2024, 158, 111416. [Google Scholar] [CrossRef]
- Nawar, S.; Buddenbaum, H.; Hill, J.; Kozak, J.; Mouazen, A.M. Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil Tillage Res. 2016, 155, 510–522. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, Z.; Chen, X.; Fei, S. Preprocessing methods for near-infrared spectrum calibration. J. Chemom. 2020, 34, e3306. [Google Scholar] [CrossRef]
- Gholizadeh, A.; BORŮVKA, L.; Saberioon, M.M.; Kozák, J.; Vašát, R.; Němeček, K. Comparing different data preprocessing methods for monitoring soil heavy metals based on soil spectral features. Soil Water Res. 2015, 10, 218–227. [Google Scholar] [CrossRef]
- Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, B.; Su, Y.; Zhang, D.; Wang, Y.; Bian, Y.; Suo, L.; Guo, X.; Bai, H. Retrieving zinc concentrations in topsoil with reflectance spectroscopy at Opencast Coal Mine sites. Sci. Rep. 2021, 11, 19909. [Google Scholar] [CrossRef] [PubMed]
- Lv, J.; Geng, J.; Xu, X.; Yu, Y.; Fang, H.; Guo, Y.; Cheng, S. Estimating Cadmium Concentration in Agricultural Soils with ZY1-02D Hyperspectral Data: A Comparative Analysis of Spectral Transformations and Machine Learning Models. Agriculture 2024, 14, 1619. [Google Scholar] [CrossRef]
- Subi, X.; Eziz, M.; Zhong, Q.; Li, X. Estimating the chromium concentration of farmland soils in an arid zone from hyperspectral reflectance by using partial least squares regression methods. Ecol. Indic. 2024, 161, 111987. [Google Scholar] [CrossRef]
- Fu, C.B.; Xiong, H.G.; Tian, A.H. Study on the Effect of Fractional Derivative on the Hyperspectral Data of Soil Organic Matter Content in Arid Region. J. Spectrosc. 2019, 2019, 7159317. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Peng, Y.; Zhao, L.; Wang, G.; Hu, Y. Estimation of soil heavy metal content using hyperspectral data. Remote Sens. 2019, 11, 1464. [Google Scholar] [CrossRef]
- Barnes, R.; Dhanoa, M.S.; Lister, S.J. Standard normal variate transformation and de-trending of near-infrared diffuse reflectance spectra. Appl. Spectrosc. 1989, 43, 772–777. [Google Scholar] [CrossRef]
- Geladi, P.; MacDougall, D.; Martens, H. Linearization and scatter-correction for near-infrared reflectance spectra of meat. Appl. Spectrosc. 1985, 39, 491–500. [Google Scholar] [CrossRef]
- Guerrero, C.; Zornoza, R.; Gómez, I.; Mataix-Beneyto, J. Spiking of NIR regional models using samples from target sites: Effect of model size on prediction accuracy. Geoderma 2010, 158, 66–77. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, C.; Lu, Y.; Shen, Q.; Zhao, H.; Tao, Y.; Pan, X. Evaluating the characteristics of soil vis-NIR spectra after the removal of moisture effect using external parameter orthogonalization. Geoderma 2020, 376, 114568. [Google Scholar] [CrossRef]
- Ji, W.; Li, S.; Chen, S.; Shi, Z.; Rossel, R.A.V.; Mouazen, A.M. Prediction of soil attributes using the Chinese soil spectral library and standardized spectra recorded at field conditions. Soil Tillage Res. 2016, 155, 492–500. [Google Scholar] [CrossRef]
- Chen, Y.; Qi, K.; Liu, Y.; He, J.; Jiang, Q. Transferability of Hyperspectral Model for Estimating Soil Organic Matter Concerned with Soil Moisture. Spectrosc. Spectr. Anal. 2015, 35, 1705–1708. [Google Scholar]
- Knadel, M.; Castaldi, F.; Barbetti, R.; Ben-Dor, E.; Gholizadeh, A.; Lorenzetti, R. Mathematical techniques to remove moisture effects from visible–near-infrared–shortwave-infrared soil spectra. Appl. Spectrosc. Rev. 2023, 58, 629–662. [Google Scholar] [CrossRef]
- Tamburini, E.; Vincenzi, F.; Costa, S.; Mantovi, P.; Pedrini, P.; Castaldelli, G. Effects of moisture and particle size on quantitative determination of total organic carbon (TOC) in soils using near-infrared spectroscopy. Sensors 2017, 17, 2366. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, Y.; Hong, Y.; Wei, Y.; Guo, L. Estimation of Soil Organic Carbon Content by Imaging Spectroscopy with Soil Roughness. Spectrosc. Spectr. Anal. 2022, 42, 2788–2794. [Google Scholar]
- Tan, K.; Wang, H.; Zhang, Q.; Jia, X. An improved estimation model for soil heavy metal (loid) concentration retrieval in mining areas using reflectance spectroscopy. J. Soils Sediments 2018, 18, 2008–2022. [Google Scholar] [CrossRef]
- Kooistra, L.; Wehrens, R.; Leuven, R.; Buydens, L. Possibilities of visible–near-infrared spectroscopy for the assessment of soil contamination in river floodplains. Anal. Chim. Acta 2001, 446, 97–105. [Google Scholar] [CrossRef]
- Guo, T.; Zhang, T.; Lim, E.; Lopez-Benitez, M.; Ma, F.; Yu, L. A review of wavelet analysis and its applications: Challenges and opportunities. IEEE Access 2022, 10, 58869–58903. [Google Scholar] [CrossRef]
- Lu, Q.; Wang, S.; Bai, X.; Liu, F.; Wang, M.; Wang, J.; Tian, S. Rapid inversion of heavy metal concentration in karst grain producing areas based on hyperspectral bands associated with soil components. Microchem. J. 2019, 148, 404–411. [Google Scholar] [CrossRef]
- Xiao, D.; Huang, J.; Li, J.; Fu, Y.; Li, Z. Inversion study of cadmium content in soil based on reflection spectroscopy and MSC-ELM model. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121696. [Google Scholar] [CrossRef]
- Shen, Q.; Xia, K.; Zhang, S.; Kong, C.; Hu, Q.; Yang, S. Hyperspectral indirect inversion of heavy-metal copper in reclaimed soil of iron ore area. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 222, 117191. [Google Scholar] [CrossRef]
- Demattê, J.A.; Campos, R.C.; Alves, M.C.; Fiorio, P.R.; Nanni, M.R. Visible–NIR reflectance: A new approach on soil evaluation. Geoderma 2004, 121, 95–112. [Google Scholar] [CrossRef]
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smeth, B.; Kim, K.-W. Mapping of heavy metal pollution in stream sediments using combined geochemistry, field spectroscopy, and hyperspectral remote sensing: A case study of the Rodalquilar mining area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Wu, Y.; Shen, G.; Liu, L.; Zhi, Y. Hyperspectral characteristics of soil organic matter and inversion methods. J. Shan. Jiaotong. Univ. 2019, 37, 37–43. [Google Scholar]
- Araújo, S.R.; Demattê, J.A.; Vicente, S. Soil contaminated with chromium by tannery sludge and identified by vis-NIR-mid spectroscopy techniques. Int. J. Remote Sens. 2014, 35, 3579–3593. [Google Scholar] [CrossRef]
- Wu, Y.Z.; Chen, J.; Ji, J.F.; Tian, Q.J.; Wu, X.M. Feasibility of reflectance spectroscopy for the assessment of soil mercury contamination. Environ. Sci. Technol. 2005, 39, 873–878. [Google Scholar] [CrossRef] [PubMed]
- Vohland, M.; Ludwig, M.; Thiele-Bruhn, S.; Ludwig, B. Determination of soil properties with visible to near- and mid-infrared spectroscopy: Effects of spectral variable selection. Geoderma 2014, 223, 88–96. [Google Scholar] [CrossRef]
- Christl, I.; Kretzschmar, R. Competitive sorption of copper and lead at the oxide-water interface: Implications for surface site density. Geochim. Cosmochim. Acta 1999, 63, 2929–2938. [Google Scholar] [CrossRef]
- Moros, J.; Vallejuelo, S.F.-O.d.; Gredilla, A.; Diego, A.d.; Madariaga, J.M.; Garrigues, S.; Guardia, M.d.l. Use of reflectance infrared spectroscopy for monitoring the metal content of the estuarine sediments of the Nerbioi-Ibaizabal River (Metropolitan Bilbao, Bay of Biscay, Basque Country). Environ. Sci. Technol. 2009, 43, 9314–9320. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, S.; Xu, C.; Li, Y.; Bai, W.; Fan, Z.; Wang, Y.; Li, Q. Determination of soil parameters in apple-growing regions by near-and mid-infrared spectroscopy. Pedosphere 2011, 21, 591–602. [Google Scholar] [CrossRef]
- Chen, T.; Chang, Q.; Clevers, J.; Kooistra, L. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy. Environ. Pollut. 2015, 206, 217–226. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.; Chen, L.; Wang, H.; Du, Q.; Du, P.; Yan, B.; Liu, R.; Li, H. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288. [Google Scholar] [CrossRef]
- Ye, H.; Sugihara, G. Information leverage in interconnected ecosystems: Overcoming the curse of dimensionality. Science 2016, 353, 922–925. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Cowie, A.; Clark, A.; Li Liu, D.; Simpson, M.; McGowen, I.; Sides, T. Estimating soil organic carbon stocks using different modelling techniques in the semi-arid rangelands of eastern Australia. Ecol. Indic. 2018, 88, 425–438. [Google Scholar] [CrossRef]
- Liu, K.; Zhao, D.; Fang, J.-y.; Zhang, X.; Zhang, Q.-y.; Li, X.-k. Estimation of heavy-metal contamination in soil using remote sensing spectroscopy and a statistical approach. J. Indian Soc. Remote Sens. 2017, 45, 805–813. [Google Scholar] [CrossRef]
- Goodarzi, R.; Mokhtarzade, M.; Valadan Zoej, M.J. A robust fuzzy neural network model for soil lead estimation from spectral features. Remote Sens. 2015, 7, 8416–8435. [Google Scholar] [CrossRef]
- Centner, V.; Massart, D.L.; de Noord, O.E.; de Jong, S.; Vandeginste, B.M.; Sterna, C. Elimination of uninformative variables for multivariate calibration. Anal. Chem. 1996, 68, 3851–3858. [Google Scholar] [CrossRef]
- Beattie, J.R.; Esmonde-White, F.W.L. Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra. Appl. Spectrosc. 2021, 75, 361–375. [Google Scholar] [CrossRef]
- Zhang, H.L.; Luo, W.; Liu, X.M.; He, Y. Measurement of Soil Organic Matter with Near Infrared Spectroscopy Combined with Genetic Algorithm and Successive Projection Algorithm. Spectrosc. Spectr. Anal. 2017, 37, 584–587. [Google Scholar]
- Zhong, L.; Yang, S.; Rong, Y.; Qian, J.; Zhou, L.; Li, J.; Sun, Z. Indirect Estimation of Heavy Metal Contamination in Rice Soil Using Spectral Techniques. Plants 2024, 13, 831. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Liu, S.; Zhang, X.; Zhu, H. Performance of hyperspectral data in predicting and mapping zinc concentration in soil. Sci. Total Environ. 2022, 824, 153766. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Li, L.; Han, L.; Gao, K.; Qu, S.; Li, J. Retrieving heavy metal concentrations in urban soil using satellite hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2024, 132, 104079. [Google Scholar] [CrossRef]
- Tu, Y.; Zou, B.; Feng, H.; Zhou, M.; Yang, Z.; Xiong, Y. A near standard soil samples spectra enhanced modeling strategy for Cd concentration prediction. Remote Sens. 2021, 13, 2657. [Google Scholar] [CrossRef]
- Yuan, Z.; Wei, L.; Zhang, Y.; Yu, M.; Yan, X. Hyperspectral Inversion and Analysis of Heavy Metal Arsenic Content in Farmland Soil Based on Optimizing CARS Combined with PSO-SVM Algorithm. Spectrosc. Spectr. Anal. 2020, 40, 567–573. [Google Scholar]
- Kursa, M.B.; Jankowski, A.; Rudnicki, W.R. Boruta–a system for feature selection. Fundam. Informaticae 2010, 101, 271–285. [Google Scholar] [CrossRef]
- Han, C.; Lu, J.; Chen, S.; Xu, X.; Wang, Z.; Pei, Z.; Zhang, Y.; Li, F. Estimation of heavy metal (loid) contents in agricultural soil of the suzi river basin using optimal spectral indices. Sustainability 2021, 13, 12088. [Google Scholar] [CrossRef]
- Fu, P.; Yang, K.; Meng, F.; Zhang, W.; Cui, Y.; Feng, F.; Yao, G. A new three-band spectral and metal element index for estimating soil arsenic content around the mining area. Process Saf. Environ. Prot. 2022, 157, 27–36. [Google Scholar] [CrossRef]
- Chen, L.; Lai, J.; Tan, K.; Wang, X.; Chen, Y.; Ding, J. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism. Sci. Total Environ. 2022, 813, 151882. [Google Scholar] [CrossRef]
- Liu, H.; Niu, T.; Yu, Q.; Su, k.; Yang, L.; Liu, W.; Wang, H. Inversion and Estimation of Heavy Metal Element Content in Peach ForestSoil in Pinggu District of Beijing. Spectrosc. Spectr. Anal. 2022, 42, 3552–3558. [Google Scholar]
- Clevers, J.; Kooistra, L.; Salas, E. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int. J. Remote Sens. 2004, 25, 3883–3895. [Google Scholar] [CrossRef]
- Li, T.; Liu, X.; Liu, M. Regional application and verification of spectral analysis model for assessing heavy-metal stress of rice. Trans. Chin. Soc. Agric. Eng. 2012, 28, 176–182. [Google Scholar]
- Malley, D.; Williams, P. Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter. Environ. Sci. Technol. 1997, 31, 3461–3467. [Google Scholar] [CrossRef]
- Xu, D.; Chen, S.; Xu, H.; Wang, N.; Zhou, Y.; Shi, Z. Data fusion for the measurement of potentially toxic elements in soil using portable spectrometers. Environ. Pollut. 2020, 263, 114649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, S.; Shang, T.; Liu, J.; Meng, X. Characterization and source analysis of heavy metal contamination in agricultural soils in the plains river network area. J. Agro-Environ. Sci. 2024, 43, 215. [Google Scholar]
- Yousefi, G.; Homaee, M.; Norouzi, A.A. Estimating soil heavy metals concentration at large scale using visible and near-infrared reflectance spectroscopy. Environ. Monit. Assess. 2018, 190, 513. [Google Scholar] [CrossRef]
- Han, A.; Lu, X.; Qing, S.; Bao, Y.; Bao, Y.; Ma, Q.; Liu, X.; Zhang, J. Rapid determination of low heavy metal concentrations in grassland soils around mining using Vis–NIR spectroscopy: A case study of Inner Mongolia, China. Sensors 2021, 21, 3220. [Google Scholar] [CrossRef]
- Chabrillat, S.; Ben-Dor, E.; Cierniewski, J.; Gomez, C.; Schmid, T.; van Wesemael, B. Imaging spectroscopy for soil mapping and monitoring. Surv. Geophys. 2019, 40, 361–399. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Mouazen, A.M.; Nyarko, F.; Qaswar, M.; Tóth, G.; Gobin, A.; Moshou, D. Spatiotemporal prediction and mapping of heavy metals at regional scale using regression methods and Landsat 7. Remote Sens. 2021, 13, 4615. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Y.; Shen, R.; Chen, S.; Xu, G.; Cheng, H.; Guo, L.; Wei, Z.; Yang, J.; Liu, Y. Diagnosis of cadmium contamination in urban and suburban soils using visible-to-near-infrared spectroscopy. Environ. Pollut. 2021, 291, 118128. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.; Wu, F.; Du, Q. Random forest–based estimation of heavy metal concentration in agricultural soils with hyperspectral sensor data. Environ. Monit. Assess. 2019, 191, 446. [Google Scholar] [CrossRef]
- Cortes, C. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, X.H.; He, X.K.; Zhang, L.D.; Zhao, L.L.; Li, J.H. Study on the Application of Ridge Regression to Near-Infrared Spectroscopy Quantitative Analysis and Optimum Wavelength Selection. Spectrosc. Spectr. Anal. 2010, 30, 1214–1217. [Google Scholar] [CrossRef]
- Li, X.Q.; Gu, H.T.; Tang, R.Y.; Zou, B.; Liu, X.N.; Ou, H.P.; Chen, X.Y.; Song, Y.B.; Luo, W.; Wen, B. A Fusion XGBoost Approach for Large-Scale Monitoring of Soil Heavy Metal in Farmland Using Hyperspectral Imagery. Agronomy 2025, 15, 676. [Google Scholar] [CrossRef]
- Yang, K.; Wu, F.; Guo, H.; Chen, D.; Deng, Y.; Huang, Z.; Han, C.; Chen, Z.; Xiao, R.; Chen, P. Hyperspectral Inversion of Soil Cu Content in Agricultural Land Based on Continuous Wavelet Transform and Stacking Ensemble Learning. Land 2024, 13, 1810. [Google Scholar] [CrossRef]
- Zhao, W.J.; Ma, H.; Zhou, C.; Zhou, C.Q.; Li, Z.L. Soil Salinity Inversion Model Based on BPNN Optimization Algorithm for UAV Multispectral Remote Sensing. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 6038–6047. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, W. Mapping mineral prospectivity using an extreme learning machine regression. Ore Geol. Rev. 2017, 80, 200–213. [Google Scholar] [CrossRef]
- Chakraborty, S.; Weindorf, D.C.; Deb, S.; Li, B.; Paul, S.; Choudhury, A.; Ray, D.P. Rapid assessment of regional soil arsenic pollution risk via diffuse reflectance spectroscopy. Geoderma 2017, 289, 72–81. [Google Scholar] [CrossRef]
- Pyo, J.; Hong, S.M.; Kwon, Y.S.; Kim, M.S.; Cho, K.H. Estimation of heavy metals using deep neural network with visible and infrared spectroscopy of soil. Sci. Total Environ. 2020, 741, 140162. [Google Scholar] [CrossRef] [PubMed]
- Nawar, S.; Mohamed, E.S.; Essam-Eldeen Sayed, S.; Mohamed, W.S.; Rebouh, N.Y.; Hammam, A.A. Estimation of key potentially toxic elements in arid agricultural soils using Vis-NIR spectroscopy with variable selection and PLSR algorithms. Front. Environ. Sci. 2023, 11, 1222871. [Google Scholar] [CrossRef]
- Zhong, Q.; Eziz, M.; Ainiwaer, M.; Sawut, R.; Hou, M. Hyperspectral estimation of mercury content of soil in Oasis city in arid zones of China. Geocarto Int. 2024, 39, 2299147. [Google Scholar] [CrossRef]
- Dong, J.; Dai, W.; Xu, J.; Li, S. Spectral estimation model construction of heavy metals in mining reclamation areas. Int. J. Environ. Res. Public Health 2016, 13, 640. [Google Scholar] [CrossRef]
- Wei, L.; Yuan, Z.; Yu, M.; Huang, C.; Cao, L. Estimation of arsenic content in soil based on laboratory and field reflectance spectroscopy. Sensors 2019, 19, 3904. [Google Scholar] [CrossRef]
- Bai, Z.; Han, L.; Jiang, X.; Wu, C. Effect of Differential Spectral Transformation on Soil Heavy Metal Content Inversion Accuracy. Spectrosc. Spectr. Anal. 2024, 44, 1449–1456. [Google Scholar]
- Su, Y.; Guo, B.; Lei, Y.; Zhang, D.; Guo, X.; Suo, L.; Zhao, Y.; Bian, Y. An indirect inversion scheme for retrieving toxic metal concentrations using ground-based spectral data in a reclamation coal mine, China. Water 2022, 14, 2784. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Bo, Y.; Zhuang, Q.Y.; Wang, A.P.; Shuang, C.; Tian, A.H.; Fu, C.B. Quantitative Inversion Model of Soil Heavy Metals Zn and Ni Based on Fractional Order Derivative. Spectrosc. Spectr. Anal. 2024, 44, 2850–2857. [Google Scholar]
Digestion Method | Advantages | Deficiencies | Applicability | Reference |
---|---|---|---|---|
Electrothermal plate digestion | Easy to operate, wide range of applications, good stability | May have an effect on the results of the experiment | Most elements | [41] |
Microwave digestion | High efficiency of digestion in a single pass, high sample recovery, precise control | Higher cost, difficult to achieve simultaneous digestion of large volumes of samples | Most elements | [40] |
Pressure tank digestion | Easy to operate, wide range of applications, low sample contamination | Low digestion efficiency and high operational requirements | Volatile elements | [42] |
Sensor | Mechanism | Bandrange/ Resolution | Manufacturer | Cost | Advantages | Shortcomings | Reference |
---|---|---|---|---|---|---|---|
ASD FieldSpec | Full-range VIS-NIR-SWIR reflectance | 350–2500 nm; 3 nm @700 nm, 10 nm @1400/2100 nm; 25° FOV | Malvern Panalytical, Malvern, UK | USD 50,000–70,000 | Gold-standard field accuracy; portable | Limited to point measurements; requires dark current calibration | [55] |
PSR-3500 | Handheld VIS-NIR-SWIR spectrometer | 350–2500 nm/3.5 nm @700 nm | Spectral Evolution, Haverhill, MA, USA | USD 22,000–28,000 | Low cost; portable | Requires sunlight optimization | [56] |
AgroSpec Mobile | Vehicle-mounted NIR spectrometer | 900–1700 nm/10 nm | Tec5, Steinbach, Germany | USD 28,000–35,000 | Multi-point measurement; portable | Incomplete bands | [57] |
Sensor | Mechanism | Bandrange/Resolution/Spatial Resolution | Manufacturer | Cost | Advantages | Shortcomings | Reference |
---|---|---|---|---|---|---|---|
HySpex (Airbone) | Push-broom imaging spectrometer | 400–2500 nm/1800 px/5.3 nm/0.5–19 m | Norsk Elektro, Oslo, Norway | USD 320,000+ | Full range of bands; high resolution | Requires ground calibration; high operational cost | [59] |
CASI-1500 (Airbone) | Programmable imaging spectrometer | 380–1050 nm/288 bands (2.2 nm FWHM)/1–5 m | ITRES, Calgary, AB, Canada | USD 400,000+ | Band customization for specific HM features; lightweight (15 kg) suits UAV integration | Limited to VIS-NIR | [61] |
AVIRIS-NG (Airbone) | Whiskbroom imaging spectrometer | 380–2510 nm/425 bands (5 nm)/3–20 m | NASA/JPL, La Cañada Flintridge, CA, USA | USD 10 M+ (system) | Full-range coverage identifies metal oxide features | Requires NASA aircraft; high cost | [58] |
GaiaSky-mini (UAV) | Grating-based VNIR-SWIR | 400–1000 nm/3.5 nm/8 cm@300 m AGL | Dualix, Wuxi, China | USD 48,000 | High stability; high resolution | Needs to be paired with drones; short battery life | [55] |
Headwall Nano-Hyperspec (UAV) | Grating Spectral CMOS | 400–1000 nm/6 nm/10 cm@100 m AGL | Headwall, Bolton, MA, USA | USD 80,000–120,000 | High stability; high resolution | Wind vulnerability; high cost | [60] |
DJI P4 Multispectral (UAV) | Filter multispectral camera | 6 bands (450–860 nm)/40 nm/5 cm@50 m AGL | DJI, Shenzhen, China | USD 6500 | Low cost; lightweight | Incomplete bands; low resolution; short battery life | [62] |
Sensor | Mechanism | Configuration | Manufacturer | Advantages | Shortcomings | Reference |
---|---|---|---|---|---|---|
Landsat-9 | MultiSpectral Imaging | 433–2290 nm; 9 bands; 30 GSD | NASA, Washington, DC, USA | Free data access | Wide bandwidth, poor weak signal capture capability | [64] |
Zhuhai-1 OHS | Prism Spectral Imaging | 400–1000 nm; 150 bands; 10 m GSD | Orbita, Zhuhai, China | 5-day revisit; 2.5 nm spectral resolution | Low signal-to-noise ratio for dark soils | [67] |
GF-5 AHSI | Dual grating spectrometer | 400–2500 nm; 330 bands; 30 m GSD | CAST, Beijing, China | Wide spectral coverage; free data access | Low resolution | [68] |
Preprocessing Methods | Advantages | Deficiencies | Applicability | Reference |
---|---|---|---|---|
SG | Effective waveform preservation, good noise reduction, high flexibility in parameter adjustment, and strong applicability | Possible data loss and overfitting; complex parameter selection | Most situations | [87] |
FD, SD, FOD | Effectively highlights signal peaks, details information, and reduces reflectance baseline drift | May cause an increase in high-frequency noise | Most situations | [88] |
WT | Spectral data can be analyzed on different scales to better match the characteristics of the signal and effectively extract information on different levels of spectral detail | High computational complexity; generates redundant information | Better effect on Zn, Cr, As, Cd, and Ni | [89] |
CR | Improve the signal-to-noise ratio of spectral data, reduce spectral noise, and facilitate subsequent feature extraction | Possible data loss | Better effect on Zn, Cd, Cr, Cu, As, and Pb | [71] |
SNV | Samples can be standardized, and interference from scattering effects, instruments, and soil sample heterogeneity can be reduced | Sensitivity to anomalous data | Suitable for eliminating differences in soil physical properties | [90] |
MSC | Improves signal-to-noise ratio, enhances characteristic absorption peaks, and reduces scattering effects and interference from heterogeneity of instrument and soil samples | May increase standard errors between samples | Suitable for eliminating differences in soil physical properties | [91] |
MC (Mean Centering) | Eliminates absolute spectral absorptions, removes scale differences between samples for analysis, and provides data visualization | May increase standard errors between samples | Most situations | [13] |
Region | Heavy Metals | Soil Types | Bands | Preprocessing Methods | Modeling Methods | Model Accuracy | Reference |
---|---|---|---|---|---|---|---|
Fuyang, China | Zn, Cu, Ni, Cr, As, Cd, Pb, Hg | Traditional farmland soils | VNIR-SWIR (350–2500 nm) | LT, SG, Boruta | PLSR, CUBIST | RMSE— As: 4.04 Cd: 0.19 Cr: 8.04 | [124] |
Calcutta, India | As | Vegetable soil | VNIR-SWIR (350–2500 nm) | SGFD | Elastic net | — As: 0.97 | [139] |
Xinjiang, China | Cr | Chilli soil | VNIR-SWIR (350–2500 nm) | SG, SD, LT | PLSR | — Cr: 0.903 | [75] |
Xuzhou, China | Cr, Cu, Pb | Wheat soil | VNIR-SWIR (400–2500 nm) | MODTRAN, VCA | RF | — Cr: 0.75 Cu: 0.68 Pb: 0.74 | [59] |
Fushun, China | Hg, Cu, Cr | Rice and vegetable soils | VNIR-SWIR (350–2500 nm) | FOD | GRNN, RF | — Cu: 0.65 Cr: 0.69 Hg: 0.70 | [53] |
Yushu, China | As, Cu | Maize, rice, soybean soils | VNIR-SWIR (400–2500 nm) | RF | PP–LightGBM | — As: 0.73 Cu: 0.75 | [63] |
Yixing, China | Cd, As | Rice soil | UV-VIS (301–1145 nm) | AFD | GA-PLSR | — As: 0.89 Cd: 0.77 | [111] |
Geum River, Korea | As, Cu, Pb | Farmland soils in mining areas | VNIR-SWIR (350–2500 nm) | SG, PCA | CACNN | — As: 0.82 Cu: 0.74 Pb: 0.82 | [140] |
Baoding, China | Cd | Orchard, rice soil | VNIR-SWIR (350–2500 nm) | SG | GA-PLSR | — Cd: 0.923 (Lab), 0.646 (Field) | [54] |
Baoding, China | Zn | Traditional farmland soils | VNIR-SWIR (400–2500 nm) | SG | GA-PLSR | — Zn: 0.75 | [112] |
Minya Governorate, Upper Egypt | Cd, Co, Cu, Cr, Pb, Zn | Wheat, maize, soybean, cotton, potato, and sugarcane soils | VNIR-SWIR (350–2500 nm) | SG, SD, UVE | UVE-PLS | — Cr: 0.74 Pb: 0.72 Cd: 0.62 Cu: 0.59 Co: 0.52 Zn: 0.46 | [141] |
Urumqi, China | Hg | Arid Zone Farmland Soil | VNIR-SWIR (350–2500 nm) | LTFD, ATFD | RF | — Hg: 0.856 | [142] |
Shaoguan, China | Cr | Traditional farmland soils | VNIR-SWIR (350–2500 nm) | SG, SNV, UVE, MSC, FD, SD, DWT | SVMR | — Cr: 0.97 | [66] |
Honghu, China | As | Traditional farmland soils | VNIR-SWIR (350–2500 nm) | FD, GF, NOR, CARS | CARS-PSO-SVM | — As: 0.9823 | [115] |
Wuhan, China | Cr, As, Cd | Rice soil | VNIR-SWIR (350–2500 nm) | SG, PCA | PLSR | RPD: — Cr: 2.70 As: 1.81 Cd: 1.63 | [13] |
Khuzestan, Iran | Ni, Cu | Traditional farmland soils | VNIR-SWIR (350–2500 nm) | SG | PLSR, PCR | — Ni: 0.905 Cu: 0.825 | [126] |
Inner Mongolia, China | Ni, Cr | Grassland soil | VNIR-SWIR (350–2500 nm) | MSC, SNV, SD | PLSR, PCR, SVMR | — Ni: 0.98 Cr: 0.98 | [127] |
Xuzhou, China | Cr, Zn, As, Pb | Farmland soils in mining areas | VNIR-SWIR (350–2500 nm) | FD, CR, SD, SNV | RF | — As: 0.9912 Cr: 0.9110 Zn: 0.9061 Pb: 0.9756 | [132] |
Jiangxi, China | Cd | Farmland soils in mining areas | VNIR-SWIR (400–2500 nm) | FD | RF | — Cd: 0.61 | [74] |
Xuzhou, China | Cd, Cr, Cu, Pb, Zn | Farmland soils in mining areas | VNIR-SWIR (350–2500 nm) | FD, CR | GRNN, MLR, SMO-SVM | — Cd: 0.8628 Cr: 0.8532 Cu: 0.7988 Pb: 0.7901 Zn: 0.7653 | [143] |
Guangdong, China | Cu | Traditional farmland soils | VNIR-SWIR (350–2500 nm) | SG, MSC, CWT | SVR, PLSR, BPNN, XGBoost, RF | — Cu: 0.77 | [136] |
Xuzhou, China | Cr, Zn, Pb | Traditional farmland soils | VNIR-SWIR (350–2500 nm) | FOD | ELM | — Cr: 0.77 Zn: 0.86 Pb: 0.63 | [119] |
Guizhou, China | Cu, Cr, Ni, Pb | Karst seed soil | VNIR-SWIR (500–2500 nm) | SNV, MSC, NOR, FD, AT | ELM | — Ni: 0.861 Cu: 0.883 Cr: 0.880 Pb: 0.797 | [90] |
Hubei, China | As | Farmland soils in mining areas | VNIR-SWIR (350–2500 nm) | IRIV-SCA | SVMR | — As: 0.97 | [144] |
Xi’an, China | Ni, Fe, Cu, Cr, Pb | Orchard, forestry, farmland soils | VNIR-SWIR (350–2500 nm) | MDPSO | RF | — Cr: 0.872 Pb: 0.876 Fe: 0.906 Cu: 0.912 Ni: 0.913 | [145] |
Shaanxi, China | Fe, Ni | Wheat, fruit tree soils | VNIR-SWIR (350–2500 nm) | FD, SD, CR, CWT, SG | SVM, ELM, PLSR | — Fe: 0.71 Ni: 0.69 | [146] |
Yunnan, China | Zn, Ni | Traditional farmland soils | VNIR-SWIR (350–2500 nm) | FOD, SPA | PLSR, RF | — Cr: 0.77 Zn: 0.86 | [147] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, W.; Tang, T.; He, S.; Zheng, Z.; Lv, J.; Guo, J.; Zeng, Y.; Lao, Y.; Wu, W. Inversion Studies on the Heavy Metal Content of Farmland Soils Based on Spectroscopic Techniques: A Review. Agronomy 2025, 15, 1678. https://doi.org/10.3390/agronomy15071678
Qiu W, Tang T, He S, Zheng Z, Lv J, Guo J, Zeng Y, Lao Y, Wu W. Inversion Studies on the Heavy Metal Content of Farmland Soils Based on Spectroscopic Techniques: A Review. Agronomy. 2025; 15(7):1678. https://doi.org/10.3390/agronomy15071678
Chicago/Turabian StyleQiu, Wenlong, Ting Tang, Song He, Zeyong Zheng, Jinhong Lv, Jiacheng Guo, Yunfang Zeng, Yifeng Lao, and Weibin Wu. 2025. "Inversion Studies on the Heavy Metal Content of Farmland Soils Based on Spectroscopic Techniques: A Review" Agronomy 15, no. 7: 1678. https://doi.org/10.3390/agronomy15071678
APA StyleQiu, W., Tang, T., He, S., Zheng, Z., Lv, J., Guo, J., Zeng, Y., Lao, Y., & Wu, W. (2025). Inversion Studies on the Heavy Metal Content of Farmland Soils Based on Spectroscopic Techniques: A Review. Agronomy, 15(7), 1678. https://doi.org/10.3390/agronomy15071678