Beyond Conventional Auxins: Evaluating DCPE and DCP Pulse Applications for Enhanced Rooting in Lavandula angustifolia Mill.
Abstract
1. Introduction
2. Materials and Methods
2.1. Propagating In Vitro Shoot Cultures
2.2. Root Induction Through Continuous Application of DCP and DCPE
2.3. Root Induction Through Pulse Treatment of DCP and DCPE in L. angustifolia
2.4. Statistical Analysis
3. Results
3.1. Root Induction Through Continuous Application of Auxin Analogs
3.2. Root Induction Through Pulse Treatment of DCP and DCPE in L. angustifolia
3.2.1. A 1-Day Pulse Treatment with 1.25 µM DCP and DCPE
3.2.2. A 1 h Pulse Treatment
3.2.3. A 1 Min Pulse Treatment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Auxins (µM) | Adventitious Root Number | Lateral Root Number | Average Adventitious Root Length (cm) | Root Weight (mg) | Shoot Length (cm) | Callus Weight (mg) |
---|---|---|---|---|---|---|
no auxin | 4.22 ± 0.27a | 0.73 ± 0.13b | 0.82 ± 0.09b | 0.76 ± 0.07a | 0.9 ± 0.05a | 0 ± 0a |
1 µM NAA | 8.13 ± 0.36b | 0 ± 0a | 0.43 ± 0.02a | 3.8 ± 0.34c | 1.17 ± 0.07b | 27.13 ± 2.93b |
10 µM NAA | 4.89 ± 0.41a | 12.04 ± 1.16c | 1.12 ± 0.09c | 76.24 ± 5e | 1.4 ± 0.04c | 155 ± 10.37d |
1 µM IBA | 5.24 ± 0.34a | 0.11 ± 0.69a | 1.16 ± 0.08c | 1.63 ± 0.28b | 1.2 ± 0.08b | 19.99 ± 1.85b |
10 µM IBA | 4.13 ± 0.31a | 10.64 ± 0.82c | 1.6 ± 0.08d | 38.11 ± 3.3d | 1.5 ± 0.07c | 82.67 ± 6.06c |
Appendix B
References
- Opanasenko, V.F.; Havryliuk, Y.V.; Shevchenko, T.M. Prospects for the Use of Growth Regulators in Vegetative Propagation Technology of Lavandula angustifolia. Med. Perspect. 2024, 29, 89–95. [Google Scholar] [CrossRef]
- Babanina, S.S.; Yegorova, N.A.; Stavtseva, I.V.; Abdurashitov, S.F. Genetic stability of lavender (Lavandula angustifolia Mill.) plants obtained during long-term clonal micropropagation. Russ. Agric. Sci. 2023, 49, 132–139. [Google Scholar] [CrossRef]
- George, E.F.; Debergh, P.C. Micropropagation: Uses and Methods. In Plant Propagation by Tissue Culture, 3rd ed.; George, E.F., Hall, M.H., De Klerk, G.J., Eds.; Springer: Dordrecht, The Netherlands, 2008; Volume 1, pp. 29–64. [Google Scholar] [CrossRef]
- Verdi, R.; Bettoni, J.C.; Werner, S.S.; Boff, M.I.; Boff, P. Effects of the phenological stage, type of cutting and plant growth regulators on the propagation by stem cutting of Poiretia latifolia Vogel, a Brazilian native medicinal plant. Rev. Colomb. Cienc. Hortic. 2020, 14, 267–274. [Google Scholar] [CrossRef]
- Bettoni, J.C.; van der Walt, K.; Souza, J.A.; McLachlan, A.; Nadarajan, J. Sexual and asexual propagation of Syzygium maire, a critically endangered Myrtaceae species of New Zealand. N. Z. J. Bot. 2023, 62, 35–52. [Google Scholar] [CrossRef]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Image analysis of adventitious root quality in wild sage and glossy abelia cuttings after application of different indole-3-butyric acid concentrations. Plants 2022, 11, 290. [Google Scholar] [CrossRef]
- Ilczuk, A.; Jacygrad, E. The effect of IBA on anatomical changes and antioxidant enzyme activity during the in vitro rooting of smoke tree (Cotinus coggygria Scop.). Sci. Hortic. 2016, 210, 268–276. [Google Scholar] [CrossRef]
- Guasso, L.; Lattuada, D.S.; de Souza, P.V.D. In vitro root development under different IBA concentrations and culture media. Comun. Sci. 2025, 16, e4313. [Google Scholar] [CrossRef]
- Sekhukhune, M.K.; Maila, M.Y. Exogenous IBA stimulatory effects on root formation of Actinidia deliciosa rootstock and Actinidia arguta male scion stem cuttings. Front. Sustain. Food Syst. 2024, 8, 1461871. [Google Scholar] [CrossRef]
- Fattorini, L.; Veloccia, A.; Della Rovere, F.; Angeli, S.D.; Falasca, G.; Altamura, M.M. Indole-3-butyric acid promotes adventitious rooting in Arabidopsis thaliana thin cell layers by conversion into indole-3-acetic acid and stimulation of anthranilate synthase activity. BMC Plant Biol. 2017, 17, 121. [Google Scholar] [CrossRef]
- Aihebaier, S.; Muhammad, T.; Wei, A.; Mamat, A.; Abuduaini, M.; Pataer, P.; Yigaimu, A.; Yimit, A. Membrane-protected molecularly imprinted polymer for the microextraction of indole-3-butyric acid in mung bean sprouts. ACS Omega 2019, 4, 16789–16793. [Google Scholar] [CrossRef]
- da Costa, C.T.; Ruedell, C.M.; Fett-Neto, A.G.; de Almeida, M.R.; Maraschin, J.S.F. When stress and development go hand in hand: Main hormonal controls of adventitious rooting in cuttings. Front. Plant Sci. 2013, 4, 133. [Google Scholar] [CrossRef] [PubMed]
- Rautio, J.; Kumpulainen, H.; Heimbach, T.; Oliyai, R.; Oh, D.; Järvinen, T.; Savolainen, J. Prodrugs: Design and Clinical Applications. Nat. Rev. Drug Discov. 2008, 7, 255–270. [Google Scholar] [CrossRef] [PubMed]
- Darouez, H.; Werbrouck, S.P. In Vitro Rooting of Poplar: Effects and Metabolism of Dichlorprop Auxin Ester Prodrugs. Plants 2025, 14, 108. [Google Scholar] [CrossRef] [PubMed]
- Ljung, K. Auxin Metabolism and Homeostasis During Plant Development. Development 2013, 140, 943–950. [Google Scholar] [CrossRef]
- Zhao, Y. Auxin Biosynthesis and Its Role in Plant Development. Annu. Rev. Plant Biol. 2010, 61, 49–64. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Quambusch, M.; Schürz, J.; Hanke, M.-V.; Flachowsky, H.; Peil, A. Improved in vitro rooting of Prunus avium microshoots using a dark treatment and an auxin pulse. Sci. Hortic. 2017, 220, 52–56. [Google Scholar] [CrossRef]
- Kaewchangwat, N.; Thanayupong, E.; Jarussophon, S.; Niamnont, N.; Yata, T.; Prateepchinda, S.; Unger, O.; Han, B.-H.; Suttisintong, K. Coumarin-caged compounds of 1-naphthaleneacetic acid as light-responsive controlled-release plant root stimulators. J. Agric. Food Chem. 2020, 68, 6268–6279. [Google Scholar] [CrossRef]
- Khan, S.; Bi, T.B. Direct shoot regeneration system for date palm (Phoenix dactylifera L.) cv. Dhakki as a means of micropropagation. Pak. J. Bot. 2012, 44, 1965–1971. [Google Scholar]
- Ortiz Maria, F.; Figueiredo Marcos, R.; Nissen Scott, J.; Wersal Ryan, M.; Ratajczyk William, A.; Dayan Franck, E. 2,4-D and 2,4-D butoxyethyl ester behavior in Eurasian and hybrid watermilfoil (Myriophyllum spp.). Pest Manag. Sci. 2022, 78, 626–632. [Google Scholar] [CrossRef]
- Stella, V.J.; Nti-Addae, K.W. Prodrug Strategies to Overcome Poor Water Solubility. Adv. Drug Deliv. Rev. 2007, 59, 677–694. [Google Scholar] [CrossRef] [PubMed]
- Christian, M.; Hannah, W.B.; Lüthen, H.; Jones, A.M. Identification of Auxins by a Chemical Genomics Approach. J. Exp. Bot. 2008, 59, 2757–2767. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Bou Daher, F.; Liu, Y.; Steward, A.; Tillmann, M.; Zhang, X.; Gray, W.M. Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Sci. Adv. 2022, 8, eabj1570. [Google Scholar] [CrossRef] [PubMed]
- Abts, W.; Vandenbussche, B.; De Proft, M.P.; Van de Poel, B. The role of auxin–ethylene crosstalk in orchestrating primary root elongation in sugar beet. Front. Plant Sci. 2017, 8, 444. [Google Scholar] [CrossRef]
- Davies, P.J. (Ed.) Plant Hormones: Physiology, Biochemistry and Molecular Biology; Springer Science & Business Media: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Dubrovsky, J.G.; Sauer, M.; Napsucialy-Mendivil, S.; Ivanchenko, M.G.; Friml, J.; Shishkova, S.; Benkova, E. Auxin Acts as a Local Morphogenetic Trigger to Specify Lateral Root Founder Cells. Proc. Natl. Acad. Sci. USA 2008, 105, 8790–8794. [Google Scholar] [CrossRef]
- Benjamins, R.; Scheres, B. Auxin: The Looping Star in Plant Development. Annu. Rev. Plant Biol. 2008, 59, 443–465. [Google Scholar] [CrossRef]
- Vielba, J.M.; Vidal, N.; Ricci, A.; Castro, R.; Covelo, P.; San-Jose, M.C.; Sanchez, C. Effects of Auxin and Urea Derivatives on Adventitious Rooting in Chestnut and Oak Microshoots. Isr. J. Plant Sci. 2020, 67, 52–68. [Google Scholar] [CrossRef]
- Justamante, M.S.; Mhimdi, M.; Molina-Pérez, M.; Albacete, A.; Moreno, M.Á.; Mataix, I.; Pérez-Pérez, J.M. Effects of auxin (Indole-3-butyric Acid) on adventitious root formation in peach-based Prunus rootstocks. Plants 2022, 11, 913. [Google Scholar] [CrossRef]
- Bai, T.; Dong, Z.; Zheng, X.; Song, S.; Jiao, J.; Wang, M.; Song, C. Auxin and its interaction with ethylene control adventitious root formation and development in apple rootstock. Front. Plant Sci. 2020, 11, 574881. [Google Scholar] [CrossRef]
- Galvan-Ampudia, C.S.; Cerutti, G.; Legrand, J.; Brunoud, G.; Martin-Arevalillo, R.; Azais, R.; Vernoux, T. Temporal integration of auxin information for the regulation of patterning. eLife 2020, 9, e55832. [Google Scholar] [CrossRef]
- Reinhardt, D.; Mandel, T.; Kuhlemeier, C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 2000, 12, 507–518. [Google Scholar] [CrossRef] [PubMed]
- Woodward, A.W.; Bartel, B. Auxin: Regulation, action, and interaction. Ann. Bot. 2005, 95, 707–735. [Google Scholar] [CrossRef] [PubMed]
- Yalamanchili, K.; Vermeer, J.E.; Scheres, B.; Willemsen, V. Shaping root architecture: Towards understanding the mechanisms involved in lateral root development. Biol. Direct 2024, 19, 87. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, Y.; Jiang, C.; Lu, M.Z.; Zhang, J. Exogenous Hormones Supplementation Improve Adventitious Root Formation in Woody Plants. Front. Bioeng. Biotechnol. 2022, 10, 1009531. [Google Scholar] [CrossRef]
- Pant, M.; Bhandari, A.; Husen, A. Adventitious Root Formation and Clonal Propagation of Forest-Based Tree Species. In Environmental, Physiological and Chemical Controls of Adventitious Rooting in Cuttings; Academic Press: Cambridge, UK, 2023; pp. 471–490. [Google Scholar] [CrossRef]
- Crișan, I.; Ona, A.; Vârban, D.; Muntean, L.; Vârban, R.; Stoie, A.; Mihăiescu, T.; Morea, A. Current Trends for Lavender (Lavandula angustifolia Mill.) Crops and Products with Emphasis on Essential Oil Quality. Plants 2023, 12, 357. [Google Scholar] [CrossRef]
- Yang, T.; Davies, P.J. Promotion of Stem Elongation by Indole-3-Butyric Acid in Intact Plants of Pisum sativum L. Plant Growth Regul. 1999, 27, 157–160. [Google Scholar] [CrossRef]
- Sarropoulou, V.N.; Dimassi, K.N.; Therios, I.N.; Tsabolatidou, E.G. Effect of Indole-3-butyric Acid (IBA) on Growth Parameters and Leaf Anatomy of Olive (Olea europaea L.) Rooted Cuttings. J. Plant Growth Regul. 2016, 35, 612–624. [Google Scholar]
- Li, S.-W.; Xue, L.; Xu, S.; Feng, H.; An, L. Integrating the Roles for Cytokinin and Auxin in De Novo Shoot Organogenesis. Int. J. Mol. Sci. 2021, 22, 8554. [Google Scholar]
Auxin Prodrug Treatments (µM) | Adventitious Root Number | Lateral Root Number | Average Adventitious Root Length (cm) | Maximum Root Length | Root Weight (mg) | Shoot Length (cm) | Callus Weight (mg) |
---|---|---|---|---|---|---|---|
Control | 4.49 ± 0.27 a | 0.82 ± 0.17 a | 1.07 ± 0.09 a | 1.39 ±0.09 a | 3.23 ±0.5 a | 3.93 ±0.54 a | 0 ±0 a |
1.25 DCP | 8.42 ± 0.35 b | 4.36 ± 0.29 b | 2.13 ± 0.12 d | 3.46 ±0.13 e | 9.65 ±1.59 b | 5.45 ±0.22 b | 15.92 ±1.33 b |
2.5 DCP | 9.44 ± 0.42 b | 7.93 ± 0.44 c | 1.69 ± 0.10 c | 2.49 ±0.14 d | 8.11 ±1.04 b | 5.23 ±0.27 b | 26.52 ±1.99 c |
5 DCP | 12.04 ± 0.46 c | 3.91 ± 0.34 b | 1.25 ±0.09 ab | 1.93 ±0.21 b | 12.62 ±1.52 c | 5.02 ± 0.26 b | 41.76 ±2.58 d |
1.25 DCPE | 11.02 ± 0.35 c | 4.04 ± 0.38 b | 2.32 ±0.13 d | 3.23 ±0.16 e | 17.4 ±1.51 d | 5.16 ±0.18 b | 23.42 ± 1.49 c |
2.5 DCPE | 11.91 ± 0.45 c | 3.87 ± 0.39 b | 1.37 ±0.07 b | 3.31± 0.73 d | 9.28 ±1.27 bc | 4.99± 0.2 b | 28.71 ± 2.04 c |
5 DCPE | 13.38 ± 0.76 c | 7.64 ± 0.48 c | 1.13 ± 0.05 a | 2.68 ±0.63 c | 11.2 ± 1.19 bc | 5.04± 0.18 b | 45.31 ±4.43 d |
Auxin Prodrug (µM) | Adventitious Root Number | Lateral Root Number | Average Adventitious Root Length (cm) | Maximum Root Length | Root Weight (mg) | Shoot Length (cm) | Callus Weight (mg) |
---|---|---|---|---|---|---|---|
Control | 4.49 ± 0.27 a | 0.82 ± 0.17 a | 1.07 ± 0.09 a | 1.39 ± 0.09 a | 3.23 ± 0.5 a | 3.93 ± 0.54 a | 0 ± 0 a |
1.25 DCP | 6.09 ± 0.3 b | 1.02 ± 0.19 a | 2.21 ± 0.13 c | 2.68 ± 0.13 b | 8.64 ± 1.27 b | 5.15 ± 0.22 b | 0 ± 0 a |
2.5 DCP | 10.51 ± 0.38 de | 12.78 ± 0.85 c | 3.21 ± 0.14 d | 5.1 ± 0.22 c | 23.83 ± 2.56 c | 5.29 ± 0.18 b | 0 ± 0 a |
5 DCP | 7.2 ± 0.4 c | 10.51 ± 0.62 b | 2.22 ± 0.12 c | 2.7 ± 0.14 b | 11.49 ±1.67 b | 4.44± 0.27 b | 8.79 ± 1.06 c |
1.25 DCPE | 9.64 ± 2.04 d | 1.27 ± 0.21 a | 1.77 ±0.1 b | 2.77 ± 0.11 b | 11.12 ± 1.27 b | 4.88 ±0.21 b | 0 ± 0 a |
2.5 DCPE | 11.36 ± 0.58 e | 17.53± 0.86 d | 3.47 ± 0.14 d | 5.73 ± 0.23 c | 30.14 ± 3.14 c | 5.4± 0.15 b | 0 ± 0 a |
5 DCPE | 8.02 ± 0.47 c | 13.78 ± 0.81 c | 2.41 ± 0.14 c | 5.3 ± 0.25 c | 13.26 ± 2 b | 5± 0.23 b | 10.13 ± 3.5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darouez, H.; Werbrouck, S.P.O. Beyond Conventional Auxins: Evaluating DCPE and DCP Pulse Applications for Enhanced Rooting in Lavandula angustifolia Mill. Agronomy 2025, 15, 1677. https://doi.org/10.3390/agronomy15071677
Darouez H, Werbrouck SPO. Beyond Conventional Auxins: Evaluating DCPE and DCP Pulse Applications for Enhanced Rooting in Lavandula angustifolia Mill. Agronomy. 2025; 15(7):1677. https://doi.org/10.3390/agronomy15071677
Chicago/Turabian StyleDarouez, Hajer, and Stefaan P. O. Werbrouck. 2025. "Beyond Conventional Auxins: Evaluating DCPE and DCP Pulse Applications for Enhanced Rooting in Lavandula angustifolia Mill." Agronomy 15, no. 7: 1677. https://doi.org/10.3390/agronomy15071677
APA StyleDarouez, H., & Werbrouck, S. P. O. (2025). Beyond Conventional Auxins: Evaluating DCPE and DCP Pulse Applications for Enhanced Rooting in Lavandula angustifolia Mill. Agronomy, 15(7), 1677. https://doi.org/10.3390/agronomy15071677