Potential Expansion of Root Chicory Cultivation Areas in Chile
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Climatic and Topographic Conditions for Chicory Growth
Description of Evaluation Criteria
2.3. AHP and Weighted Overlay Method
2.4. Limiting Conditions for Chicory Suitability
2.5. Productive Aptitude Zoning for Root Chicory
3. Results
3.1. Climatic and Topographic Zoning
3.2. Land Suitability Zoning for Root Chicory Production
3.3. Potential Productivity of Root Chicory
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GIS | Geographic information system |
AHP | Analytical hierarchy process |
DW | Dry weight |
FW | Fresh weight |
MCDM | Multi-criteria decision making |
Tx | Maximum temperature |
Tn | Minimum temperature |
DD | Accumulated temperature (degree days) |
ETo | Potential evapotranspiration |
WD | Water deficit |
DEM | Digital elevation model |
T | Temperature |
CR | Consistency ratio |
CSI | Chicory suitability index |
W | Relative importance of factor |
X | Standardized scale for factor |
LC | Land cover |
PCD | Potential dry aerial biomass |
E | Solar radiation |
RUE | Radiation use efficiency |
I | Canopy light interception |
TF | Thermal function |
WF | Water function |
S | South |
SW | Southwest |
E | East |
W | West |
N | North |
NE | Northeast |
NW | Northwest |
LULC | Land use and land cover |
SNASPE | National System of Protected Wild Areas of the State |
Appendix A
Country | City/Town | Geographic Coordinate | Elevation (masl) | Reference | |
---|---|---|---|---|---|
Lat | Long | ||||
Australia | Downside | 35°04 S | 147°35 E | 219 | [65] |
Australia | Frogmore | 34°17 S | 148°45 E | 500 | [65] |
Australia | Borenore | 33°19 S | 149°05 E | 922 | [66] |
Belgium | Leuven | 50°33 N | 04°40 E | 127 | [67] |
Brazil | Campinas | 22°49 S | 47°03 W | 660 | [68] |
Brazil | Conselheiro Paulino | 22°17 S | 42°32 W | 857 | [69] |
Chile | Linares | 35°53 S | 71°36 W | 156 | [70] |
Egypt | Cairo | 30°02 N | 31°15 E | 74 | [71] |
Slovenia | Ljubljana | 46°03 N | 14°30 E | 361 | [72] |
United States | Windsor Locks | 41°50 N | 72°39 W | 55 | [73] |
United States | Atoka | 34°16 N | 95°59 W | 180 | [74] |
United States | Ansted | 38°00 N | 80°59 W | 395 | [75] |
United States | State College | 40°48 N | 77°51 W | 365 | [76] |
France | Rennes | 48°06 N | 01°47 W | 36 | [77] |
France | Paris | 48°48 N | 02°06 E | 96 | [78] |
France | Lille | 50°29 N | 03°10 E | 52 | [79] |
France | Beauvais | 49°25 N | 02°04 E | 109 | [80] |
Wales | Aberystwyth | 52°25 N | 04°04 W | 99 | [81] |
Holland | De Bilt | 51°59 N | 05°39 E | 5 | [82] |
Holland | Amsterdam | 52°29 N | 05°28 E | 2 | [83] |
Iran | Arak | 34°06 N | 49°46 E | 1834 | [84] |
Iran | Shahreza | 32°02 N | 50°48 E | 1809 | [85] |
Iran | Takestan | 36°03 N | 49°41 E | 1265 | [86] |
Italy | Bologna | 44°29 N | 11°19 E | 81 | [87] |
Italy | Treviso | 45°42 N | 12°13 E | 15 | [88] |
Italy | Padova | 45°24 N | 11°52 E | 14 | [89] |
Lithuania | Klaipėda | 55°52 N | 21°14 E | 10 | [90] |
New Zeland | Kairanga | 40°23 S | 175°36 E | 9 | [91] |
Poland | Lubpinskilin | 51°14 N | 22°32 E | 239 | [92] |
South Africa | Port Alfred | 33°32 S | 26°40 E | 22 | [93] |
Turkey | Kayseri | 38°53 N | 35°28 E | 1053 | [94] |
Ukraine | Khmelnitskiy | 49°25 N | 26°59 E | 195 | [95] |
References
- Al-Snafi, A. Medical importance of Cichorium intybus—A review. IOSR J. Pharm. 2016, 6, 41–56. [Google Scholar]
- Perović, J.; Šaponjac, V.T.; Kojić, J.; Krulj, J.; Moreno, D.A.; García-Viguera, C.; Bodroža-Solarov, M.; Ilić, N. Chicory (Cichorium intybus L.) as a food ingredient–Nutritional composition, bioactivity, safety, and health claims: A review. Food Chem. 2021, 336, 127676. [Google Scholar] [CrossRef] [PubMed]
- Innocenti, M.; Gallori, S.; Giaccherini, C.; Ieri, F.; Vincieri, F.F.; Mulinacci, N. Evaluation of the phenolic content in the aerial parts of different varieties of Cichorium intybus L. J. Agric. Food Chem. 2005, 53, 6497–6502. [Google Scholar] [CrossRef]
- Akram, H.; Zafar, H.; Abbasi, B.H. The chicory root (Cichorium intybus var. sativum) frontier: Pioneering biotechnological advancements. Phytochem. Rev. 2025. [Google Scholar] [CrossRef]
- Mathieu, A.S.; Périlleux, C.; Jacquemin, G.; Renard, M.E.; Lutts, S.; Quinet, M. Impact of vernalization and heat on flowering induction, development and fertility in root chicory (Cichorium intybus L. var. sativum). J. Plant Physiol. 2020, 254, 153272. [Google Scholar] [CrossRef]
- Shoaib, M.; Shehzad, A.; Omar, M.; Rakha, A.; Raza, H.; Sharif, H.R.; Shakeel, A.; Ansari, A.; Niazi, S. Inulin: Properties, health benefits and food applications. Carbohydr. Polym. 2016, 147, 444–454. [Google Scholar] [CrossRef]
- Rambaud, C.; Croy, M.; Choque, E. The great diversity of products from Cichorium intybus L. culture: How to valorize chicory byproducts: A review. Discover Plants 2025, 2, 107. [Google Scholar] [CrossRef]
- Hingsamer, M.; Kulmer, V.; de Roode, M.; Kernitzkyi, M. Environmental and socio-economic impacts of new plant breeding technologies: A case study of root chicory for inulin production. Front. Genome Ed. 2022, 4, 919392. [Google Scholar] [CrossRef] [PubMed]
- Velasco, V.; Soto, V.H.; Williams, P.; Campos, J.; Astudillo, R.; Rodríguez, H. Meat quality parameters of broiler chickens fed diets containing chicory (Cichorium intybus) vinasse. Chil. J. Agric. Anim. Sci. 2018, 34, 26–32. [Google Scholar] [CrossRef]
- Traub, A. Achicoria: Precursora de la Inulina. Oficina de Estudios y Políticas Agrarias (ODEPA). 2014. Available online: https://www.odepa.gob.cl/wp-content/uploads/2014/07/Inulina201407.pdf (accessed on 24 March 2025).
- Oficina de Estudios y Políticas Agrarias (ODEPA). Índice Cultivos Anuales Históricos. 2024. Available online: https://bibliotecadigital.odepa.gob.cl/handle/20.500.12650/73501 (accessed on 24 March 2025).
- Akıncı, H.; Özalp, A.Y.; Turgut, B. Agricultural land use suitability analysis using GIS and AHP technique. Comput. Electron. Agric. 2013, 97, 71–82. [Google Scholar] [CrossRef]
- Román-Figueroa, C.; Cea, M.; Paneque, M. Industrial oilseed crops in Chile: Current situation and future potential. Biofuel. Bioprod. Bior. 2023, 17, 273–290. [Google Scholar] [CrossRef]
- Everest, T.; Savaşkan, G.S.; Or, A.; Özcan, H. Suitable site selection by using full consistency method (FUCOM): A case study for maize cultivation in northwest Turkey. Environ. Dev. Sustain. 2024, 26, 1831–1850. [Google Scholar] [CrossRef]
- Mokarram, M.; Aminzadeh, F. GIS-based multicriteria land suitability evaluation using ordered weight averaging with fuzzy quantifier: A case study in Shavur Plain, Iran. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 508–512. [Google Scholar]
- Al-Shalabi, M.A.; Mansor, S.B.; Ahmed, N.B.; Shiriff, R. GIS based multicriteria approaches to housing site suitability assessment. In Proceedings of the XXIII FIG Congress, Shaping the Change, Munich, Germany, 8–13 October 2006; pp. 8–13. [Google Scholar]
- Aghaloo, K.; Sharifi, A. A GIS-based agroecological model for sustainable agricultural production in arid and semi-arid areas: The case of Kerman Province, Iran. Curr. Res. Environ. Sustain. 2023, 6, 100230. [Google Scholar] [CrossRef]
- Store, R.; Kangas, J. Integrating spatial multi-criteria evaluation and expert knowledge for GIS-based habitat suitability modelling. Landsc. Urban Plan. 2001, 55, 79–93. [Google Scholar] [CrossRef]
- Tercan, E.; Dereli, M.A. Development of a land suitability model for citrus cultivation using GIS and multi-criteria assessment techniques in Antalya province of Turkey. Ecol. Indic. 2020, 117, 106549. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting. Resource Allocation; McGraw-Hill International: New York, NY, USA, 1980. [Google Scholar]
- Purnamasari, R.A.; Ahamed, T.; Noguchi, R. Land suitability assessment for cassava production in Indonesia using GIS, remote sensing and multi-criteria analysis. Asia-Pac. J. Reg. Sci. 2019, 3, 1–32. [Google Scholar] [CrossRef]
- Fathizad, H.; Pakbaz, N.; Sodaiezadeh, H.; Shojaei, S. Exploring canola planting area using AHP associated with GIS in Meymeh–Zarinabad of Iran. Spat. Inf. Res. 2017, 25, 371–379. [Google Scholar] [CrossRef]
- Ostovari, Y.; Honarbakhsh, A.; Sangoony, H.; Zolfaghari, F.; Maleki, K.; Ingram, B. GIS and multi-criteria decision-making analysis assessment of land suitability for rapeseed farming in calcareous soils of semi-arid regions. Ecol. Indic. 2019, 103, 479–487. [Google Scholar] [CrossRef]
- Tashayo, B.; Honarbakhsh, A.; Akbari, M.; Eftekhari, M. Land suitability assessment for maize farming using a GIS-AHP method for a semi-arid region, Iran. J. Saudi Soc. Agric. Sci. 2020, 19, 332–338. [Google Scholar] [CrossRef]
- Rashed, H.S. Classification and mapping of land productivity, capability and suitability for production crops in West El-Minia Governorate, Egypt. J. Soil Sci. Agric. Eng. 2020, 11, 709–717. [Google Scholar] [CrossRef]
- Nti, I.K.; Zaman, A.; Nyarko-Boateng, O.; Adekoya, A.F.; Keyeremeh, F. A predictive analytics model for crop suitability and productivity with tree-based ensemble learning. Decis. Anal. J. 2023, 8, 100311. [Google Scholar] [CrossRef]
- Sati, V.P. Crop productivity and suitability analysis. In Farming Systems and Sustainable Agriculture in the Himalaya; Sati, V.P., Ed.; Springer Nature: Berlin/Heidelberg, Germany, 2024; pp. 107–116. [Google Scholar]
- Instituto Geográfico Militar (IGM). Límites Político Administrativos de Chile. Available online: https://www.igm.cl/?page=descargas-gratuitas-igm&menu=1 (accessed on 15 January 2025).
- Román-Figueroa, C.; Cortez, D.; Paneque, M. A comparison of two methodological approaches for determining castor bean suitability in Chile. Agronomy 2020, 10, 1259. [Google Scholar] [CrossRef]
- Beneo. Manual Técnico de Achicoria Industrial Temporada 2018–2019. Available online: https://www.orafti.cl/sitio/download/manualtecnicocultivo2019-2020.pdf (accessed on 15 January 2025). (In Spanish).
- Uribe, J.; Cabrera, R.; de la Fuente, A.; Paneque, M. Atlas Bioclimático de Chile; Universidad de Chile: Santiago, Chile, 2012. [Google Scholar]
- Tandzi, N.L.; Mutengwa, S.C. Factors affecting yields of crops. In Agronomy—Climate Change and Food Security; Amanullah, Ed.; IntechOpen: London, UK, 2020; p. 16. [Google Scholar]
- Lisso, L.; Lindsay, J.B.; Berg, A. Evaluating the topographic factors for land suitability mapping of specialty crops in Southern Ontario. Agronomy 2024, 14, 319. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, S.; Wei, X.; Wang, L.; Sun, X.; Hou, Z.; Zhong, Q.; Liu, W. Forecasting the favorable growth conditions and suitable regions for chicory (Cichorium intybus L.) on the Qinghai plateau under current climatic conditions. Ecol. Inform. 2023, 78, 102343. [Google Scholar] [CrossRef]
- Bala, R.; Dhillon, B.S.; Brar, A.S. Emergence and growth dynamics of chicory (Cichorium intybus L.) in response to sowing method and seed rate. Agric. Res. J. 2020, 57, 363–368. [Google Scholar] [CrossRef]
- Devacht, S.; Lootens, P.; Roldán-Ruiz, I.; Carlier, L.; Baert, J.; Van Waes, J.; Van Bockstaele, E. Influence of low temperatures on the growth and photosynthetic activity of industrial chicory, Cichorium intybus L. partim. Photosynthetica 2009, 47, 372–380. [Google Scholar] [CrossRef]
- Mathieu, A.S.; Lutts, S.; Vandoorne, B.; Descamps, C.; Périlleux, C.; Dielen, V.; Van Herck, J.C.; Quinet, M. High temperatures limit plant growth but hasten flowering in root chicory (Cichorium intybus) independently of vernalisation. J. Plant Physiol. 2014, 171, 109–118. [Google Scholar] [CrossRef]
- Bais, H.P.; Ravishankar, G.A. Cichorium intybus L.—Cultivation, processing, utility, value addition and biotechnology, with an emphasis on current status and future prospects. J. Sci. Food Agric. 2001, 81, 467–484. [Google Scholar] [CrossRef]
- Parthasarathi, T.; Velu, G.; Jeyakumar, P. Impact of crop heat units on growth and developmental physiology of future crop production: A review. Res. Rev. A J. Crop Sci. Technol. 2013, 2, 1–11. [Google Scholar]
- Verna, P.; Singh, J.; Sharma, S.; Thakur, H. Phenological growth stages and growing degree days of peach [Prunus persica (L.) Batsch] in sub-temperate climatic zone of North-Western Himalayan region using BBCH scale. Ann. Appl. Biol. 2023, 182, 284–294. [Google Scholar] [CrossRef]
- Kenter, C.; Hoffmann, C.M.; Märländer, B. Effects of weather variables on sugar beet yield development (Beta vulgaris L.). Eur. J. Agron. 2006, 24, 62–69. [Google Scholar] [CrossRef]
- Clapham, W.M.; Fedders, J.M.; Belesky, D.P.; Foster, J.G. Development dynamics of forage chicory. Agron. J. 2001, 93, 443–450. [Google Scholar] [CrossRef]
- Monti, A.; Amaducci, M.; Pritoni, G.; Venturi, G. Growth, fructan yield, and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time, and water regime. J. Exp. Bot. 2005, 56, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Cranston, L.M.; Kenyon, P.R.; Morris, S.T.; Lopez-Villalobos, N.; Kemp, P.D. Morphological and physiological responses of plantain (Plantago lanceolata) and chicory (Cichorium intybus) to water stress and defoliation frequency. J. Agron. Crop Sci. 2016, 202, 13–24. [Google Scholar] [CrossRef]
- Vandoorne, B.; Mathieu, A.S.; Van den Ende, W.; Vergauwen, R.; Périlleux, C.; Javaux, M.; Lutts, S. Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J. Exp. Bot. 2012, 63, 4359–4373. [Google Scholar] [CrossRef] [PubMed]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef]
- González, J.; Bonet, A.; Echeverría, M. Efecto de la orientación de la ladera sobre algunas comunidades arbustivas del semiárido central de la depresión del Ebro. Mediterránea 1996, 2, 21–31. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Kechagia, K. A GIS-based multi-criteria evaluation for wind farm site selection. A regional scale application in Greece. Renew. Energy 2015, 78, 550–560. [Google Scholar] [CrossRef]
- Zhao, Y.; Feng, D.; Yu, L.; Wang, X.; Chen, Y.; Bai, Y.; Hernández, H.J.; Galleguillos, M.; Estades, E.; Biging, G.S.; et al. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sens. Environ. 2016, 183, 170–185. [Google Scholar] [CrossRef]
- Oficina de Estudios y Políticas Agrarias (ODEPA). Mapas de Zonificación de Aptitud Productiva del Territorio Nacional de Especies Vegetales con Potencial de Producción de Biocombustibles; Oficina de Estudios y Políticas Agrarias (ODEPA): Santiago, Chile, 2010. [Google Scholar]
- Cazanga, R. Correction et validation du Modèle CERES-Maize. Une Approche de la Simulation de la Croissance et du Développement du maïs au Niveau de la Parcelle. Ph.D. Thesis, Université Catholique de Louvain, Ottignies-Louvain-la-Neuve, Belgium, 1997. (In French). [Google Scholar]
- Cazanga, R.; Matus, F.; Schmal, R. Una aproximación deductiva para el manejo de los cultivos. La cebada cervecera un caso particular. Resúmenes IX Congreso Nacional de la Ciencia del Suelo. Boletín 2002, 18, 149–153. [Google Scholar]
- Monteith, J.L. The quest for balance in crop modeling. Agron. J. 1996, 88, 695–697. [Google Scholar] [CrossRef]
- Williams, J.; Dyke, P.T.; Jones, C.A. EPIC—A model for assessing the effects of erosion on soil productivity. In Developments in Environmental Modelling; Laurenroth, W.K., Ed.; Elsevier Sci. Publ. Co.: New York, NY, USA, 1983; pp. 553–572. [Google Scholar]
- Fischer, S.; Wilckens, R.; Vidal, I.; Astete, P.; Maier, J. Respuesta de la achicoria (Cichorium intybus L.) a la aplicación de magnesio. Chil. J. Agric. Anim. Sci. 2016, 32, 3–11. [Google Scholar] [CrossRef]
- Lee, J.; Hemmingson, N.; Minneé, E.; Clark, C. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics and plant density. Crop Pasture Sci. 2015, 66, 168–183. [Google Scholar] [CrossRef]
- Sarricolea, P.; Herrera-Ossandon, M.; Mesenguer-Ruiz, O. Climatic regionalisation of continental Chile. J. Maps. 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Gordon, D.H.; Hughes, J.C.; Manson, A.D. Soil fertility requirements of root chicory (Cichorium intybus var. sativum): A review. J. Plant Nutr. 2018, 41, 2644–2659. [Google Scholar] [CrossRef]
- Ritchie, J.T.; Nesmith, D.S. Temperature and crop development. In Modeling Plant and Soil Systems; Hanks, J., Ritchie, J.T., Eds.; American Society of Agronomy, Crop Science Society of America, and the Soil Science Society of America: Madison, WI, USA, 1991; Volume 31, pp. 5–29. [Google Scholar]
- De Mastro, G.; Manolio, G.; Marzi, V. Jerusalem artichoke (Helianthus tuberosus L.) and chicory (Cichorium intybus L.): Potential crops for inulin production in the Mediterranean area. Crop Pasture Sci. 2004, 65, 26–34. [Google Scholar] [CrossRef]
- Gouveia, C.M.; Justino, F.; Gurjao, C.; Zita, L.; Alonso, C. Revisiting climate-related agricultural losses across South America and their future perspectives. Atmosphere 2023, 14, 1303. [Google Scholar] [CrossRef]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef]
- Román-Figueroa, C.; Padilla, R.; Uribe, J.M.; Paneque, M. Land suitability assessment for camelina (Camelina sativa L.) development in Chile. Sustainability 2017, 9, 154. [Google Scholar] [CrossRef]
- Dielen, V.; Notté, C.; Lutts, S.; Debavelaere, V.; Van Herck, J.-C.; Kinet, J.-M. Bolting control by low temperatures in root chicory (Cichorium intybus var. sativum). Field Crops Res. 2005, 94, 76–85. [Google Scholar] [CrossRef]
- Li, G.; Nie, Z.; Bonython, A.; Boschma, S. Evaluation of Chicory Cultivars and Accessions for Forage in South-Eastern Australia. Crop Pasture Sci. 2010, 61, 554–564. [Google Scholar] [CrossRef]
- Upjohn, B.; Parker, M. Chicory—A High Performance Forage. In Agnote DPI-243, 1st ed.; NSW Agriculture: Dubbo, NSW, Australia, 1999. [Google Scholar]
- Dauchot, N.; Mingeot, D.; Purnelle, B.; Muys, C.; Watillon, B.; Boutry, M.; Cutsem, P. Construction of 12 EST Libraries and Characterization of a 12,226 EST Dataset for Chicory (Cichorium intybus) Root, Leaves and Nodules in the Context of Carbohydrate Metabolism Investigation. BMC Plant Biol. 2009, 9, 9–14. [Google Scholar] [CrossRef]
- Toneli, J.; Park, K.; Negreiros, A. Spray-Drying Process Optimization of Chicory Root Inulin. Dry Technol. 2010, 28, 369–379. [Google Scholar] [CrossRef]
- Couri, S.; Gomes, F.; Nogueira, R.; Wilberg, V.; Cabral, M.; Silva, V.; Almeida, D. Determination of Inulin Content of Chicory Roots (Cichorium intybus L.) Cultivated Organically in Three Regions of Rio de Janeiro State; Embrapa Agroindústria De Alimentos: Rio de Janeiro, Brazil, 2005. [Google Scholar]
- Carrasco, G.; Carmona, C.; Sandoval, C.; Urrestarazu, M. Plant Density on Yield of Red Chicory Heads—Radiccio Rosso (Cichorium intybus L. var. foliosum Hegi) Grown in South-Central Chile. Acta Hortic. 1998, 467, 269–275. [Google Scholar] [CrossRef]
- Helaly, A.; Abdullah, H. Phytochemical Analysis and Yield Characterization of Eight Cichorium intybus L. Landraces. J. Hortic. Sci. Ornam. Plants 2017, 9, 39–51. [Google Scholar]
- Znidarcic, D.; Osvald, J.; Trdan, S. Plant Characteristics for Distinction of Red Chicory (Cichorium intybus L. var. silvestre Bisch.) Cultivars Grown in Central Slovenia. Acta Agric. Slov. 2004, 83, 251–260. [Google Scholar]
- Hill, D. Witloof Chicory (Belgian Endive) and Radicchio Trials 1987–1988. Bul. Tec. N°871. 1989. Available online: https://n9.cl/rpzml (accessed on 17 April 2025).
- Perkins, P.; Russo, V.; Collins, J. Postharvest Changes During Storage of Packaged Radicchio. J. Food Qual. 1992, 15, 111–118. [Google Scholar] [CrossRef]
- Belesky, D.; Turner, K.; Fedders, J.; Ruckle, J. Mineral Composition of Swards Containing Forage Chicory. Agron. J. 2001, 93, 468–475. [Google Scholar] [CrossRef]
- Skinner, H.; Dell, C. Reestablishing Chicory into Multi-Species Perennial Pastures. Forage Grazinglands 2010, 8, 1–6. [Google Scholar] [CrossRef]
- Delagarde, R.; Roca, A.; Peyraud, J. Caractéristiques des Prairies Multispécifiques avec ou Sans Chicorée: Densité Mesurée à l’Herbomètre et Composition Chimique. Fourrages 2014, 218, 177–180. [Google Scholar]
- Améziane, R.; Laurent, C.; Rufty, T.; Limami, A. Phosphate Availability in Combination with Nitrate Availability Affects Root Yield and Chicon Yield and Quality of Belgian Endive (Cichorium intybus). Plant Soil 1997, 191, 269–277. [Google Scholar] [CrossRef]
- Bahri, M.; Hance, P.; Grec, S.; Quillet, M.; Trotin, J.; Hendriks, T. A “Novel” Protocol for the Analysis of Hydroxycinnamic Acids in Leaf Tissue of Chicory (Cichorium intybus L., Asteraceae). Sci. World J. 2012, 2012, 142983. [Google Scholar] [CrossRef] [PubMed]
- Fouldrin, K.; Limami, A. The Influence of Nitrogen (15NO3) Supply to Chicory (Cichorium intybus L.) Plants During Forcing on the Uptake and Remobilization of N Reserves for Chicon Growth. J. Exp. Bot. 1993, 44, 1313–1319. [Google Scholar] [CrossRef]
- Marley, C.; Fychan, R.; Davies, J.; Scollan, N.; Richardson, I.; Theobald, V.; Genever, E.; Fober, A.; Sanderson, R. Effects of Chicory/Perennial Ryegrass Swards Compared with Perennial Ryegrass Swards on the Performance and Carcass Quality of Grazing Beef Steers. PLoS ONE 2014, 9, e86259. [Google Scholar] [CrossRef]
- Schober, B.; Vermeulen, T. Enzymatic Maceration of Witloof Chicory by the Soft Rot Bacteria Erwinia carotovora subsp. carotovora: The Effect of Nitrogen and Calcium Treatments of the Plant on Pectic Enzyme Production and Disease Development. Eur. J. Plant Pathol. 1999, 105, 341–349. [Google Scholar] [CrossRef]
- Peters, A.; Van Amerongen, A. Relationship between Levels of Sesquiterpene Lactones in Chicory and Sensory Evaluation. J. Am. Soc. Hortic. Sci. 1998, 132, 326–329. [Google Scholar] [CrossRef]
- Madani, H.; Dordas, C.; Madani, A.; Motasharei, M.-A.; Farri, S. Interactive Effects of Sowing Date and Planting Density on Dry Matter Accumulation and Partitioning of Chicory. Not. Bot. Horti Agrobot. Cluj-Napoca 2012, 40, 183–187. [Google Scholar] [CrossRef]
- Minaiyan, M.; Ghannadi, A.; Mahzouni, P.; Abed, A. Preventive Effect of Cichorium intybus L. Two Extracts on Cerulein-Induced Acute Pancreatitis in Mice. Int. J. Prev. Med. 2012, 3, 351–357. [Google Scholar]
- Asghari, M.; Farahani, H. Changes in Kaempferol Content of Chicory (Cichorium intybus L.) under Water Deficit Stresses and Planting Densities. J. Med. Plants Res. 2014, 8, 30–35. [Google Scholar]
- Baldini, M.; Danuso, F.; Monti, A.; Amanducci, M.; Stevanato, P.; Mastro, G. Chicory and Jerusalem Artichoke Productivity in Different Areas of Italy, in Relation to Water Availability and Time of Harvest. Ital. J. Agron. 2006, 1, 291–307. [Google Scholar] [CrossRef]
- Tardugno, R.; Pozzebon, M.; Beggio, M.; Del Turco, P. Polyphenolic Profile of Cichorium intybus L. Endemic Varieties from the Veneto Region of Italy. Food Chem. 2018, 266, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, M.; Lante, A.; Vanzani, P.; Spettoli, P.; Scarpa, M.; Rigo, A. Red Chicories as Potent Scavengers of Highly Reactive Radicals: A Study on Their Phenolic Composition and Peroxyl Radical Trapping Capacity and Efficiency. J. Agric. Food Chem. 2005, 53, 8169–8175. [Google Scholar] [CrossRef]
- Judžentienė, A.; Būdienė, J. Volatile Constituents from Aerial Parts and Roots of Cichorium intybus L. (Chicory) Grown in Lithuania. CHEMIJA 2008, 19, 25–28. [Google Scholar]
- Hume, D.; Lyons, T.; Hay, R. Evaluation of ‘Grasslands Puna’ Chicory (Cichorium intybus L.) in Various Grass Mixtures under Sheep Grazing. N. Z. J. Agric. Res. 1995, 38, 317–328. [Google Scholar] [CrossRef]
- Patkowska, E.; Konopiński, M. Harmfulness of Soil-Borne Fungi Towards Root Chicory (Cichorium intybus L. var. sativum Bisch.) Cultivated with the Use of Cover Crops. Hortorum Cultus 2013, 12, 3–18. [Google Scholar]
- Midgley, J.; Hill, M.; Villett, M. Baited Traps May Be an Alternative to Conventional Pesticides in Integrated Crop Management of Chicory (Compositae) in South Africa. J. Econ. Entomol. 2008, 101, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, A. Chicory (Cichorium intybus L.): A Possible Biomonitor of Metal Pollution. Pak. J. Bot. 2008, 40, 791–797. [Google Scholar]
- Tkach, O.; Ovcharuk, V. Influence of Chicory Plant Density on Size-Mass Root Parameters. Știința Agric. 2020, 1, 63–66. [Google Scholar]
Zoning | Factor/Limitation | Aptitude | Range of Aptitude | Ranking | Weight |
---|---|---|---|---|---|
Climatic | Tn (°C) | Restricted | <4 | 4 | 0.38 |
Moderate restriction | 4–6 | 3 | |||
Mild restriction | 6–8 | 2 | |||
Without restriction | >8 | 1 | |||
Tx (°C) | Restricted | <10; >30 | 4 | 0.13 | |
Moderate restriction | 10–13; 27–30 | 3 | |||
Mild restriction | 14–17; 23–26 | 2 | |||
Without restriction | 18–26 | 1 | |||
DD (°C) | Restricted | <700; >2600 | 4 | 0.14 | |
Moderate restriction | 700–1000; 2300–2600 | 3 | |||
Mild restriction | 1000–1300; 2000–2300 | 2 | |||
Without restriction | 1300–2000 | 1 | |||
WD (mm) | Restricted | <−1000 | 4 | 0.35 | |
Moderate restriction | −1000–650 | 3 | |||
Mild restriction | −650−100 | 2 | |||
Without restriction | >−100 | 1 | |||
Topographic | Slope (%) | Restricted | >15 | 4 | 0.67 |
Moderate restriction | 10–15 | 3 | |||
Mild restriction | 5–10 | 2 | |||
Without restriction | 0–5 | 1 | |||
Aspect | Restricted | S | 4 | 0.10 | |
Moderate restriction | S–SW | 3 | |||
Mild restriction | E–W | 2 | |||
Without restriction | N–NE–NW | 1 | |||
Elevation (masl) | Restricted | >3000 | 4 | 0.23 | |
Moderate restriction | 3000–2000 | 3 | |||
Mild restriction | 2000–1000 | 2 | |||
Without restriction | 0–1000 | 1 | |||
LULC | Unsuitability | Croplands, forests, wetlands, waterbodies, impervious surfaces, barren lands, snow and ice, clouds—SNASPE | |||
Suitability | Grasslands and shrublands |
Region of Chile | Excluded | Without Restriction | Mild Restriction | Moderate Restriction | Unsuitable |
---|---|---|---|---|---|
Arica | 947,000 | 0 | 53,300 | 598,700 | 86,700 |
Tarapacá | 3,069,500 | 0 | 135,400 | 894,000 | 128,800 |
Antofagasta | 11,949,500 | 0 | 308,900 | 283,100 | 67,000 |
Atacama | 6,332,400 | 0 | 534,900 | 458,200 | 239,700 |
Coquimbo | 1,398,300 | 0 | 1,065,200 | 1,321,900 | 272,000 |
Valparaíso | 562,100 | 14,700 | 377,300 | 562,000 | 81,600 |
Metropolitana | 816,400 | 0 | 201,200 | 450,500 | 71,600 |
O’Higgins | 975,800 | 12,400 | 340,000 | 277,100 | 30,200 |
Maule | 2,017,900 | 1600 | 599,100 | 364,700 | 49,600 |
Ñuble | 799,000 | 5000 | 383,500 | 114,400 | 6800 |
Biobío | 1,690,700 | 64,900 | 445,800 | 193,200 | 8600 |
La Araucanía | 2,004,300 | 2600 | 912,200 | 260,600 | 4900 |
Los Ríos | 1,336,300 | 0 | 434,800 | 62,300 | 1600 |
Los Lagos | 3,564,100 | 0 | 1,109,200 | 167,500 | 4400 |
Aysén | 8,812,000 | 0 | 466,000 | 1,405,700 | 21,500 |
Magallanes | 9,063,200 | 0 | 2,982,400 | 1,007,900 | 700 |
Region of Chile | Root Chicory Biomass Range (t DW ha−1) | ||||
---|---|---|---|---|---|
0–5 | 5–10 | 10–15 | 15–20 | 20–27 | |
Area (ha) | |||||
Arica | 0 | 0 | 32,200 | 20,500 | 600 |
Tarapacá | 0 | 0 | 118,600 | 15,800 | 1000 |
Antofagasta | 0 | 0 | 234,100 | 70,600 | 4200 |
Atacama | 0 | 0 | 188,600 | 292,400 | 53,900 |
Coquimbo | 0 | 0 | 193,500 | 644,300 | 227,400 |
Valparaíso | 0 | 0 | 46,800 | 185,100 | 160,100 |
Metropolitana | 0 | 0 | 125,300 | 70,500 | 5400 |
B. O’Higgins | 0 | 0 | 112,100 | 180,800 | 59,500 |
Maule | 0 | 0 | 311,300 | 227,300 | 62,100 |
Ñuble | 200 | 100 | 205,600 | 160,000 | 22,600 |
Biobío | 100 | 100 | 42,300 | 296,900 | 171,300 |
La Araucanía | 0 | 0 | 900 | 649,000 | 264,900 |
Los Ríos | 0 | 0 | 700 | 33,000 | 401,100 |
Los Lagos | 700 | 900 | 3400 | 11,200 | 1,093,000 |
Aysén | 16,100 | 16,100 | 30,900 | 394,000 | 8900 |
Magallanes | 205,200 | 470,800 | 1,485,100 | 821,300 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortez, D.; Paneque, M.; Román-Figueroa, C. Potential Expansion of Root Chicory Cultivation Areas in Chile. Agronomy 2025, 15, 1675. https://doi.org/10.3390/agronomy15071675
Cortez D, Paneque M, Román-Figueroa C. Potential Expansion of Root Chicory Cultivation Areas in Chile. Agronomy. 2025; 15(7):1675. https://doi.org/10.3390/agronomy15071675
Chicago/Turabian StyleCortez, Donna, Manuel Paneque, and Celián Román-Figueroa. 2025. "Potential Expansion of Root Chicory Cultivation Areas in Chile" Agronomy 15, no. 7: 1675. https://doi.org/10.3390/agronomy15071675
APA StyleCortez, D., Paneque, M., & Román-Figueroa, C. (2025). Potential Expansion of Root Chicory Cultivation Areas in Chile. Agronomy, 15(7), 1675. https://doi.org/10.3390/agronomy15071675