Looking for New P Fertilizers: Comparative Study of Mineral-, Organomineral- and Organic-Based Fertilizers for Lettuce (Lactuca sativa L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Treatments Characterization
2.3. Crop Management
2.4. Plant Analysis
2.5. Soil Analysis
2.6. Statistical Analysis
3. Results
3.1. Yield
3.2. Morphological Aspects
3.3. Soil Parameters
3.4. Nutrient Use Efficiency
3.5. Metabolomic Study
4. Discussion
4.1. Effects of Fertilization on Quality and Yield
4.2. Effects of Fertilization on Soil Properties
4.3. Effects of Fertilization on Metabolomics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cordell, D. The Story of Phosphorus Sustainability Implications of Global Phosphorus Scarcity for Food Security; University of Technology Sydney: Ultimo, NSW, Australia, 2010; ISBN 9789173934404. [Google Scholar]
- U.S. Geological Survey (U.S.G.S.). Mineral Commodities Summary 2024; U.S. Geological Survey: Reston, VA, USA, 2024; ISBN 9781411345447.
- Brownlie, W.J.; Sutton, M.A.; Cordell, D.; Reay, D.S.; Heal, K.V.; Withers, P.J.A.; Vanderbeck, I.; Spears, B.M. Phosphorus Price Spikes: A Wake-up Call for Phosphorus Resilience. Front. Sustain. Food Syst. 2023, 7, 1088776. [Google Scholar] [CrossRef]
- Schnug, E.; De Kok, L.J. Phosphorus in Agriculture: 100% Zero; Springer: Dordrecht, The Netherlands, 2016; pp. 1–926. [Google Scholar] [CrossRef]
- Bindraban, P.S.; Dimkpa, C.O.; Pandey, R. Exploring Phosphorus Fertilizers and Fertilization Strategies for Improved Human and Environmental Health. Biol. Fertil. Soils 2020, 56, 299–317. [Google Scholar]
- Shi, W.; Ju, Y.; Bian, R.; Li, L.; Joseph, S.; Mitchell, D.R.G.; Munroe, P.; Taherymoosavi, S.; Pan, G. Biochar Bound Urea Boosts Plant Growth and Reduces Nitrogen Leaching. Sci. Total Environ. 2020, 701, 134424. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.; Liu, G.; Zhang, Y.; Wang, H. Biochar-Based Slow-Release of Fertilizers for Sustainable Agriculture: A Mini Review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Smith, W.B.; Wilson, M.; Pagliari, P. Organomineral Fertilizers and Their Application to Field Crops. Animal Manure: Production, Characteristics, Environmental Concerns, and Management; ASA: Monroe, MI, USA, 2020; pp. 229–243. [Google Scholar] [CrossRef]
- Demicheli, P.M.; Albuquerque, C.J.B.; Coelho, M.A.D.O.; Monção, F.P.; Aspiazú, I.; Dantas, T.; de Freitas, R.S.; Rigueira, J.P.S. Agronomic and Bromatological Characteristics of Forage Wheat under Different Fertilization Managements and Densities. Rev. Caatinga 2024, 37, 1–8. [Google Scholar] [CrossRef]
- Uddin, K.; Saha, B.K.; Wong, V.N.L.; Patti, A.F. Organo-Mineral Fertilizer to Sustain Soil Health and Crop Yield for Reducing Environmental Impact: A Comprehensive Review. Eur. J. Agron. 2025, 162, 127433. [Google Scholar] [CrossRef]
- Hettiarachchi, L.G.; Jayathillake, N.; Fernando, S.; Gunawardena, S. Effects of Compost Particle Size, Moisture Content and Binding Agents on Co-Compost Pellet Properties. Int. J. Agric. Biol. Eng. 2019, 12, 184–191. Available online: https://www.ijabe.org/index.php/ijabe/article/view/4354/pdf (accessed on 6 July 2025).
- Papandrea, S.F.; Cataldo, M.F.; Palma, A.; Gallucci, F.; Zimbalatti, G.; Proto, A.R. Pelletization of Compost from Different Mixtures with the Addition of Exhausted Extinguishing Powders. Agronomy 2021, 11, 1357. [Google Scholar] [CrossRef]
- Brownlie, W.J.; Sutton, M.A.; Reay, D.S.; Heal, K.V.; Hermann, L.; Kabbe, C.; Spears, B.M. Global Actions for a Sustainable Phosphorus Future. Nat. Food 2021, 2, 71–74. [Google Scholar] [CrossRef]
- Scholz, R.W.; Roy, A.H.; Hellums, D.T. Sustainable Phosphorus Management: A Transdisciplinary Challenge. In Sustainable Phosphorus Management: A Global Transdisciplinary Roadmap; Springer: Dordrecht, The Netherlands, 2014; pp. 1–128. [Google Scholar] [CrossRef]
- Pasalari, H.; Farzadkia, M.; Khosravani, F.; Ganachari, S.; Aminabhavi, T.M. Phosphorous Recovery from Sewage Sludge via Chemical and Thermal Technologies. Chem. Eng. J. 2024, 496, 153869. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 27 May 2025).
- Paredes, C.; Pérez-Murcia, M.D.; Bustamante, M.A.; Pérez-Espinosa, A.; Agulló, E.; Moreno-Caselles, J. Valorization of Mediterranean Livestock Manures: Composting of Rabbit and Goat Manure and Quality Assessment of the Compost Obtained. Commun. Soil Sci. Plant Anal. 2015, 46, 248–255. [Google Scholar] [CrossRef]
- Patrignani, A.; Ochsner, T.E. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef]
- Casella, A.; Orden, L.; Pezzola, N.A.; Bellaccomo, C.; Winschel, C.I.; Caballero, G.R.; Delegido, J.; Gracia, L.M.N.; Verrelst, J. Analysis of Biophysical Variables in an Onion Crop (Allium cepa L.) with Nitrogen Fertilization by Sentinel-2 Observations. Agronomy 2022, 12, 1884. [Google Scholar] [CrossRef]
- Wang, J.; Dimech, A.M.; Spangenberg, G.; Smith, K.; Badenhorst, P. Rapid Screening of Nitrogen Use Efficiency in Perennial Ryegrass (Lolium perenne L.) Using Automated Image-Based Phenotyping. Front. Plant Sci. 2020, 11, 565361. [Google Scholar] [CrossRef]
- Martínez-Sabater, E.; Pérez-Murcia, M.D.; Andreu-Rodríguez, F.J.; Orden, L.; Agulló, E.; Sáez-Tovar, J.; Martínez-Tome, J.; Bustamante, M.Á.; Moral, R. Enhancing Sustainability in Intensive Dill Cropping: Comparative Effects of Biobased Fertilizers vs. Inorganic Commodities on Greenhouse Gas Emissions, Crop Yield, and Soil Properties. Agronomy 2022, 12, 2124. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 1–520. [Google Scholar] [CrossRef]
- Ritchie, R.J. Universal Chlorophyll Equations for Estimating Chlorophylls a, b, c, and d and Total Chlorophylls in Natural Assemblages of Photosynthetic Organisms Using Acetone, Methanol, or Ethanol Solvents. Photosynthetica 2008, 46, 115–126. [Google Scholar] [CrossRef]
- López-Bellido, L.; López-Bellido, R.J.; Redondo, R. Nitrogen Efficiency in Wheat under Rainfed Mediterranean Conditions as Affected by Split Nitrogen Application. Field Crops Res. 2005, 94, 86–97. [Google Scholar] [CrossRef]
- Van der Sar, S.; Kim, H.K.; Meissner, A.; Verpoorte, R.; Choi, Y.H. Nuclear Magnetic Resonance Spectroscopy for Plant Metabolite Profiling. In The Handbook of Plant Metabolomics; Wiley: Weinheim, Germany, 2013; pp. 57–76. [Google Scholar] [CrossRef]
- Alfosea-Simón, M.; Simón-Grao, S.; Zavala-Gonzalez, E.A.; Cámara-Zapata, J.M.; Simón, I.; Martínez-Nicolás, J.J.; Lidón, V.; García-Sánchez, F. Physiological, Nutritional and Metabolomic Responses of Tomato Plants After the Foliar Application of Amino Acids Aspartic Acid, Glutamic Acid and Alanine. Front. Plant Sci. 2021, 11. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA Circular No. 939; US Government Printing Office; Scientific Research Publishing: Washington, DC, USA, 1954. Available online: https://www.scirp.org/reference/referencespapers?referenceid=1117235 (accessed on 6 September 2024).
- Yeomans, J.C.; Bremner, J.M. A Rapid and Precise Method for Routine Determination of Organic Carbon in Soil. Commun. Soil Sci. Plant Anal. 1988, 19, 1467–1476. [Google Scholar] [CrossRef]
- (PDF) Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available online: https://www.researchgate.net/publication/319875366_Grupo_InfoStat_FCA_Universidad_Nacional_de_Cordoba_Argentina (accessed on 26 May 2025).
- Carciochi, W.D.; Ferrari, J.L.; Orden, L.; Galantini, J.A. Pelletized Organomineral vs. Inorganic Nitrogen and Phosphorus Fertilizers: Impact on Wheat Nutritional Status, Productivity, and Grain Quality. J. Soil Sci. Plant Nutr. 2024, 24, 7361–7372. [Google Scholar] [CrossRef]
- Vieira, D.M.D.S.; de Camargo, R.; Torres, J.L.R.; Silva, A.D.A.; Lana, R.M.Q.; Carvalho, F.J. Growing Vegetables in Succession in Different Soils and Doses of Phosphorus in an Organomineral Fertilizer. Rev. Bras. Eng. Agríc. Ambient. 2020, 24, 806–813. [Google Scholar] [CrossRef]
- de Morais, E.G.; Silva, C.A.; Maluf, H.J.G.M.; Paiva, I.D.O.; de Paula, L.H.D. Effects of Compost-Based Organomineral Fertilizers on the Kinetics of NPK Release and Maize Growth in Contrasting Oxisols. Waste Biomass Valorization 2023, 14, 2299–2321. [Google Scholar] [CrossRef]
- Araújo, M.D.M.; de Souza, H.A.; Benites, V.M.; Pompeu, R.C.F.F.; Natale, W.; Leite, L.F.C. Organomineral Phosphate Fertilization in Millet in Sandy Soil [Adubação Fosfatada Organomineral Em Milheto Em Solo Arenoso]. Rev. Bras. Eng. Agric. E Ambient. 2020, 24, 694–699. [Google Scholar] [CrossRef]
- Erenoğlu, E.B.; Morsy Mohammed Morsy, M.E. Dündar The Effect of Organomineral Fertilizer Phosphorus on the Availability of Phosphorus in a Calcareous Soil. Appl. Ecol. Environ. Res. 2023, 21, 4545–4562. [Google Scholar] [CrossRef]
- de Sousa, R.N.; Alleoni, L.R.F. Performance of Struvite and Organomineral Fertilizers Compared to Traditional Source of Phosphorus in Maize Cultivation on Tropical Soils. J. Soil Sci. Plant Nutr. 2024, 24, 5250–5271. [Google Scholar] [CrossRef]
- Achat, D.L.; Sperandio, M.; Daumer, M.L.; Santellani, A.C.; Prud’Homme, L.; Akhtar, M.; Morel, C. Plant-Availability of Phosphorus Recycled from Pig Manures and Dairy Effluents as Assessed by Isotopic Labeling Techniques. Geoderma 2014, 232–234, 24–33. [Google Scholar] [CrossRef]
- Bonvin, C.; Etter, B.; Udert, K.M.; Frossard, E.; Nanzer, S.; Tamburini, F.; Oberson, A. Plant Uptake of Phosphorus and Nitrogen Recycled from Synthetic Source-Separated Urine. Ambio 2015, 44, 217–227. [Google Scholar] [CrossRef]
- Erdal, İ.; Yazici, H.; Ekinci, K.; Türkan, Ş.A.; Yaylaci, C.; Mejri, R.; Kumbul, B.S. Comparison of Struvite as a P Source with Chemical Fertilizers and Evaluation of Additional Contribution to Growth and Mineral Nutrition of Lettuce Grown on Acidic and Calcareous Soils. J. Soil Sci. Plant Nutr. 2024, 24, 3315–3328. [Google Scholar] [CrossRef]
- Zheng, J.; Han, J.; Liu, Z.; Xia, W.; Zhang, X.; Li, L.; Liu, X.; Bian, R.; Cheng, K.; Zheng, J.; et al. Biochar Compound Fertilizer Increases Nitrogen Productivity and Economic Benefits but Decreases Carbon Emission of Maize Production. Agric. Ecosyst. Environ. 2017, 241, 70–78. [Google Scholar] [CrossRef]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; Andrade, C.A. de Biochar-Based Nitrogen Fertilizers: Greenhouse Gas Emissions, Use Efficiency, and Maize Yield in Tropical Soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef]
- Bouhia, Y.; Hafidi, M.; Ouhdouch, Y.; Zeroual, Y.; Lyamlouli, K. Organo-Mineral Fertilization Based on Olive Waste Sludge Compost and Various Phosphate Sources Improves Phosphorus Agronomic Efficiency, Zea Mays Agro-Physiological Traits, and Water Availability. Agronomy 2023, 13, 249. [Google Scholar] [CrossRef]
- Sitzmann, T.J.; Alpigiano, A.; Lerda, C.; Moretti, B.; Zavattaro, L.; Grignani, C. Response of Tomato to Innovative Organo-Mineral Fertilizers. Front. Sustain. Food Syst. 2024, 8, 1385828. [Google Scholar] [CrossRef]
- (PDF) Potassium Management Strategy to Increase Potassium Use Efficiency (KUE). Available online: https://www.researchgate.net/publication/377152164_Potassium_Management_Strategy_to_Increase_Potassium_use_Efficiency_KUE#fullTextFileContent (accessed on 26 May 2025).
- Yin, M.; Li, Y.; Hu, Q.; Yu, X.; Huang, M.; Zhao, J.; Dong, S.; Yuan, X.; Wen, Y. Potassium Increases Nitrogen and Potassium Utilization Efficiency and Yield in Foxtail Millet. Agronomy 2023, 13, 2200. [Google Scholar] [CrossRef]
- Mancho, C.; Diez-Pascual, S.; Alonso, J.; Gil-Díaz, M.; García-Gonzalo, P.; Lobo, M.C. Medium/Long-Term Efficiency of Struvite for Lettuce (Lactuca Sativa L.) Production: Effect on Soil Quality. Horticulturae 2023, 9, 645. [Google Scholar] [CrossRef]
- Sánchez-Méndez, S.; Valverde-Vozmediano, L.; Orden, L.; Andreu-Rodríguez, F.J.; Sáez-Tovar, J.A.; Martínez-Sabater, E.; Bustamante, M.Á.; Moral, R. Alternative Phosphorus Fertilisation with Bio-Based Pellet Fertilisers: A Case of Study on Ryegrass (Lollium perenne L.). Agronomy 2025, 15, 579. [Google Scholar] [CrossRef]
- Toprak, S.; Seferoğlu, S. The Comparative Effects of Phosphorus-Enriched Organomineral Fertilization on Some Chemical Properties of Calcareous Soils. Commun. Soil Sci. Plant Anal. 2024, 55, 3385–3399. [Google Scholar] [CrossRef]
- Adebayo, A.G.; Akintoye, H.A.; Shokalu, A.O.; Olatunji, M.T. Soil Chemical Properties and Growth Response of Moringa Oleifera to Different Sources and Rates of Organic and NPK Fertilizers. Int. J. Recycl. Org. Waste Agric. 2017, 6, 281–287. [Google Scholar] [CrossRef]
- Frazão, J.J.; Benites, V.D.M.; Ribeiro, J.V.S.; Pierobon, V.M.; Lavres, J. Agronomic Effectiveness of a Granular Poultry Litter-Derived Organomineral Phosphate Fertilizer in Tropical Soils: Soil Phosphorus Fractionation and Plant Responses. Geoderma 2019, 337, 582–593. [Google Scholar] [CrossRef]
- Willian Da Silva, R.; Rodrigues, H.; Loquez, S.; Destefani Paquini, L.; Andrade, F.V.; De Sá Mendonç, E.; José, O.; Rangel, P.; Profeti, D.; Paula, L.; et al. Organophosphate Fertilizers Based on Biochars and Phosphorus Availability in the Soil. ACS Agric. Sci. Technol. 2024, 4, 1054–1062. [Google Scholar] [CrossRef]
- Borges, B.M.M.N.; Abdala, D.B.; de Souza, M.F.; Viglio, L.M.; Coelho, M.J.A.; Pavinato, P.S.; Franco, H.C.J. Organomineral Phosphate Fertilizer from Sugarcane Byproduct and Its Effects on Soil Phosphorus Availability and Sugarcane Yield. Geoderma 2019, 339, 20–30. [Google Scholar] [CrossRef]
- Matamoros, V.; Rendón-Mera, A.M.; Piña, B.; Tadić, Đ.; Cañameras, N.; Carazo, N.; Bayona, J.M. Metabolomic and Phenotypic Implications of the Application of Fertilization Products Containing Microcontaminants in Lettuce (Lactuca sativa). Sci. Rep. 2021, 11, 9701. [Google Scholar] [CrossRef]
- Wang, L.; Cui, D.; Zhao, X.; He, M. The Important Role of the Citric Acid Cycle in Plants. Genom. Appl. Biol. 2017, 8, 25–29. [Google Scholar] [CrossRef]
- Araújo, W.L.; Nunes-Nesi, A.; Nikoloski, Z.; Sweetlove, L.J.; Fernie, A.R. Metabolic Control and Regulation of the Tricarboxylic Acid Cycle in Photosynthetic and Heterotrophic Plant Tissues. Plant Cell Environ. 2012, 35, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Mao, H.; Ullah, I. Analysis of Metabolomic Changes in Lettuce Leaves under Low Nitrogen and Phosphorus Deficiencies Stresses. Agriculture 2020, 10, 406. [Google Scholar] [CrossRef]
- Hurtado, C.; Parastar, H.; Matamoros, V.; Piña, B.; Tauler, R.; Bayona, J.M. Linking the Morphological and Metabolomic Response of Lactuca Sativa L Exposed to Emerging Contaminants Using GC × GC-MS and Chemometric Tools. Sci. Rep. 2017, 7, 18–26. [Google Scholar] [CrossRef]
- Chandrou, E.; Faliagka, S.; Mourantian, A.; Kollaros, M.G.; Karamanoli, K.; Pechlivani, E.M.; Katsoulas, N.; Levizou, E. Exploring the Potential of Biostimulants to Optimize Lettuce Cultivation in Coupled and Decoupled Aquaponics Systems: Growth Performance, Functional Characteristics and Metabolomic Analysis. Horticulturae 2024, 10, 514. [Google Scholar] [CrossRef]
- Winter, G.; Todd, C.D.; Trovato, M.; Forlani, G.; Funck, D. Physiological Implications of Arginine Metabolism in Plants. Front. Plant Sci. 2015, 6, 150117. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Savka, M.A.; Hudson, A.O. The Synthesis and Role of β-Alanine in Plants. Front. Plant Sci. 2019, 10, 468525. [Google Scholar] [CrossRef]
- Donahue, J.L.; Alford, S.R.; Torabinejad, J.; Kerwin, R.E.; Nourbakhsh, A.; Keith Ray, W.; Hernick, M.; Huang, X.; Lyons, B.M.; Hein, P.P.; et al. The Arabidopsis Thaliana Myo-Inositol 1-Phosphate Synthase1 Gene Is Required for Myo-Inositol Synthesis and Suppression of Cell Death. Plant Cell 2010, 22, 888–903. [Google Scholar] [CrossRef]
- Loewus, F.A.; Murthy, P.P.N. Myo-Inositol Metabolism in Plants. Plant Sci. 2000, 150, 1–19. [Google Scholar] [CrossRef]
- Ramesh, S.A.; Tyerman, S.D.; Xu, B.; Bose, J.; Kaur, S.; Conn, V.; Domingos, P.; Ullah, S.; Wege, S.; Shabala, S.; et al. GABA Signalling Modulates Plant Growth by Directly Regulating the Activity of Plant-Specific Anion Transporters. Nat. Commun. 2015, 6, 7879. [Google Scholar] [CrossRef] [PubMed]
- Jacobo-Velázquez, D.A.; Cisneros-Zevallos, L. An Alternative Use of Horticultural Crops: Stressed Plants as Biofactories of Bioactive Phenolic Compounds. Agriculture 2012, 2, 259–271. [Google Scholar] [CrossRef]
Treatment Group | Treatment | N Source | P Source | K Source |
---|---|---|---|---|
Control | Control | -- | -- | -- |
Conventional inorganic treatments | IN100 | IN100 | IN100 | IN100 |
IN200 | IN200 | IN200 | IN200 | |
IN300 | IN300 | IN300 | IN300 | |
Simple treatments | PR | KNO3 | Phosphate rock | KNO3 |
MAP | KNO3 | Monoammonium phosphate | KNO3 | |
STR | KNO3 | Struvite | KNO3 | |
BM | KNO3 | Bone meal | KNO3 | |
Complex OMF treatments | OMF1(PR+C) | KNO3 + compost | Phosphate rock + Compost | KNO3 + compost |
OMF2(MAP+C) | KNO3 + compost | Monoammonium phosphate + Compost | KNO3 + compost | |
OMF3(STR+C) | KNO3 + compost | Struvite + Compost | KNO3 + compost | |
OMF4(BM+C) | KNO3 + compost | Bone meal + Compost | KNO3 + compost |
Nutrient | PR | MAP | STR | BM | OMF1 (PR+C) | OMF2 (MAP+C) | OMF3 (STR+C) | OMF4 (BM+C) |
---|---|---|---|---|---|---|---|---|
pH | 6.5 | 4.2 | 7.3 | 6.9 | 9.4 | 5.6 | 6.7 | 8.6 |
EC (dS m−1) | 0.97 | 22.8 | 1.3 | 0.7 | 2.05 | 3.02 | 3.9 | 1.9 |
Total C (%) | 0.48 | 0.031 | 0.14 | 15.1 | 17.5 | 21.7 | 17.9 | 29.4 |
Total N (%) | 0.044 | 12.1 | 5.7 | 3.00 | 1.16 | 7.06 | 3.73 | 2.76 |
K (%) | 0.11 | 0.001 | 0.06 | 0.05 | 1.25 | 1.44 | 1.20 | 1.57 |
P (%) | 2.0 | 2.3 | 14.2 | 2.1 | 6.5 | 10.3 | 7.3 | 4.6 |
Ca (%) | 25.1 | 0.11 | 0.09 | 23.2 | 16.3 | 2.0 | 5.3 | 11.6 |
Mg (%) | 0.20 | 0.003 | 11.7 | 0.49 | 0.24 | 0.22 | 2.11 | 0.41 |
Na (%) | 0.07 | 0.002 | 0.004 | 0.44 | 0.09 | 0.06 | 0.22 | 0.28 |
Fe (mg kg−1) | 10,930 | 16.5 | 156 | 47.9 | 4808 | 1177 | 4173 | 1216 |
Cu (mg kg−1) | 78 | 0.16 | 0.5 | 0.24 | 84.4 | 51.1 | 51.3 | 51.5 |
Mn (mg kg−1) | 470 | <0.01 | 642 | 42.6 | 388 | 159 | 272 | 165 |
Zn (mg kg−1) | 413 | 1.33 | 1.2 | 136 | 244 | 120 | 184 | 168 |
Treatment Group | Treatment | SPAD tf | Canopy tf (%) | Chl a (mg g−1) | Chl b (mg g−1) | Chl (mg g−1) |
---|---|---|---|---|---|---|
Control | C | 5.61 b | 2.68 a | 0.32 b | 0.13 a | 0.43 ab |
Conventional inorganic treatments | IN100 | 10.29 c | 10.01 b | 0.44 c | 0.20 b | 0.64 c |
IN200 | 16.03 f | 11.67 cd | 0.55 e | 0.24 cd | 0.80 f | |
IN300 | 12.99 d | 10.75 bc | 0.53 de | 0.25 cd | 0.78 ef | |
Simple treatments | PR | 3.82 a | 2.56 a | 0.24 a | 0.10 a | 0.37 a |
MAP | 12.26 d | 10.27 b | 0.52 de | 0.27 d | 0.70 cde | |
STR | 12.87 d | 10.73 bc | 0.43 c | 0.23 bc | 0.68 cd | |
BM | 3.82 a | 2.23 a | 0.33 b | 0.13 a | 0.46 ab | |
Complex OMF treatments | OMF1(PR+C) | 3.61 a | 2.36 a | 0.30 ab | 0.11 a | 0.41 ab |
OMF2(MAP+C) | 14.33 e | 13.88 e | 0.47 cd | 0.26 d | 0.73 def | |
OMF3(STR+C) | 20.14 g | 10.73 bc | 0.44 c | 0.24 cd | 0.68 cd | |
OMF4(BM+C) | 4.29 a | 2.69 a | 0.35 b | 0.13 a | 0.48 b | |
F-ANOVA | 177 *** | 116 *** | 17 *** | 36 *** | 24 *** |
Treatment Group | Treatment | pH | EC (dS m−1) | OM (%) | Pext (mg kg−1) | TN (g kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) |
---|---|---|---|---|---|---|---|---|
Control | C | 7.37 a | 3.25 cd | 0.51 a | 138 d | 0.34 a | 2.2 ab | 1 a |
Conventional inorganic treatments | IN100 | 7.62 bc | 3.17 bc | 0.66 d | 190 e | 0.41 b | 5.6 cd | 7 ab |
IN200 | 7.66 bc | 3.19 c | 0.39 b | 218 ef | 0.41 b | 7.0 de | 18 bc | |
IN300 | 7.69 bc | 3.14 abc | 0.42 bc | 260 g | 0.49 c | 8.5 e | 44 d | |
Simple treatments | PR | 7.81 c | 3.20 cd | 1.12 f | 85 ab | 0.52 c | 7.0 d | 85 e |
MAP | 7.55 ab | 3.18 bc | 0.10 a | 263 g | 0.49 c | 1.2 a | 55 d | |
STR | 7.75 bc | 3.20 cd | 0.90 e | 100 abc | 0.54 c | 11.2 f | 43 d | |
BM | 7.75 bc | 3.22 cd | 0.98 e | 78 a | 0.49 c | 5.4 c | 111 f | |
Complex OMF treatments | OMF1(PR+C) | 7.77 bc | 3.20 cd | 1.14 f | 128 cd | 0.51 c | 3.5 b | 94 e |
OMF2(MAP+C) | 7.77 bc | 3.02 a | 1.17 f | 231 fg | 0.42 b | 3.0 b | 26 c | |
OMF3(STR+C) | 7.73 bc | 3.04 ab | 1.11 f | 114 bcd | 0.41 b | 11.1 f | 22 c | |
OMF4(BM+C) | 7.77 bc | 3.34 d | 1.35 g | 112 bcd | 0.67 d | 5.3 c | 111 f | |
F-ANOVA | 3 * | 3 * | 120 *** | 36 *** | 17 *** | 37 *** | 89 *** |
Treatment Group | pH | EC (dS cm−1) | OM (%) | Pext (mg kg−1) | TN (g kg−1) | NH4+-N (mg kg−1) | NO3−-N (mg kg−1) |
---|---|---|---|---|---|---|---|
Control | 7.37 a | 3.25 | 0.51 ab | 138 a | 0.41 a | 2.16 | 1.25 a |
Conventional inorganic treatments | 7.66 b | 3.17 | 0.49 a | 222 b | 0.41 a | 7.02 | 22.81 a |
Simple treatments | 7.72 b | 3.20 | 0.78 b | 131 a | 0.51 b | 6.18 | 73.65 b |
Complex OMF treatments | 7.76 b | 3.15 | 1.19 c | 146 a | 0.50 ab | 5.73 | 63.27 b |
F-ANOVA | 7.8 *** | 0.93 ns | 14.07 *** | 4.48 ** | 3.93 * | 1.91 ns | 7.78 *** |
Treatment Group | Treatment | P Uptake (g P pot−1) | PUE (%) | N Uptake (g N pot−1) | NUE (%) | K Uptake (g K pot−1) | KUE (%) |
---|---|---|---|---|---|---|---|
Control | C | 0.001 a | - | 0.05 a | - | 0.012 a | - |
Conventional inorganic treatments | IN100 | 0.006 b | 11.60 e | 0.11 c | 71.33 gh | 0.032 d | 24.80 d |
IN200 | 0.009 d | 9.33 d | 0.18 de | 69.67 gh | 0.053 g | 25.80 d | |
IN300 | 0.011 e | 7.97 c | 0.20 ef | 53.67 de | 0.039 e | 11.17 c | |
Simple treatments | PR | 0.002 a | 0.97 a | 0.10 c | 30.33 c | 0.020 c | 1.37 a |
MAP | 0.007 c | 5.33 b | 0.20 f | 64.33 fg | 0.045 f | 5.97 b | |
STR | 0.006 bc | 4.67 b | 0.16 d | 47.00 d | 0.040 ef | 5.13 b | |
BM | 0.001 a | 0.23 a | 0.07 b | 13.00 ab | 0.014 ab | 0.30 a | |
Complex OMF treatments | OMF1(PR+C) | 0.001 a | 0.30 a | 0.10 c | 18.33 b | 0.018 bc | 0.77 a |
OMF2(MAP+C) | 0.016 g | 7.40 c | 0.25 g | 75.33 h | 0.071 h | 10.43 c | |
OMF3(STR+C) | 0.013 f | 8.33 cd | 0.20 f | 59.33 ef | 0.054 g | 7.37 b | |
OMF4(BM+C) | 0.001 a | 0.13 a | 0.07 ab | 8.67 a | 0.013 ab | 0.13 a | |
F-ANOVA | 241.51 *** | 120.93 *** | 112.31 *** | 57.61 *** | 99.60 *** | 89.64 *** |
Treatment | N Uptake | NUE | P Uptake | PUE | K Uptake | KUE |
---|---|---|---|---|---|---|
(g N pot−1) | (%) | (g P pot−1) | (%) | (g N pot−1) | (%) | |
Control | 0.05 a | 0.001 a | 0.01 | |||
Conventional inorganic treatments | 0.16 b | 7.42 b | 0.009 c | 9.63 b | 0.03 | 20.59 b |
Simple treatments | 0.14 b | 6.42 a | 0.004 ab | 2.80 a | 0.04 | 3.19 a |
Complex OMF treatments | 0.15 b | 6.42 a | 0.008 bc | 4.04 a | 0.04 | 4.68 a |
F-ANOVA | 3.04 * | 4.26 * | 3.10 * | 14.76 *** | 2.49 ns | 36.03 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valverde-Vozmediano, L.; Sánchez-Méndez, S.; Orden, L.; Mira-Urios, M.A.; Andreu, F.J.; Sáez, J.A.; Martínez-Sabater, E.; Bustamante, M.Á.; Martín-Pozuelo, J.; Moral, R. Looking for New P Fertilizers: Comparative Study of Mineral-, Organomineral- and Organic-Based Fertilizers for Lettuce (Lactuca sativa L.). Agronomy 2025, 15, 1661. https://doi.org/10.3390/agronomy15071661
Valverde-Vozmediano L, Sánchez-Méndez S, Orden L, Mira-Urios MA, Andreu FJ, Sáez JA, Martínez-Sabater E, Bustamante MÁ, Martín-Pozuelo J, Moral R. Looking for New P Fertilizers: Comparative Study of Mineral-, Organomineral- and Organic-Based Fertilizers for Lettuce (Lactuca sativa L.). Agronomy. 2025; 15(7):1661. https://doi.org/10.3390/agronomy15071661
Chicago/Turabian StyleValverde-Vozmediano, Lucía, Silvia Sánchez-Méndez, Luciano Orden, Miguel A. Mira-Urios, Francisco Javier Andreu, Jose A. Sáez, Encarnación Martínez-Sabater, María Ángeles Bustamante, Javier Martín-Pozuelo, and Raúl Moral. 2025. "Looking for New P Fertilizers: Comparative Study of Mineral-, Organomineral- and Organic-Based Fertilizers for Lettuce (Lactuca sativa L.)" Agronomy 15, no. 7: 1661. https://doi.org/10.3390/agronomy15071661
APA StyleValverde-Vozmediano, L., Sánchez-Méndez, S., Orden, L., Mira-Urios, M. A., Andreu, F. J., Sáez, J. A., Martínez-Sabater, E., Bustamante, M. Á., Martín-Pozuelo, J., & Moral, R. (2025). Looking for New P Fertilizers: Comparative Study of Mineral-, Organomineral- and Organic-Based Fertilizers for Lettuce (Lactuca sativa L.). Agronomy, 15(7), 1661. https://doi.org/10.3390/agronomy15071661