Influence of Dynamic Magnetic Field Exposure Duration on the Germination and Growth of Khao Dawk Mali 105 Rice Seed
Abstract
1. Introduction
2. Materials and Methods
2.1. Rice Seed Samples
2.2. Magnetic Field Tester for KDML 105 Rice Seeds
2.3. Investigation of Rice Seed Movement and Distribution in the Magnetic Field Testing Apparatus
2.4. Effects of Magnetic Field Exposure on Seed Germination and Seedling Growth
2.5. Statistical Analysis
3. Results
3.1. Evaluation of Rice Seed Distribution in the Magnetic Field Testing Apparatus
3.2. Impact of Magnetic Field Treatment on Seed Vigor and Germination
3.3. Effects of Magnetic Field Treatment on Shoot Length of Rice Seedlings
3.4. Effects of Magnetic Field Treatment on Root Growth and Biomass Accumulation in Rice Seedlings
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prom-u-thai, C.; Rerkasem, B. Rice quality improvement. A review. Agron. Sustain. Dev. 2020, 40, 28. [Google Scholar] [CrossRef]
- Vipattanaporn, C.; Chiawchanwattana, C.; Laohavanich, J.; Yangyuen, S. Influence of Seed Quality Stimulation in “Khao Dawk Mali 105” Rough Rice during the Deterioration Period Using an Automatic Soaking and Germination Accelerator Unit and Infrared Radiation Treatment. AgriEngineering 2022, 4, 414–423. [Google Scholar] [CrossRef]
- Watchararparpaiboon, W.; Laohakunjit, N.; Kerdchoechuen, O. An Improved Process for High Quality and Nutrition of Brown Rice Production. Food Sci. Technol. Int. 2010, 16, 147–158. [Google Scholar] [CrossRef]
- Nagaraj, A.R.; Geethalakshmi, V.; Swaminathan, M.; Dhandapani, M.; Ravikumar, R.; Kulanthaivel, B.; K, S.; Kumar, S.M.; Manikkam, S.K. Comprehensive Insights into the Risks of Climatic Factors on Rice Production and Its Value Chain—A Review. Plant Sci. Today 2024, 11, 1–12. [Google Scholar] [CrossRef]
- Dewi, W.; Romadhon, M.; Amalina, D.; Aziz, A. Paddy Soil Quality Assessment to Sustaining Food Security. IOP Conf. Ser. Earth Environ. Sci. 2022, 1107, 012051. [Google Scholar] [CrossRef]
- Dash, P.K.; Bhattacharyya, P.; Padhy, S.R.; Shahid, M.; Nayak, A.K. Optimizing Sustainability in Rice-Based Cropping Systems: A Holistic Approach for Integrating Soil Carbon Farming, Energy Efficiency, and Greenhouse Gas Reduction Strategies via Resource Conservation Practices. Agron. Sustain. Dev. 2025, 45, 11. [Google Scholar] [CrossRef]
- Hafeez, M.B.; Zahra, N.; Ahmad, N.; Shi, Z.; Raza, A.; Wang, X.; Li, J. Growth, physiological, biochemical and molecular changes in plants induced by magnetic fields: A review. Plant Biol. 2023, 25, 8–23. [Google Scholar] [CrossRef]
- Batool, A.; Rasheed, T.; Hafeez, M.B.; Zahra, N.; Kausar, A.; Raza, A. Magnetic Field and Agriculture Sustainability. Transdiscip. J. Eng. Sci. 2022, 13, 23–27. [Google Scholar] [CrossRef]
- Bezerra, E.A.; Carvalho, C.P.S.; Costa Filho, R.N.; Silva, A.F.B.; Alam, M.; Sales, M.V.; Dias, N.L.; Gonçalves, J.F.C.; Freitas, C.D.T.; Ramos, M.V. Static magnetic field promotes faster germination and increases germination rate of Calotropis procera seeds stimulating cellular metabolism. Biocatal. Agric. Biotechnol. 2023, 49, 102650. [Google Scholar] [CrossRef]
- Saletnik, B.; Saletnik, A.; Słysz, E.; Zaguła, G.; Bajcar, M.; Puchalska-Sarna, A.; Puchalski, C. The Static Magnetic Field Regulates the Structure, Biochemical Activity, and Gene Expression of Plants. Molecules 2022, 27, 5823. [Google Scholar] [CrossRef]
- Zidan, G.; Wahab, Z.; Hassan, S. Magnetic Field Exposure Effect on Water Properties and Its Effect on Pumpkin (Cucurbita moschata Duchesne) and Okra (Abelmoschus esculentus Moench) Seedling Growth Performance. Tikrit J. Agric. Sci. 2023, 23, 128–141. [Google Scholar] [CrossRef]
- Alattar, E.; Radwan, E.; Elwasife, K. Improvement in Growth of Plants under the Effect of Magnetized Water. AIMS Biophys. 2022, 9, 346–387. [Google Scholar] [CrossRef]
- Bukhari, S.A.; Tanveer, M.; Mustafa, G.; Zia-Ud-Den, N. Magnetic field stimulation effect on germination and antioxidant activities of presown hybrid seeds of sunflower and its seedlings. J. Food Qual. 2021, 2021, 5594183. [Google Scholar] [CrossRef]
- Pszczółkowski, P.; Sawicka, B.; Skiba, D.; Barbaś, P.; Krochmal-Marczak, B.; Ahmad, M.A. Effect of Presowing Magnetic Field Stimulation on the Seed Germination and Growth of Phaseolus vulgaris L. Plants. Agronomy 2023, 13, 793. [Google Scholar] [CrossRef]
- Pasitvilaitham, K.; Pramuan, J.; Saengchong, N.; Kaewpanus, K.; Ruanto, P.; Thepnurat, M. Effects of magnetic flux density on germination and seedling growth in Oryza sativa var. Glutinosa. Plant Physiol. Rep. 2023, 28, 1–7. [Google Scholar] [CrossRef]
- Shabrangy, A.; Ghatak, A.; Zhang, S.; Priller, A.; Chaturvedi, P.; Weckwerth, W. Magnetic field induced changes in the shoot and root proteome of barley (Hordeum vulgare L.). Front. Plant Sci. 2021, 12, 622795. [Google Scholar] [CrossRef] [PubMed]
- Florez, M.; Carbonell Padrino, M.; Martinez, E. Early Sprouting and First Stages of Growth of Rice Seeds Exposed to a Magnetic Field. Electromagn. Biol. Med. 2004, 23, 167–176. [Google Scholar] [CrossRef]
- Carbonell Padrino, M.; Martinez, E.; Amaya, J. Stimulation of germination in rice (Oryza sativa L.) by a static magnetic field. Electromagn. Biol. Med. 2000, 19, 121–128. [Google Scholar] [CrossRef]
- Payez, A.; Ghanati, F. Comparison of static and electromagnetic field effects on redox system of soybean seedlings. J. Plant Process Funct. 2018, 6, 2. [Google Scholar]
- Vashisth, A.; Nagarajan, S. Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. J. Plant Physiol. 2010, 167, 149–156. [Google Scholar] [CrossRef]
- Braga, R.; Azevedo, R.; Guimarães, R.; Reis, L. Magnetic Field in Coffee Seed Germination. Ciência Agrotecnol. 2020, 44, e003920. [Google Scholar] [CrossRef]
- Feizi, H.; Sahabi, H.; Rezvani Moghaddam, P.; Shahtahmassebi, N.; Gallehgir, O.; Amirmoradi, S. Impact of Intensity and Exposure Duration of Magnetic Field on Seed Germination of Tomato (Lycopersicon esculentum L.). Not. Sci. Biol. 2012, 4, 116–120. [Google Scholar] [CrossRef]
- Bahadir, A.; Sahin, K.; Beyaz, R.; Yildiz, M. Magnetic field effect on breaking tuber dormancy, early sprouting, seedling growth, and tuber formation in potato (Solanum tuberosum L.). Scienceasia 2020, 46, 619–625. [Google Scholar] [CrossRef]
- Kuboyabu, T.; Ohki, A.; Banura, N.; Murase, K. Usefulness of Magnetic Particle Imaging for Monitoring the Effect of Magnetic Targeting. Open J. Med. Imaging 2016, 6, 33–41. [Google Scholar] [CrossRef]
- Hilger, A.; Manke, I.; Kardjilov, N.; Osenberg, M.; Markötter, H.; Banhart, J. Tensorial neutron tomography of three-dimensional magnetic vector fields in bulk materials. Nat. Commun. 2018, 9, 4023. [Google Scholar] [CrossRef] [PubMed]
- Duangpatra, J. Seed Testing and Analysis, 1st ed.; Siam Compugraphic: Bangkok, Thailand, 1986; pp. 1–194. [Google Scholar]
- Vipattanaporn, C.; Laohavanich, J.; Chiawchanwattana, C.; Khaengkan, P.; Yangyuen, S. Effect of Seed Quality Stimulation in Khao Dawk Mali 105 Paddy during the Dormancy Period using Infrared Radiation. J. Sustain. Sci. Manag. 2021, 16, 176–182. [Google Scholar] [CrossRef]
- Radhakrishnan, G.; Dayal, A. Individual and combined effect of magnetic field and electrical field treatment on paddy (Oryza sativa L.). Int. J. Sci. Environ. Technol. 2022, 11, 308–320. [Google Scholar]
- Afzal, I.; Saleem, S.; Skalicky, M.; Javed, T.; Bakhtavar, M.A.; ul Haq, Z.; Kamran, M.; Shahid, M.; Sohail Saddiq, M.; Afzal, A.; et al. Magnetic field treatment improves sunflower yield by inducing physiological and biochemical modulations in seeds. Molecules 2021, 26, 2022. [Google Scholar] [CrossRef]
- International Seed Testing Association. International Rules for Seed Testing; ISTA: Bassersdorf, Switzerland, 2018; pp. 1–430. [Google Scholar]
- Shams, M.; Yildirim, E.; Agar, G.; Ekinci, M.; Dursun, A.; Kul, R. Nitric Oxide Alleviates Copper Toxicity in Germinating Seed and Seedling Growth of Lactuca sativa L. Not. Bot. Horti Agrobo. 2018, 46, 167–172. [Google Scholar] [CrossRef]
- Radhakrishnan, R. Magnetic field regulates plant functions, growth and enhances tolerance against environmental stresses. Physiol. Mol. Biol. Plants 2019, 25, 1107–1119. [Google Scholar] [CrossRef]
- Martinez, E.; Florez, M.; Carbonell Padrino, M. Stimulatory Effect of the Magnetic Treatment on the Germination of Cereal Seeds. Int. J. Environ. Agric. Biotechnol. 2017, 2, 375–381. [Google Scholar] [CrossRef]
- Waluyo, W.; Lidyawati, L.; Rohana, R.; Hermawan, M. Comparisons of Rice Seed Growths Due to Alternating and Direct Current Electric and Magnetic Field Influences. Electroteh. Electron. Autom. 2024, 72, 41–53. [Google Scholar] [CrossRef]
- Abdolmaleki, P.; Ghanati, F.; Sahebjamei, H.; Sarvestani, A.S. Peroxidase activity, lignification and promotion of cell death in tobacco cells exposed to static magnetic field. Environmentalist 2007, 27, 435–440. [Google Scholar] [CrossRef]
- Vashisth, A.; Nagarajan, S. Characterization of water distribution and activities of enzymes during germination in magnetically-exposed maize (Zea mays L.) seeds. Indian J. Biochem. Biophys. 2010, 47, 311–318. [Google Scholar] [PubMed]
- Florez, M.; Álvarez Sánchez, J.; Martinez, E.; Carbonell Padrino, M. Stationary magnetic field stimulates rice roots growth. Rom. Rep. Phys. 2019, 71, 713. [Google Scholar]
- Shine, M.B.; Guruprasad, K.N.; Anand, A. Enhancement of Germination, Growth, and Photosynthesis in Soybean by Pre-Treatment of Seeds with Magnetic Field. Bioelectromagnetics 2011, 32, 474–484. [Google Scholar] [CrossRef]
- Ramesh, B.; Kavitha, G.; Gokiladevi, S.; Balachandar, R.K.; Kavitha, K.; Gengadharan, A.C.; Puvanakrishnan, R. Effect of extremely low power time-varying electromagnetic field on germination and other characteristics in foxtail millet (Setaria italica) seeds. Bioelectromagnetics 2020, 41, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Zaguła, G.; Saletnik, B.; Bajcar, M.; Saletnik, A.; Puchalski, C. Preliminary Research on the Influence of a Pulsed Magnetic Field on the Cationic Profile of Sunflower, Cress, and Radish Sprouts and on Their Germination Rate. Appl. Sci. 2021, 11, 9678. [Google Scholar] [CrossRef]
- Teixeira da Silva, J.A.; Dobránszki, J. Magnetic fields: How is plant growth and development impacted. Protoplasma 2016, 253, 231–248. [Google Scholar] [CrossRef]
- Jin, Y.; Guo, W.; Hu, X.; Liu, M.; Xu, X.; Hu, F.; Lan, Y.; Lv, C.; Fang, Y.; Liu, M.; et al. Static magnetic field regulates Arabidopsis root growth via auxin signaling. Sci. Rep. 2019, 9, 14384. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Han, W.; Wang, N.; Ma, S.; Ma, F.; Tian, H.; Wang, Y. Physiological responses revealed static magnetic fields potentially improving the tolerance of poplar seedlings to salt stress. Forests 2024, 15, 138. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, L.; Zhang, P.; Xu, H.; Song, J.; Chang, Y.; Cai, T.; Xie, C. Comparative Transcriptomic Analysis Revealed Important Processes Underlying the Static Magnetic Field Effects on Arabidopsis. Front. Plant Sci. 2024, 15, 1390031. [Google Scholar] [CrossRef] [PubMed]
- Vashisth, A.; Joshi, D.K. Growth characteristics of maize seeds exposed to magnetic field. Bioelectromagnetics 2017, 38, 151–157. [Google Scholar] [CrossRef] [PubMed]
Position | Color | Spatial Distribution of Seed Weight (%) | ||||
---|---|---|---|---|---|---|
1 min | 5 min | 10 min | 15 min | 20 min | ||
1 | Black | 24.90 ± 1.44 | 25.75 ± 0.67 | 24.38 ± 1.97 | 24.55 ± 2.05 | 24.96 ± 0.74 |
Red | 25.62 ± 0.72 | 25.77 ± 0.31 | 25.06 ± 1.49 | 24.74 ± 1.09 | 24.31 ± 1.22 | |
Green | 24.02 ± 0.48 | 24.94 ± 0.75 | 25.08 ± 1.01 | 25.36 ± 1.58 | 24.63 ± 1.77 | |
Yellow | 25.46 ± 1.26 | 23.54 ± 0.63 | 25.47 ± 0.60 | 25.35 ± 1.58 | 25.69 ± 1.68 | |
2 | Black | 25.37 ± 0.88 | 23.67 ± 1.46 | 26.04 ± 0.76 | 25.88 ± 1.06 | 26.03 ± 0.88 |
Red | 24.37 ± 0.88 | 26.06 ± 1.00 | 24.85 ± 0.44 | 25.00 ± 1.76 | 25.54 ± 1.02 | |
Green | 25.38 ± 1.13 | 24.57 ± 1.39 | 24.15 ± 1.19 | 25.00 ± 1.48 | 24.35 ± 1.41 | |
Yellow | 24.88 ± 0.94 | 25.70 ± 1.14 | 24.96 ± 1.82 | 24.13 ± 1.01 | 24.08 ± 1.18 | |
3 | Black | 25.02 ± 1.46 | 25.10 ± 1.28 | 25.80 ± 1.64 | 24.12 ± 0.66 | 25.38 ± 2.07 |
Red | 25.03 ± 0.91 | 24.08 ± 1.38 | 24.51 ± 1.36 | 25.57 ± 1.03 | 23.91 ± 1.68 | |
Green | 24.83 ± 1.67 | 25.79 ± 0.29 | 26.07 ± 1.22 | 24.90 ± 2.44 | 24.83 ± 1.64 | |
Yellow | 25.12 ± 0.73 | 25.04 ± 1.57 | 23.61 ± 0.73 | 25.40 ± 2.30 | 25.88 ± 1.36 | |
4 | Black | 24.07 ± 1.37 | 26.23 ± 1.35 | 25.32 ± 1.34 | 26.14 ± 0.40 | 25.27 ± 0.60 |
Red | 23.99 ± 1.29 | 23.56 ± 0.55 | 25.39 ± 0.89 | 24.94 ± 0.99 | 24.37 ± 0.43 | |
Green | 25.74 ± 0.89 | 24.72 ± 2.29 | 24.50 ± 1.50 | 25.04 ± 0.67 | 25.97 ± 0.73 | |
Yellow | 26.19 ± 0.68 | 25.48 ± 1.74 | 24.79 ± 2.16 | 23.88 ± 0.50 | 24.39 ± 1.69 |
Treatments | Root Length (mm) | Root Fresh Weight (mg) | Shoot Fresh Weight (mg) | Root Dry Weight (mg) | Shoot Dry Weight (mg) |
---|---|---|---|---|---|
Control | 16.90c ± 1.23 | 16.33a ± 1.90 | 36.26c ± 2.33 | 2.98b ± 0.22 | 6.45ns ± 0.40 |
5 min | 27.78ab ± 7.53 | 14.93a ± 0.06 | 39.52b ± 0.75 | 3.11ab ± 0.11 | 6.48ns ± 0.07 |
10 min | 33.81a ± 4.14 | 16.56a ± 0.56 | 42.67a ± 0.30 | 3.33a ± 0.11 | 6.52ns ± 0.07 |
15 min | 26.41ab ± 2.39 | 12.70b ± 0.57 | 40.26b ± 0.34 | 3.04b ± 0.13 | 6.70ns ± 0.23 |
20 min | 23.92bc ± 1.14 | 12.74b ± 1.27 | 40.33b ± 0.89 | 2.85b ± 0.06 | 6.56ns ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaewsondee, T.; Chiawchanwattana, C.; Khaengkan, P.; Laohavanich, J.; Vipattanaporn, C.; Yangyuen, S. Influence of Dynamic Magnetic Field Exposure Duration on the Germination and Growth of Khao Dawk Mali 105 Rice Seed. Agronomy 2025, 15, 1630. https://doi.org/10.3390/agronomy15071630
Gaewsondee T, Chiawchanwattana C, Khaengkan P, Laohavanich J, Vipattanaporn C, Yangyuen S. Influence of Dynamic Magnetic Field Exposure Duration on the Germination and Growth of Khao Dawk Mali 105 Rice Seed. Agronomy. 2025; 15(7):1630. https://doi.org/10.3390/agronomy15071630
Chicago/Turabian StyleGaewsondee, Tiwanat, Cherdpong Chiawchanwattana, Phirayot Khaengkan, Juckamas Laohavanich, Chanat Vipattanaporn, and Suphan Yangyuen. 2025. "Influence of Dynamic Magnetic Field Exposure Duration on the Germination and Growth of Khao Dawk Mali 105 Rice Seed" Agronomy 15, no. 7: 1630. https://doi.org/10.3390/agronomy15071630
APA StyleGaewsondee, T., Chiawchanwattana, C., Khaengkan, P., Laohavanich, J., Vipattanaporn, C., & Yangyuen, S. (2025). Influence of Dynamic Magnetic Field Exposure Duration on the Germination and Growth of Khao Dawk Mali 105 Rice Seed. Agronomy, 15(7), 1630. https://doi.org/10.3390/agronomy15071630