Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Experimental Site
2.2. Experimental Design
2.3. Sample Measurements
2.4. Statistical Analysis
3. Results
3.1. Soil Physical Properties
3.1.1. Soil Porosity
3.1.2. Soil Aggregates
3.2. Soil Chemical Properties
3.3. Microbial Composition and Diversity
3.3.1. Alpha Diversity of Soil Bacteria and Fungi
3.3.2. Soil Bacterial and Fungal Composition
3.4. Beta Diversity of Soil Bacteria and Fungi
3.5. Correlation Between Soil Physicochemical Properties and Dominant Microbial Species
4. Discussion
4.1. Impacts of Land Use Types on Soil Aggregate Structure and Physical Properties
4.2. Driving Mechanisms of Land Use Types in Relation to Soil Nutrient Distribution and Availability
4.3. Regulation of Microbial Community Diversity and Function by Land Use and Soil Depth
4.4. Coupling Mechanisms of Soil Physicochemical Properties and Microbial Communities and Their Ecological Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, X.; Gao, Y.H.; Wang, Y.F.; Wen, Z.D.; Wang, R.J.; Wu, B.; Yan, B.; Niu, J.Y.; Chen, Z.; Wang, J.N.; et al. Mechanisms of carbon and nitrogen distribution in soil aggregates in response to soil conditioners. Sci. Rep. 2025, 15, 4962. [Google Scholar] [CrossRef]
- Gan, G.Y.; Zeng, Q.Q.; Li, J.F. Impacts of long-term fertilization on crop yield and microbial communities under rice–rapeseed rotation. Agron. J. 2023, 115, 208–221. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, F.C.; Li, Y.; Fan, J.L.; Ji, Q.Y.; Jiang, F.C.; He, Z.J. Optimizing drip irrigation and nitrogen fertilization regimes to reduce greenhouse gas emissions, increase net ecosystem carbon budget and reduce carbon footprint in saline cotton fields. Agric. Ecosyst. Environ. 2024, 366, 108912. [Google Scholar] [CrossRef]
- Bongoua-Devisme, A.J.; Kouakou, S.A.A.; Kouadio, K.K.H.; Lemonou Michael, B.F. Assessing the influence of diverse phosphorus sources on bacterial communities and the abundance of phosphorus cycle genes in acidic paddy soils. Front. Microbiol. 2024, 15, 1409559. [Google Scholar] [CrossRef]
- Zhao, J.H.; Chen, L.; Zhou, G.X.; Li, F.; Zhang, J.B.; Zhang, C.Z.; Ma, D.H.; Feng, B. Organic-inorganic fertilization promotes paddy soil macroaggregate organic carbon accumulation associated with key bacterial populations in subtropical China. Pedosphere 2024, 34, 941–950. [Google Scholar] [CrossRef]
- Atere, C.T.; Gunina, A.; Zhu, Z.; Xiao, M.; Liu, S.; Kuzyakov, Y.; Ge, T. Organic matter stabilization in aggregates and density fractions in paddy soil depending on long-term fertilization: Tracing of pathways by 13C natural abundance. Soil Biol. Biochem. 2020, 149, 107931. [Google Scholar] [CrossRef]
- Zhu, X.L.; Si, J.H.; Jia, B.; He, X.H.; Zhou, D.M.; Wang, C.L.; Qin, J.; Liu, Z.J.; Zhang, L. Changes of soil carbon along precipitation gradients in three typical vegetation types in the Alxa desert region, China. Carbon Balance Manag. 2024, 19, 19. [Google Scholar] [CrossRef]
- Wu, D.M.; Ren, C.Q.; Ren, D.; Tian, Y.J.; Li, Y.P.; Wu, C.Y.; Li, Q.F. New insights into carbon mineralization in tropical paddy soil under land use conversion: Coupled roles of soil microbial community, metabolism, and dissolved organic matter chemodiversity. Geoderma 2023, 432, 116393. [Google Scholar] [CrossRef]
- Bian, Q.; Zhao, L.X.; Cheng, K.; Jiang, Y.J.; Li, D.M.; Xie, Z.B.; Sun, B.; Wang, X.Y. Divergent accumulation of microbe-and plant-derived carbon in different soil organic matter fractions in paddy soils under long-term organic amendments. Agric. Ecosyst. Environ. 2024, 366, 108934. [Google Scholar] [CrossRef]
- Trotta, G.; Cadez, L.; Boscutti, F.; Vuerich, M.; Asquini, E.; Boscarol, G.; Cingano, P.; Azzani, G.; Pischedda, S.; Tomao, A.; et al. Interpreting the shifts in Forestland structure, plant community composition, diversity, and functional identity by using remote sensing-derived wildfire severity. Fire Ecol. 2024, 20, 94. [Google Scholar] [CrossRef]
- Bougma, A.B.; Ouattara, K.; Compaore, H.; Nacro, H.B.; Melenya, C.; Logah, V.; Azeez, J.; Veenendaal, E.; Lioyd, J. Soil aggregate stability of Forestland islands and adjacent ecosystems in West Africa. Plant Soil 2022, 473, 533–546. [Google Scholar] [CrossRef]
- Foldager, F.; Munkholm, L.J.; Balling, O.; Serban, R.; Negrut, D.; Heck, R.J.; Green, O. Modeling soil aggregate fracture using the discrete element method. Soil Tillage Res. 2022, 218, 105295. [Google Scholar] [CrossRef]
- Cao, X.Q.; Xu, Y.T.; Wang, F.; Zhang, Z.L.; Xu, X.N. Changes of soil organic carbon and aggregate stability along elevation gradient in Cunninghamia lanceolata plantations. Sci. Rep. 2024, 14, 31778. [Google Scholar] [CrossRef]
- Kang, L.F.; Wu, J.M.; Zhang, C.F.; Zhu, B.G.; Chu, G.X. Alterations of soil aggregates and intra-aggregate organic carbon fractions after soil conversion from paddy soils to upland soils: Distribution, mineralization and driving mechanism. Pedosphere 2024, 34, 121–135. [Google Scholar] [CrossRef]
- Liu, X.L.; He, Y.Q.; Zhang, H.L.; Schroder, J.K.; Li, C.L.; Zhou, J.; Zhang, Z.Y. Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients. Pedosphere 2010, 20, 666–673. [Google Scholar] [CrossRef]
- Li, H.Y.; Chang, L.; Wei, Y.Y.; Li, Y.F. Interacting Effects of Land Use Type, Soil Attributes, and Environmental Factors on Aggregate Stability. Land 2023, 12, 1286. [Google Scholar] [CrossRef]
- Luo, S.S.; Jia, Z.J.; Tian, L.; Wang, S.J.; Chang, C.L.; Ji, L.; Chang, J.J.; Zhang, J.F.; Tian, C.J. Potential functional differentiation from microbial perspective under dryland-paddy conversion in black soils. Agric. Ecosyst. Environ. 2023, 353, 108562. [Google Scholar] [CrossRef]
- Zhou, T.R.; Lv, Q.L.; Zhang, L.X.; Fan, J.B.; Wang, T.H.; Meng, Y.S.; Xia, H.Y.; Ren, X.Q.; Hu, S.W. Converted paddy to upland in saline-sodic land could improve soil ecosystem multifunctionality by enhancing soil quality and alleviating microbial metabolism limitation. Sci. Total Environ. 2024, 924, 171707. [Google Scholar] [CrossRef]
- Zhao, G.; Wu, P.; Liu, F.; Li, S.Z.; Zhang, J.J.; Dang, Y.; Wang, L.; Wang, S.Y.; Cheng, W.L.; Cai, T.; et al. Plow layer management during the fallow season can enhance the wheat productivity and resource utilization in a semi-arid region. Soil Tillage Res. 2023, 228, 105633. [Google Scholar] [CrossRef]
- Manirakiza, E.; Ziadi, N.; Hamel, C.; Levesque, V.; Antoun, H.; Karam, A. Soil microbial community dynamics after co-application of biochar and paper mill biosolids. Appl. Soil Ecol. 2021, 165, 103960. [Google Scholar] [CrossRef]
- Song, W.F.; Liu, Z.B.; Zhang, W.X.; Gan, S.R.; Xiong, L.; Wu, X.L.; Yuan, F.S.; Li, M.C.; Gao, Z.; Shu, A.P.; et al. Effect of Organic Fertilizer Substitution for Chemical Fertilizer on Soil Microbial Communities in Paddy Fields. Authorea 2024, 665, 66566655. [Google Scholar] [CrossRef]
- Ahmad, S.; Zhai, X.X.; Wang, M.R.; Shi, Y.J.; Chen, Y.M.; Liang, Q.M.; He, B.; Wen, R.H. Biochar amendments improve soil functionalities, microbial community and reduce Pokkah boeng disease of sugarcane. Chem. Biol. Technol. Agric. 2024, 11, 28. [Google Scholar] [CrossRef]
- Yang, Q.E.; Ma, X.D.; Li, M.C.; Zhao, M.S.; Zeng, L.S.; He, M.Z.; Deng, H.; Liao, H.P.; Rengsing, C.; Friman, V.P.; et al. Evolution of triclosan resistance modulates bacterial permissiveness to multidrug resistance plasmids and phages. Nat. Commun. 2024, 15, 3654. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.L.; Lin, S.X.; Zhang, Q.; Wang, Y.H.; Hong, L.; Li, M.Z.; Zhang, S.Q.; Wang, T.T.; Jia, M.; Luo, Y.X.; et al. The Ability of Different Tea Tree Germplasm Resources in South China to Aggregate Rhizosphere Soil Characteristic Fungi Affects Tea Quality. Plants 2024, 13, 2029. [Google Scholar] [CrossRef]
- Vilakazi, S.B.; Zengeni, R.; Mafongoya, P. Soil Microbial Diversity as a Bioindicator for Assessing the Sustainability of Maize Cropping Systems Under Different Tillage Practices. Agriculture 2022, 12, 1738. [Google Scholar] [CrossRef]
- Li, Y.S.; Guo, L.J.; Wu, M.Q.; Li, C.F. Effects of long-term conservation tillage on soil aggregate carbon fractions and microbial characteristics under rice-oilseed Rapeseed rotation systems. Appl. Soil Ecol. 2025, 206, 105848. [Google Scholar] [CrossRef]
- Grierson, J.; Flies, E.J.; Bissett, A.; Ammitzboll, H.; Jones, P. Which soil microbiome? Bacteria, fungi, and protozoa communities show different relationships with urban green space type and use-intensity. Sci. Total Environ. 2023, 863, 160468. [Google Scholar] [CrossRef]
- Gu, M.Y.; Xu, W.L.; Ma, K.; Mahmut, O.; Zhang, Z.D.; Zhu, J.; Tang, Q.Y.; Chu, M.; Zhang, L.J. Soil Microbial Ecological Evaluation of Walnut with Different Planting Years Based on Principal Component-Cluster Analysis. Xinjiang Agric. Sci. 2022, 59, 474–484. [Google Scholar] [CrossRef]
- Schloss, P.D.; Westcott, S.L.; Ryabin, T.; Hall, J.R.; Hartmann, M.; Hollister, E.B.; Lesniewski, R.A.; Oakley, B.B.; Parks, D.H.; Robinson, C.J. Introducing mothur: Open source, platform independent, community supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75, 7537–7541. [Google Scholar] [CrossRef]
- Xu, C.; Liu, W.L.; Li, J.M.; Wu, J.G.; Zhou, Y.N.; Kader, R. Dynamic change of soil aggregate stability and infiltration properties during crop growth under four tillage measures in Mollisols region of northeast China. Front. Earth Sci. 2024, 12, 1357467. [Google Scholar] [CrossRef]
- Zhao, X.C.; Tian, P.; Wang, Q.K. Roots have greater effects on the accumulation of soil microbial residue carbon in microaggregate fractions than leaf litter in a subtropical Forestland. Geoderma 2024, 442, 116803. [Google Scholar] [CrossRef]
- Besen, M.R.; Ribeiro, R.H.; Bratti, F.; Locatelli, J.L.; Schmitt, D.E.; Piva, J.T. Cover cropping associated with no-tillage system promotes soil carbon sequestration and increases crop yield in Southern Brazil. Soil Tillage Res. 2024, 242, 106162. [Google Scholar] [CrossRef]
- Ma, L.; Yang, T.X.; Dong, L.Q.; Pan, Z.Y.; Feng, Y.Y.; Li, Z.Q.; Sun, F.Y. Long-term rice-crab coculturing leads to changes in soil microbial communities. Front. Microbiol. 2025, 15, 1395544. [Google Scholar] [CrossRef]
- Campos, T.G.V.; Gama, W.A.; Geraldes, V.; Yoon, J.; Crnkovic, C.M.; Pinto, E.; Jacinavicius, F.R. New records on toxic cyanobacteria from Brazil: Exploring their occurrence and geography. Sci. Total Environ. 2024, 931, 172689. [Google Scholar] [CrossRef] [PubMed]
- Biswas, C.; Ferdous, J.; Sarker, R.R.; Islam, K.R.; Jahangir, M.M.R. Forty-two years impact of chemical fertilization on soil phosphorus partition and distribution under rice-based cropping systems. PLoS ONE 2024, 19, e0305097. [Google Scholar] [CrossRef] [PubMed]
- Men, X.X.; Bao, Y.; Zhai, D.P.; Liao, C.; Wang, Y.Y.; Wang, C.; Cheng, X.L. Different regulatory mechanisms on carbon-degrading enzyme activities under short-term litter input manipulations in subalpine coniferous and broad-leaved Forestland soils. Soil Biol. Biochem. 2024, 196, 109512. [Google Scholar] [CrossRef]
- Yoon, J.H.; Adhikari, M.; Jeong, S.S.; Lee, S.P.; Kim, H.S.; Lee, G.S.; Park, D.H.; Kim, H.; Yang, J.E. Microbial diversity of soils under different land use and chemical conditions. Appl. Biol. Chem. 2024, 67, 111. [Google Scholar] [CrossRef]
- Zhao, Y.P.; Wang, Z.H.; Cai, K.; Wang, S.L.; Wright, A.L.; Jiang, X.J. Stability of nitrogen-cycling microbial communities and impact on microbial nitrogen function under different land use practices. Appl. Soil Ecol. 2024, 204, 105729. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Z.N.; He, C.H.; Zhang, Y.H.; Dong, F.F.; Huang, W.J. Effect of soil microbial community structure on the chemical compositions of different soil organic matter fractions in land uses of the Pearl River Estuary. Appl. Soil Ecol. 2024, 193, 105126. [Google Scholar] [CrossRef]
- Cheng, X.Y.; Yun, Y.; Wang, H.M.; Ma, L.Y.; Tian, W.; Man, B.Y.; Liu, C.Y. Contrasting bacterial communities and their assembly processes in karst soils under different land use. Sci. Total Environ. 2021, 751, 142263. [Google Scholar] [CrossRef]
- Kuo, J.; Liu, D.; Wen, W.H.; Chiu, C.Y.; Chen, W.Y.; Wu, Y.W.; Lai, F.T.; Lin, C.H. Different microbial communities in paddy soils under organic and nonorganic farming. Braz. J. Microbiol. 2024, 55, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Christian, J.J.; Tue, S.M.; Jesper, R.C. Spatial variation of net methane uptake in Arctic and subarctic drylands of Canada and Greenland. Geoderma 2024, 443, 116815. [Google Scholar] [CrossRef]
- Liu, J.X.; Fan, X.W.; Li, X.Y.; Zheng, Y.P.; Li, Y.; Cui, C.X.; Bai, Z.H.; Ma, L.; Zhai, B.N.; Li, Z.Y. Responses of different agricultural structures to nitrogen loss and agricultural green development in Northwest China. Agric. Ecosyst. Environ. 2024, 367, 108956. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Tran, H.C.; Ho, T.M.H.; Burny, P.; Lebailly, P. Dynamics of Farming Systems under the Context of Coastal Zone Development: The Case of Xuan Thuy National Park, Vietnam. Agriculture 2019, 9, 138. [Google Scholar] [CrossRef]
- Liu, J.R.; Wang, X.H.; Zhang, H.; Lu, Y.F.; Kalkhajeh, Y.K.; Hu, H.X.; Huang, J.Y. Long-term in situ straw returning increased soil aggregation and aggregate associated organic carbon fractions in a paddy soil. Heliyon 2024, 10, e32392. [Google Scholar] [CrossRef] [PubMed]
- Krinos, A.I.; Bowers, R.M.; Rohwer, R.R.; McMahon, K.D.; Woyke, T.; Schulz, F. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake. Microbiome 2024, 12, 133. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Culman, S.; Zhang, H.L. Comparative analysis and prediction of cation exchange capacity via summation: Influence of biochar type and nutrient ratios. Front. Soil Sci. 2024, 4, 1371777. [Google Scholar] [CrossRef]
- Chen, G.Y.; Duan, Q.; Wu, C.Y.; He, X.M.; Hu, M.M.; Li, C.M.; Qu, Y.Y.; Peng, L.G.; Yang, H.; Zhang, Q.Q.; et al. Optimizing rice yield, quality and nutrient use efficiency through combined application of nitrogen and potassium. Front. Plant Sci. 2024, 15, 1335744. [Google Scholar] [CrossRef]
- Lee, C.H.; Das, S.; Park, M.H.; Kim, S.Y.; Kim, P.J. Long-term application of silicate fertilizer alters microbe-mediated phosphorus cycling in paddy soils. Agric. Ecosyst. Environ. 2024, 374, 109175. [Google Scholar] [CrossRef]
Soil Layer | Treatment | Bulk Density (cm3) | Porosity (%) | Capillary Pore (%) | Aeration Pore Space (%) | Water Content (%) |
---|---|---|---|---|---|---|
0–10 cm | Rapeseed | 1.59 ± 0.09 b | 39.8 ± 3.72 b | 60.2 ± 3.94 ab | 3.92 ± 0.37 a | 32.7 ± 0.01 ab |
Shrimp | 1.31 ± 0.02 c | 50.3 ± 0.98 a | 48.2 ± 1.69 c | 4.95 ± 0.08 a | 58.6 ± 0.01 a | |
Forestland | 1.36 ± 0.03 bc | 48.5 ± 1.37 a | 47.1 ± 1.21 c | 4.82 ± 0.13 a | 21.4 ± 0.01 b | |
10–20 cm | Rapeseed | 1.79 ± 0.01 a | 32.2 ± 0.65 bc | 69.3 ± 1.11 a | 3.18 ± 0.05 bc | 20.0 ± 0.04 b |
Shrimp | 1.70 ± 0.01 ab | 35.8 ± 0.48 bc | 64.2 ± 2.75 a | 3.52 ± 0.04 ab | 34.8 ± 0.01 a | |
Forestland | 1.81 ± 0.13 a | 31.4 ± 5.18 c | 64.2 ± 4.35 a | 3.10 ± 0.52 c | 21.5 ± 0.02 b | |
20–30 cm | Rapeseed | 1.73 ± 0.00 ab | 34.7 ± 0.27 bc | 68.5 ± 0.84 a | 3.42 ± 0.02 ab | 24.3 ± 0.01 ab |
Shrimp | 1.42 ± 0.12 bc | 46.1 ± 4.59 a | 54.0 ± 3.16 bc | 4.56 ± 0.46 a | 29.3 ± 0.01 ab | |
Forestland | 1.66 ± 0.01 b | 37.3 ± 0.51 b | 55.0 ± 3.48 b | 3.70 ± 0.05 ab | 18.0 ± 0.02 b | |
30–40 cm | Rapeseed | 1.71 ± 0.03 ab | 35.3 ± 1.14 bc | 68.5 ± 1.62 a | 3.49 ± 0.11 ab | 24.2 ± 0.03 ab |
Shrimp | 1.46 ± 0.01 b | 44.8 ± 0.42 a | 53.4 ± 3.78 bc | 4.45 ± 0.04 a | 26.0 ± 0.02 ab | |
Forestland | 1.62 ± 0.00 b | 38.5 ± 0.36 b | 53.3 ± 1.28 bc | 3.83 ± 0.03 a | 17.7 ± 0.03 b |
Soil Layer | Treatment | pH | SOM (g/kg) | TN (g/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | CEC (cmol/kg) |
---|---|---|---|---|---|---|---|---|
0–10 cm | Rapeseed | 6.21 ± 0.01 cd | 30.9 ± 0.60 a | 2.94 ± 0.27 a | 212.1 ± 2.39 ab | 4.98 ± 0.88 b | 67.1 ± 3.24 c | 17.8 ± 1.57 bc |
Shrimp | 6.51 ± 0.01 c | 35.16 ± 0.9 a | 3.31 ± 0.58 a | 421.4 ± 1.63 a | 6.34 ± 0.24 a | 69.3 ± 2.53 c | 16.7 ± 2.92 bc | |
Forestland | 5.98 ± 0.02 d | 27.1 ± 2.36 ab | 2.81 ± 0.11 a | 132.3 ± 1.27 c | 4.35 ± 0.00 b | 78.5 ± 14.14 bc | 11.2 ± 1.25 c | |
10–20 cm | Rapeseed | 7.25 ± 0.05 a | 29.2 ± 1.40 ab | 2.74 ± 0.19 a | 194.1 ± 1.25 b | 2.98 ± 0.13 c | 86.1 ± 5.12 ab | 10.8 ± 2.80 c |
Shrimp | 7.06 ± 0.02 b | 27.8 ± 0.82 ab | 2.47 ± 0.29 ab | 325.3 ± 0.82 a | 5.89 ± 0.11 a | 69.3 ± 0.44 c | 6.75 ± 2.42 c | |
Forestland | 6.8 ± 0.05 c | 23.1 ± 3.90 c | 2.72 ± 0.23 a | 105.9 ± 2.06 c | 2.71 ± 0.01 c | 53.3 ± 0.55 d | 14.2 ± 0.85 c | |
20–30 cm | Rapeseed | 7.74 ± 0.00 a | 25.2 ± 2.41 bc | 1.65 ± 0.20 b | 188.02 ± 1.73 b | 2.52 ± 0.00 c | 65.0 ± 3.56 c | 21.9 ± 5.35 b |
Shrimp | 6.87 ± 0.01 b | 26.7 ± 1.75 bc | 2.58 ± 0.06 a | 304.2 ± 1.74 a | 2.70 ± 0.04 c | 71.3 ± 5.83 bc | 38.2 ± 2.47 a | |
Forestland | 6.5 ± 0.01 c | 21.9 ± 0.47 cd | 1.96 ± 0.04 b | 94.2 ± 0.83 c | 3.39 ± 0.03 c | 102.1 ± 1.77 a | 45.0 ± 0.58 a | |
30–40 cm | Rapeseed | 6.43 ± 0.02 cd | 21.6 ± 0.84 cd | 0.77 ± 0.24 c | 165.7 ± 1.96 b | 2.86 ± 0.01 c | 91.2 ± 0.77 a | 46.0 ± 0.31 a |
Shrimp | 7.01 ± 0.03 b | 23.0 ± 0.91 c | 0.61 ± 0.07 c | 156.4 ± 2.69 b | 2.57 ± 0.02 c | 81.3 ± 1.09 ab | 44.1 ± 0.82 a | |
Forestland | 6.93 ± 0.03 b | 19.0 ± 0.97 d | 0.42 ± 0.25 c | 82.1 ± 1.29 c | 2.71 ± 0.01 c | 83.3 ± 1.12 ab | 30.4 ± 8.70 b |
Microbial Group | Soil Layer | Treatment | Richness Index | Diversity Index | Coverage | ||
---|---|---|---|---|---|---|---|
Chao 1 | Species | Simpson | Shannon | ||||
Bacteria | 0–10 cm | Rapeseed | 3470 a | 3470 a | 0.9983 a | 10.51 a | 0.9988 b |
Shrimp | 3297 a | 3293 a | 0.9985 a | 10.51 a | 0.9987 b | ||
Forestland | 2926 a | 2926 a | 0.9966 b | 9.70 b | 0.9996 a | ||
10–20 cm | Rapeseed | 2791 a | 2789 a | 0.9972 a | 9.92 a | 0.9989 b | |
Shrimp | 2883 a | 2882 a | 0.9977 a | 10.06 a | 0.9988 b | ||
Forestland | 3011 a | 3011 a | 0.9968 a | 9.78 a | 0.9996 a | ||
20–30 cm | Rapeseed | 2484 a | 2484 a | 0.9960 b | 9.51 b | 0.9994 a | |
Shrimp | 3353 a | 3350 a | 0.9984 a | 10.49 a | 0.9987 b | ||
Forestland | 2847 a | 2847 a | 0.9969 ab | 9.74 b | 0.9995 a | ||
30–40 cm | Rapeseed | 2576 a | 2575 a | 0.9945 a | 9.95 a | 0.9996 a | |
Shrimp | 2509 a | 2505 a | 0.9974 a | 9.91 a | 0.9988 b | ||
Forestland | 2767 a | 2767 a | 0.9966 a | 9.62 a | 0.9995 a | ||
Fungi | 0–10 cm | Rapeseed | 226 b | 226 b | 0.9464 a | 6.15 a | 1.000 a |
Shrimp | 251 b | 251 b | 0.8631 a | 5.17 a | 1.000 a | ||
Forestland | 451 a | 450 a | 0.9412 a | 5.69 a | 0.999 a | ||
10–20 cm | Rapeseed | 272 b | 271 b | 0.9790 a | 6.85 a | 1.000 a | |
Shrimp | 259 b | 259 b | 0.9038 a | 5.96 a | 1.000 a | ||
Forestland | 424 a | 424 a | 0.9503 a | 6.13 a | 1.000 a | ||
20–30 cm | Rapeseed | 352 b | 352 b | 0.9744 a | 7.10 a | 1.000 a | |
Shrimp | 249 b | 249 b | 0.9594 a | 6.32 a | 1.000 a | ||
Forestland | 530 a | 529 a | 0.9462 a | 6.02 a | 0.999 b | ||
30–40 cm | Rapeseed | 269 a | 269 a | 0.9828 a | 6.92 a | 1.000 a | |
Shrimp | 404 a | 403 a | 0.8506 a | 6.01 a | 1.000 a | ||
Forestland | 423 a | 422 a | 0.9481 a | 5.89 a | 0.999 a |
Network Graph Parameters | Bacteria | Fungi |
---|---|---|
Edge count | 11 | 15 |
Node count | 9 | 17 |
Positive correlation ratio (%) | 57.14 | 60 |
Average degree | 1.56 | 1.76 |
Average weighted degree | 5.74 | 14.19 |
Graph density | 0.194 | 0.061 |
Connected components | 3 | 1 |
Average clustering coefficient | 0.333 | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Xiang, F.; Wang, X.; Yang, M.; Li, J. Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil. Agronomy 2025, 15, 1628. https://doi.org/10.3390/agronomy15071628
Zhao X, Xiang F, Wang X, Yang M, Li J. Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil. Agronomy. 2025; 15(7):1628. https://doi.org/10.3390/agronomy15071628
Chicago/Turabian StyleZhao, Ximei, Fengyun Xiang, Xicheng Wang, Mengchen Yang, and Jifu Li. 2025. "Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil" Agronomy 15, no. 7: 1628. https://doi.org/10.3390/agronomy15071628
APA StyleZhao, X., Xiang, F., Wang, X., Yang, M., & Li, J. (2025). Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil. Agronomy, 15(7), 1628. https://doi.org/10.3390/agronomy15071628