Estimating Soil Cd Contamination in Wheat Farmland Using Hyperspectral Data and Interpretable Stacking Ensemble Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection and Determination
2.3. Research Methods
2.3.1. Workflow
2.3.2. Spectral Pre-Processing
2.3.3. Feature Selection
2.3.4. Spectral Modeling
2.3.5. Hyperparameter Optimization
2.3.6. Model Evaluation
2.3.7. Model Interpretation
3. Results
3.1. Soil Sample Statistics
3.2. Spectral Transformation Features
3.3. Spectral Feature Wavelength
3.4. Hyperspectral Estimation of Soil Cd Contamination
3.5. SHAP Interpretation from Models and Wavelengths
4. Discussion
4.1. Effect of Spectral Pre-Processing on Model Performance
4.2. The Advantages of the Interpretable Stacking Ensemble Learning Model
4.3. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hou, D.; Igalavithana, A.D.; Alessi, D.S.; Luo, J.; Tsang, D.C.; Sparks, D.L.; Yamauchi, Y.; Rinklebe, J.; Ok, Y.S. Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ. 2020, 1, 366–381. [Google Scholar] [CrossRef]
- Khan, S.; Naushad, M.; Lima, E.C.; Zhang, S.; Shaheen, S.M.; Rinklebe, J. Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies—A review. J. Hazard. Mater. 2021, 417, 126039. [Google Scholar] [CrossRef] [PubMed]
- Hou, D.; Jia, X.; Wang, L.; McGrath, S.P.; Zhu, G.; Hu, Q.; Zhao, J.; Bank, M.S.; O’Connor, D.; Nriagu, J. Global soil pollution by toxic metals threatens agriculture and human health. Science 2025, 388, 316–321. [Google Scholar] [CrossRef]
- Rashid, A.; Schutte, B.J.; Ulery, A.; Deyholos, M.K.; Sanogo, S.; Lehnhoff, E.A.; Beck, L. Heavy Metal Contamination in Agricultural Soil: Environmental Pollutants Affecting Crop Health. Agronomy 2023, 13, 1521. [Google Scholar] [CrossRef]
- Mushtaq, G.; Agrawal, S.; Kushwah, A.; Kumar, A.; Lone, R. Cadmium toxicity in plants and its remediation management: A Review. Plant Stress 2025, 16, 100894. [Google Scholar] [CrossRef]
- Zhong, L.; Yang, S.; Chu, X.; Sun, Z.; Li, J. Inversion of heavy metal copper content in soil-wheat systems using hyperspectral techniques and enrichment characteristics. Sci. Total Environ. 2024, 907, 168104. [Google Scholar] [CrossRef]
- Shi, T.; Chen, Y.; Liu, Y.; Wu, G. Visible and near-infrared reflectance spectroscopy—An alternative for monitoring soil contamination by heavy metals. J. Hazard. Mater. 2014, 265, 166–176. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, B.; Chai, L.; Lin, Z.; Feng, H.; Tang, Y.; Tian, R.; Tu, Y.; Zhang, B.; Zou, H. Monitoring of soil heavy metals based on hyperspectral remote sensing: A review. Earth-Sci. Rev. 2024, 254, 104814. [Google Scholar] [CrossRef]
- Zhong, L.; Chu, X.; Qian, J.; Li, J.; Sun, Z. Multi-Scale Stereoscopic Hyperspectral Remote Sensing Estimation of Heavy Metal Contamination in Wheat Soil over a Large Area of Farmland. Agronomy 2023, 13, 2396. [Google Scholar] [CrossRef]
- Wang, F.; Gao, J.; Zha, Y. Hyperspectral sensing of heavy metals in soil and vegetation: Feasibility and challenges. ISPRS J. Photogramm. Remote Sens. 2018, 136, 73–84. [Google Scholar] [CrossRef]
- Liu, J.; Dong, Z.; Xia, J.; Wang, H.; Meng, T.; Zhang, R.; Han, J.; Wang, N.; Xie, J. Estimation of soil organic matter content based on CARS algorithm coupled with random forest. Spectrochim. Acta Part A 2021, 258, 119823. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Zhang, J.; Liu, T.; Acquah, G.E.; Yuan, H. Combining Variable Selection and Multiple Linear Regression for Soil Organic Matter and Total Nitrogen Estimation by DRIFT-MIR Spectroscopy. Agronomy 2022, 12, 638. [Google Scholar] [CrossRef]
- Ram, B.G.; Oduor, P.; Igathinathane, C.; Howatt, K.; Sun, X. A systematic review of hyperspectral imaging in precision agriculture: Analysis of its current state and future prospects. Comput. Electron. Agric. 2024, 222, 109037. [Google Scholar] [CrossRef]
- Liu, P.; Liu, Z.; Hu, Y.; Shi, Z.; Pan, Y.; Wang, L.; Wang, G. Integrating a Hybrid Back Propagation Neural Network and Particle Swarm Optimization for Estimating Soil Heavy Metal Contents Using Hyperspectral Data. Sustainability 2018, 11, 419. [Google Scholar] [CrossRef]
- Hong, Y.; Liu, Y.; Chen, Y.; Liu, Y.; Yu, L.; Liu, Y.; Cheng, H. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma 2019, 337, 758–769. [Google Scholar] [CrossRef]
- Yang, C.; Feng, M.; Song, L.; Jing, B.; Xie, Y.; Wang, C.; Yang, W.; Xiao, L.; Zhang, M.; Song, X. Study on hyperspectral monitoring model of soil total nitrogen content based on fractional-order derivative. Comput. Electron. Agric. 2022, 201, 107307. [Google Scholar] [CrossRef]
- Chen, L.; Lai, J.; Tan, K.; Wang, X.; Chen, Y.; Ding, J. Development of a soil heavy metal estimation method based on a spectral index: Combining fractional-order derivative pretreatment and the absorption mechanism. Sci. Total Environ. 2022, 813, 151882. [Google Scholar] [CrossRef]
- Cao, J.; Liu, W.; Feng, Y.; Liu, J.; Ni, Y. Predicting nickel concentration in soil using fractional-order derivative and visible-near-infrared spectroscopy indices. PLoS ONE 2024, 19, e0302420. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, X.; Xu, Z.; Ding, M. Soil properties: Their prediction and feature extraction from the LUCAS spectral library using deep convolutional neural networks. Geoderma 2021, 402, 115366. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, M.; Zhou, Y.; Wang, L.; Zeng, L.; Cui, Y.; Sun, X. Simultaneous estimation of multiple soil properties from vis-NIR spectra using a multi-gate mixture-of-experts with data augmentation. Geoderma 2025, 453, 117127. [Google Scholar] [CrossRef]
- Barra, I.; Haefele, S.M.; Sakrabani, R.; Kebede, F. Soil spectroscopy with the use of chemometrics, machine learning and pre-processing techniques in soil diagnosis: Recent advances—A review. Trends Anal. Chem. 2021, 135, 116166. [Google Scholar] [CrossRef]
- Qi, C.; Li, K.; Zhou, M.; Zhang, C.; Zheng, X.; Chen, Q.; Hu, T. Leveraging visible-near-infrared spectroscopy and machine learning to detect nickel contamination in soil: Addressing class imbalances for environmental management. J. Hazard. Mater. Adv. 2024, 16, 100489. [Google Scholar] [CrossRef]
- Qi, C.; Zhou, N.; Hu, T.; Wu, M.; Chen, Q.; Wang, H.; Zhang, K.; Lin, Z. Prediction of copper contamination in soil across EU using spectroscopy and machine learning: Handling class imbalance problem. Smart Agric. Technol. 2025, 10, 100728. [Google Scholar] [CrossRef]
- Zhou, W.; Yang, H.; Xie, L.; Li, H.; Huang, L.; Zhao, Y.; Yue, T. Hyperspectral inversion of soil heavy metals in Three-River Source Region based on random forest model. Catena 2021, 202, 105222. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Tsirikoglou, P.; Abraham, S.; Contino, F.; Lacor, C.; Ghorbaniasl, G. A hyperparameters selection technique for support vector regression models. Appl. Soft Comput. 2017, 61, 139–148. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Shen, W. A Review of Ensemble Learning Algorithms Used in Remote Sensing Applications. Appl. Sci. 2022, 12, 8654. [Google Scholar] [CrossRef]
- Li, X.; Chen, J.; Chen, Z.; Lan, Y.; Ling, M.; Huang, Q.; Li, H.; Han, X.; Yi, S. Explainable machine learning-based fractional vegetation cover inversion and performance optimization—A case study of an alpine grassland on the Qinghai-Tibet Plateau. Ecol. Inform. 2024, 82, 102768. [Google Scholar] [CrossRef]
- Zou, Z.; Wang, Q.; Wu, Q.; Li, M.; Zhen, J.; Yuan, D.; Zhou, M.; Xu, C.; Wang, Y.; Zhao, Y.; et al. Inversion of heavy metal content in soil using hyperspectral characteristic bands-based machine learning method. J. Environ. Manag. 2024, 355, 120503. [Google Scholar] [CrossRef]
- Dong, H.; Liu, B.; Ye, D.; Liu, G. Interpretability as Approximation: Understanding Black-Box Models by Decision Boundary. Electronics 2024, 13, 4339. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Chabrillat, S.; Melo Demattê, J.A.; Ge, Y.; Gomez, C.; Guerrero, C.; Peng, Y.; Ramirez-Lopez, L.; et al. Diffuse reflectance spectroscopy for estimating soil properties: A technology for the 21st century. Eur. J. Soil Sci. 2022, 73, e13271. [Google Scholar] [CrossRef]
- Zhong, L.; Guo, X.; Ding, M.; Ye, Y.; Jiang, Y.; Zhu, Q.; Li, J. SHAP values accurately explain the difference in modeling accuracy of convolution neural network between soil full-spectrum and feature-spectrum. Comput. Electron. Agric. 2024, 217, 108627. [Google Scholar] [CrossRef]
- Li, W.; Jiang, Y.; Ye, Y.; Guo, X.; Shi, Z. Spatiotemporal interpretable mapping framework for soil heavy metals. J. Clean. Prod. 2024, 468, 143101. [Google Scholar] [CrossRef]
- Le, S.; Duan, Y. Determination of Heavy Metal Elements in Soil by ICP-MS. Chin. J. Inorg. Anal. Chem. 2015, 5, 16–19. [Google Scholar]
- Benkhettou, N.; da Cruz, A.; Torres, D.F.M. A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration. Signal Process. 2015, 107, 230–237. [Google Scholar] [CrossRef]
- Xing, Z.; Du, C.; Shen, Y.; Ma, F.; Zhou, J. A method combining FTIR-ATR and Raman spectroscopy to determine soil organic matter: Improvement of prediction accuracy using competitive adaptive reweighted sampling (CARS). Comput. Electron. Agric. 2021, 191, 106549. [Google Scholar] [CrossRef]
- Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta 2009, 648, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy K-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, SMC-15, 580–585. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Chan, J.C.W.; Paelinckx, D. Evaluation of Random Forest and Adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens. Environ. 2008, 112, 2999–3011. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T. LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the Advances in Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017; pp. 3149–3157. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
- Williams, P.; Manley, M.; Antoniszyn, J. Near Infrared Technology: Getting the Best Out of Light; African Sun Media: Stellenbosch, South Africa, 2019. [Google Scholar]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the Advances in Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4765–4774. [Google Scholar]
- Li, Z. Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Comput. Environ. Urban Syst. 2022, 96, 101845. [Google Scholar] [CrossRef]
- Hong, Y.; Chen, Y.; Yu, L.; Liu, Y.; Liu, Y.; Zhang, Y.; Liu, Y.; Cheng, H. Combining Fractional Order Derivative and Spectral Variable Selection for Organic Matter Estimation of Homogeneous Soil Samples by VIS–NIR Spectroscopy. Remote Sens. 2018, 10, 479. [Google Scholar] [CrossRef]
- Schmitt, J.M. Fractional derivative analysis of diffuse reflectance spectra. Appl. Spectrosc. 1998, 52, 840–846. [Google Scholar] [CrossRef]
- Tian, R.; Zou, B.; Li, S.; Dai, L.; Zhang, B.; Wang, Y.; Tu, H.; Zhang, J.; Zou, L. A Model Combining Sensitive Vegetation Indices and Fractional-Order Differential Characteristic Bands for SPAD Value Estimation in Cd-Contaminated Rice Leaves. Agriculture 2024, 15, 311. [Google Scholar] [CrossRef]
- Wei, L.; Yuan, Z.; Zhong, Y.; Yang, L.; Hu, X.; Zhang, Y. An Improved Gradient Boosting Regression Tree Estimation Model for Soil Heavy Metal (Arsenic) Pollution Monitoring Using Hyperspectral Remote Sensing. Appl. Sci. 2019, 9, 1943. [Google Scholar] [CrossRef]
- Zhao, M.; Gao, Y.; Lu, Y.; Wang, S. Hyperspectral Modeling of Soil Organic Matter Based on Characteristic Wavelength in East China. Sustainability 2022, 14, 8455. [Google Scholar] [CrossRef]
- Tan, K.; Ma, W.; Chen, L.; Wang, H.; Du, Q.; Du, P.; Yan, B.; Liu, R.; Li, H. Estimating the distribution trend of soil heavy metals in mining area from HyMap airborne hyperspectral imagery based on ensemble learning. J. Hazard. Mater. 2021, 401, 123288. [Google Scholar] [CrossRef]
- Yang, K.; Wu, F.; Guo, H.; Chen, D.; Deng, Y.; Huang, Z.; Han, C.; Chen, Z.; Xiao, R.; Chen, P. Hyperspectral Inversion of Soil Cu Content in Agricultural Land Based on Continuous Wavelet Transform and Stacking Ensemble Learning. Land 2024, 13, 1810. [Google Scholar] [CrossRef]
- Jia, X.; O’Connor, D.; Shi, Z.; Hou, D. VIRS based detection in combination with machine learning for mapping soil pollution. Environ. Pollut. 2021, 268, 115845. [Google Scholar] [CrossRef]
- Rossel, R.A.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Hong, Y.; Shen, R.; Cheng, H.; Chen, S.; Chen, Y.; Guo, L.; He, J.; Liu, Y.; Yu, L.; Liu, Y. Cadmium concentration estimation in peri-urban agricultural soils: Using reflectance spectroscopy, soil auxiliary information, or a combination of both? Geoderma 2019, 354, 113875. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Saud Univ.-Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Guo, H.; Wu, F.; Yang, K.; Yang, Z.; Chen, Z.; Chen, D.; Xiao, R. Sentinel-2 Multispectral Satellite Remote Sensing Retrieval of Soil Cu Content Changes at Different pH Levels. Agronomy 2024, 14, 2182. [Google Scholar] [CrossRef]
- Jin, H.; Peng, J.; Bi, R.; Tian, H.; Zhu, H.; Ding, H. Comparing Laboratory and Satellite Hyperspectral Predictions of Soil Organic Carbon in Farmland. Agronomy 2024, 14, 175. [Google Scholar] [CrossRef]
Model | Parameters | Range | Step Size |
---|---|---|---|
KNN | n_neighbors | (1, 10) | 1 |
leaf_size | [1, 5, 10, 20, 30, 40, 50] | ||
p | (1, 10) | 1 | |
SVM | C | [1, 5, 10, 50, 100, 500, 1000] | |
gamma | [‘scale’, ‘auto’] | ||
RF | n_estimators | [50, 100, 150, 200] | |
max_depth | (2, 10) | 1 | |
min_samples_split | (2, 10) | 1 | |
min_samples_leaf | (1, 10) | 1 | |
AdaBoost | n_estimators | [50, 100, 150, 200] | |
learning_rate | [0.001, 0.01, 0.1, 1] | ||
XGBoost | n_estimators | [50, 100, 150, 200] | |
max_depth | (2, 10) | 1 | |
num_leaves | (10, 50) | 10 | |
learning_rate | [0.001, 0.01, 0.1, 1] | ||
LGBM | n_estimators | [50, 100, 150, 200] | |
max_depth | (2, 10) | 1 | |
num_leaves | (10, 50) | 10 | |
learning_rate | [0.001, 0.01, 0.1, 1] | ||
reg_lambda | [0.001, 0.01, 0.1, 1] |
Dataset | Sampling Points | Minimum (mg/kg) | Maximum (mg/kg) | Mean (mg/kg) | Standard Deviation (mg/kg) | Coefficient of Variation |
---|---|---|---|---|---|---|
Total set | 152 | 0.004 | 0.438 | 0.221 | 0.109 | 0.492 |
Modeling set | 122 | 0.004 | 0.438 | 0.221 | 0.110 | 0.497 |
Testing set | 30 | 0.007 | 0.381 | 0.219 | 0.106 | 0.482 |
Spectral Pre-Processing | Number of Feature Wavelengths | Maximum Positive r | Maximum Negative r | ||
---|---|---|---|---|---|
Wavelength | r | Wavelength | r | ||
FOD1-SNV | 105 | 2350 | 0.53 | 2287 | −0.51 |
FOD1.25-SNV | 69 | 1295 | 0.42 | 1123 | −0.41 |
FOD1.5-SNV | 105 | 1294 | 0.52 | 2417 | −0.56 |
FOD1.75-SNV | 139 | 893 | 0.63 | 2263 | −0.55 |
FOD2-SNV | 139 | 1996 | 0.69 | 1243 | −0.63 |
Spectral Pre-Processing | Model | R2 | RMSE (mg/kg) | RPD |
---|---|---|---|---|
FOD1-SNV | KNN | 0.52 | 0.07 | 1.44 |
SVR | 0.61 | 0.07 | 1.60 | |
RF | 0.52 | 0.07 | 1.45 | |
AdaBoost | 0.63 | 0.06 | 1.64 | |
XGBoost | 0.52 | 0.07 | 1.44 | |
LGBM | 0.50 | 0.07 | 1.41 | |
Stacking | 0.62 | 0.06 | 1.63 | |
FOD1.25-SNV | KNN | 0.37 | 0.08 | 1.26 |
SVR | 0.59 | 0.07 | 1.55 | |
RF | 0.53 | 0.07 | 1.46 | |
AdaBoost | 0.57 | 0.07 | 1.52 | |
XGBoost | 0.56 | 0.07 | 1.51 | |
LGBM | 0.61 | 0.06 | 1.60 | |
Stacking | 0.64 | 0.06 | 1.66 | |
FOD1.5-SNV | KNN | 0.61 | 0.07 | 1.59 |
SVR | 0.67 | 0.06 | 1.75 | |
RF | 0.62 | 0.06 | 1.62 | |
AdaBoost | 0.70 | 0.06 | 1.84 | |
XGBoost | 0.69 | 0.06 | 1.80 | |
LGBM | 0.73 | 0.05 | 1.91 | |
Stacking | 0.77 | 0.05 | 2.07 | |
FOD1.75-SNV | KNN | 0.65 | 0.06 | 1.70 |
SVR | 0.61 | 0.06 | 1.61 | |
RF | 0.62 | 0.06 | 1.62 | |
AdaBoost | 0.62 | 0.06 | 1.63 | |
XGBoost | 0.59 | 0.07 | 1.57 | |
LGBM | 0.63 | 0.06 | 1.64 | |
Stacking | 0.70 | 0.06 | 1.83 | |
FOD2-SNV | KNN | 0.63 | 0.06 | 1.64 |
SVR | 0.61 | 0.06 | 1.61 | |
RF | 0.62 | 0.06 | 1.62 | |
AdaBoost | 0.59 | 0.07 | 1.56 | |
XGBoost | 0.60 | 0.07 | 1.58 | |
LGBM | 0.58 | 0.07 | 1.54 | |
Stacking | 0.66 | 0.06 | 1.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, L.; Ding, M.; Yang, S.; Xu, X.; Li, J.; Sun, Z. Estimating Soil Cd Contamination in Wheat Farmland Using Hyperspectral Data and Interpretable Stacking Ensemble Learning. Agronomy 2025, 15, 1574. https://doi.org/10.3390/agronomy15071574
Zhong L, Ding M, Yang S, Xu X, Li J, Sun Z. Estimating Soil Cd Contamination in Wheat Farmland Using Hyperspectral Data and Interpretable Stacking Ensemble Learning. Agronomy. 2025; 15(7):1574. https://doi.org/10.3390/agronomy15071574
Chicago/Turabian StyleZhong, Liang, Meng Ding, Shengjie Yang, Xindan Xu, Jianlong Li, and Zhengguo Sun. 2025. "Estimating Soil Cd Contamination in Wheat Farmland Using Hyperspectral Data and Interpretable Stacking Ensemble Learning" Agronomy 15, no. 7: 1574. https://doi.org/10.3390/agronomy15071574
APA StyleZhong, L., Ding, M., Yang, S., Xu, X., Li, J., & Sun, Z. (2025). Estimating Soil Cd Contamination in Wheat Farmland Using Hyperspectral Data and Interpretable Stacking Ensemble Learning. Agronomy, 15(7), 1574. https://doi.org/10.3390/agronomy15071574