Identification and Assessment of Resistance to Fusarium Head Blight and Mycotoxin Accumulation Among 99 Wheat Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Fungal Inoculum Material
2.3. Standards and Chemicals for LC–MS/MS Analysis
2.4. FHB Evaluation in Greenhouse and Fields
2.5. Mycotoxin Extraction and Purification Before Injection into LC–MS/MS
2.6. LC–MS/MS Method: Instrumentation and Analytical Conditions
2.7. Plant Material and DNA Isolation
2.8. Primer Design and Standard Preparation
2.9. Quantitative PCR Analysis
2.10. Statistical Analysis
3. Results
3.1. Differential FHB Severity Among 99 Wheat Varieties
3.2. Mycotoxin Accumulation Across Different Resistance Groups
3.3. Mycotoxin Accumulation Comparison Between Two Maturation Stages
3.4. Comparison of Mycotoxin Accumulation Among Three FHB Isolates
3.5. Correlation Between FHB Severity and Different Mycotoxin Accumulation
3.6. Fungal Biomass Quantification
3.7. Mycotoxin Correlation Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peña-Bautista, R.J.; Hernandez-Espinosa, N.; Jones, J.M.; Guzmán, C.; Braun, H.J. CIMMYT series on carbohydrates, wheat, grains, and health: Wheat-based foods: Their global and regional importance in the food supply, nutrition, and health. Cereal Food World 2017, 52, 231–249. [Google Scholar] [CrossRef]
- Wegulo, S.N. Factors influencing deoxynivalenol accumulation in small grain cereals. Toxins 2012, 4, 1157–1180. [Google Scholar] [CrossRef]
- Desjardins, A.E.; Proctor, R.H. Molecular biology of Fusarium mycotoxins. Int. J. Food Microbiol. 2007, 119, 47–50. [Google Scholar] [CrossRef] [PubMed]
- Logrieco, A.F.; Moretti, A. Between emerging and historical problems: An overview of the main toxigenic fungi and mycotoxin concerns in Europe. In Mycotoxins: Detection Methods, Management, Public Health and Agricultural Trade; Cabi: Wallingford, UK, 2008; pp. 139–153. [Google Scholar]
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D.A. A unified effort to fight an enemy of wheat and barley: Fusarium head blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef]
- Figueroa, M.; Hammond-Kosack, K.E.; Solomon, P.S. A review of wheat diseases—A field perspective. Mol. Plant Pathol. 2018, 19, 1523–1536. [Google Scholar] [CrossRef] [PubMed]
- Shah, L.; Ali, A.; Yahya, M.; Zhu, Y.; Wang, S.; Si, H.; Rahman, H.; Ma, C. Integrated control of Fusarium head blight and deoxynivalenol mycotoxin in wheat. Mol. Plant-Microbe Interact. 2018, 67, 532–548. [Google Scholar] [CrossRef]
- Chen, Y.; Kistler, H.C.; Ma, Z. Fusarium graminearum Trichothecene Mycotoxins: Biosynthesis, Regulation, and Management. Annu. Rev. Phytopathol. 2019, 57, 15–39. [Google Scholar] [CrossRef]
- Lemmens, M.; Scholz, U.; Berthiller, F.; Dall’Asta, C.; Koutnik, A.; Schuhmacher, R.; Adam, G.; Buerstmayr, H.; Mesterhazy, A.; Krska, R.; et al. The ability to detoxify the mycotoxin deoxynivalenol colocalizes with a major quantitative trait locus for Fusarium head blight resistance in wheat. Mol. Plant-Microbe Interact. 2005, 18, 1318–1324. [Google Scholar] [CrossRef]
- Gunupuru, L.R.; Perochon, A.; Doohan, F.M. Deoxynivalenol resistance as a component of FHB resistance. Trop. Plant Pathol. 2017, 42, 175–183. [Google Scholar] [CrossRef]
- Pierron, A.; Mimoun, S.; Murate, L.S.; Loiseau, N.; Lippi, Y.; Bracarense, A.P.; Liaubet, L.; Schatz-mayr, G.; Berthiller, F.; Moll, W.D.; et al. Intestinal toxicity of the masked mycotoxin deoxynivalenol-3-β-D-glucoside. Arch. Toxicol. 2016, 90, 2037–2046. [Google Scholar] [CrossRef]
- Mallmann, C.A.; Dilkin, P.; Mallmann, A.O.; Oliveira, M.S.; Adaniya, Z.N.C.; Tonini, C. Prevalence and levels of deoxynivalenol and zearalenone in commercial barley and wheat grain produced in Southern Brazil: An eight-year (2008 to 2015) summary. Trop. Plant Path. 2017, 42, 146–152. [Google Scholar] [CrossRef]
- Amarasinghe, C.C.; Tittlemier, S.A.; Fernando, W.G.D. Nivalenol-producing Fusarium cerealis associated with Fusarium head blight in winter wheat in Manitoba, Canada. Plant Pathol. 2015, 64, 988–995. [Google Scholar] [CrossRef]
- Parry, D.W.; Jenkinson, P.; McLeod, L. Fusarium ear blight scab in small grain cereals-a review. Plant Pathol. 1995, 44, 207–238. [Google Scholar] [CrossRef]
- Poole, G.J.; Smiley, R.W.; Walker, C.; Huggins, D.; Rupp, R.; Abatzoglou, J.; Garland-Campbell, K.; Paulitz, T.C. Effect of climate on the distribution of Fusarium spp. causing crown rot of wheat in the Pacific Northwest of the United States. Phytopathology 2013, 103, 1130–1140. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, J.; Pu, L.; Sun, D.; Han, D.; Li, C.; Feng, X.; Fan, D.; Hu, X. Identification of New Sources of Resistance to Crown Rot and Fusarium Head Blight in Wheat. Plant Dis. 2020, 104, 1979–1985. [Google Scholar] [CrossRef]
- Ward, T.J.; Clear, R.M.; Rooney, A.P.; O’Donnell, K.; Gaba, D.; Patrick, S.; Starkey, D.; Gilbert, J.; Geiser, D.; Nowicki, T. An adaptive evolutionary shift in Fusarium head blight pathogen populations is driving the rapid spread of more toxigenic Fusarium graminearum in North America. Fungal Genet. Biol. 2008, 25, 473–484. [Google Scholar] [CrossRef]
- Guo, X.W.; Fernando, W.G.D.; Seow-Brock, H.Y. Population Structure, Chemotype Diversity, and Potential Chemotype Shifting of Fusarium graminearum in Wheat Fields of Manitoba. Plant Dis. 2008, 92, 756–762. [Google Scholar] [CrossRef]
- Astolfi, P.; Reynoso, M.M.; Ramirez, M.L.; Chulze, S.N.; Alves, T.C.A.; Tessmann, D.J.; Del Ponte, E.M. Genetic population structure and trichothecene genotypes of Fusarium graminearum isolated from wheat in southern Brazil. Plant Path. 2012, 61, 289–295. [Google Scholar] [CrossRef]
- Nielsen, L.K.; Jensen, J.D.; Nielsen, G.C.; Jensen, J.E.; Spliid, N.H.; Thomsen, I.K.; Justesen, A.F.; Collinge, D.B.; Jørgensen, L.N. Fusarium head blight of cereals in Denmark: Species complex and related mycotoxins. Phytopathology 2011, 101, 960–969. [Google Scholar] [CrossRef]
- Zhang, H.; Van der Lee, T.; Waalwijk, C.; Chen, W.; Xu, J.; Xu, J.; Zhang, Y.; Feng, J. Population analysis of the Fusarium graminearum species complex from wheat in China show a shift to more aggressive strains. PLoS ONE 2012, 7, e31722. [Google Scholar]
- Poppenberger, B.; Berthiller, F.; Lucyshyn, D.; Sieberer, T.; Schuhmacher, R.; Krska, R.; Kuchler, K.; Glossl, J.; Luschnig, C.; Adam, G. Detoxification of the fusarium mycotoxin deoxynivalenol by a UDP-glucosyltransferase from Arabidopsis thaliana. J. Biol. Chem. 2003, 278, 47905–47914. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shin, S.; Heinen, S.; Dill-Macky, R.; Berthiller, F.; Nersesian, N.; Clemente, T.; McCormick, S.; Muehlbauer, G.J. Transgenic wheat expressing a barley UDP glucosyltransferase detoxifies deoxynivalenol and provides high levels of resistance to Fusarium graminearum. Mol. Plant Microbe Interact. 2015, 28, 1237–1246. [Google Scholar] [CrossRef]
- Gilbert, J.; Pascale, M. Analytical methods for mycotoxins in the wheat chain. In Mycotoxin Reduction in Grain Chains; Leslie, J.F., Logrieco, A.F., Eds.; John Wiley and Sons Ltd.: Chichester, UK, 2014; pp. 169–188. [Google Scholar]
- Zhang, Z.; Hua, X.; Zhang, Q.; Lia, P. Determination for multiple mycotoxins in agricultural products using HPLC–MS/MS via a multiple antibody immunoaffinity column. J. Chromatogr. B 2016, 1021, 145–152. [Google Scholar] [CrossRef]
- Miró-Abella, E.; Herrero, P.; Canela, N.; Arola, L.; Borrull, F.; Ras, R.; Fontanals, N. Determination of mycotoxins in plant-based beverages using QuEChERS and liquid chromatography–tandem mass spectrometry. Food Chem. 2017, 229, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Hong, S.Y.; Kang, J.W.; Cho, S.M.; Lee, K.R.; An, T.K.; Lee, C.; Chung, S.H. Simultaneous De- termination of Multi-Mycotoxins in Cereal Grains Collected from South Korea by LC/MS/MS. Toxins 2017, 9, 106. [Google Scholar] [CrossRef]
- Jia, H.; Zhou, J.; Xue, S.; Li, G.; Yan, H.; Ran, C.; Zhang, Y.; Shi, J.; Jia, L.; Wang, X.; et al. A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. Crop J. 2018, 6, 48–59. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Ban, T.; Anderson, J.A. QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: A review. Plant Breed. 2009, 128, 1–26. [Google Scholar] [CrossRef]
- Li, G.; Zhou, J.; Jia, H.; Gao, Z.; Fan, M.; Luo, Y.; Zhao, P.; Xue, S.; Li, N.; Yuan, Y.; et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat. Genet. 2019, 51, 1106–1112. [Google Scholar] [CrossRef]
- Su, Z.; Bernardo, A.; Tian, B.; Chen, H.; Wang, S.; Ma, H.; Cai, S.; Liu, D.; Zhang, D.; Li, T.; et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Genet. 2019, 51, 1099–1105. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.L.; Hou, Y.L.; Cai, J.J.; Shen, X.R.; Zhou, T.T.; Xu, H.H.; Ohm, H.W.; Wang, H.W.; Li, A.F.; et al. High-density mapping of the major FHB resistance gene Fhb7 derived from Thinopyrum ponticum and its pyramiding with Fhb1 by marker-assisted selection. Theor. Appl. Genet. 2015, 128, 2301–2316. [Google Scholar] [CrossRef]
- Wang, H.; Sun, S.; Ge, W.; Zhao, L.; Hou, B.; Wang, K.; Lyu, Z.; Chen, L.; Xu, S.; Guo, J.; et al. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat. Science 2020, 368, 5435. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, H.; van der Lee, T.A.J.; Waalwijk, C.A.D.; van Diepeningen, Y.; Deng, J.; Feng, J.; Liu, T.; Chen, W. Resistance to Fusarium head blight and mycotoxin accumulation among 129 wheat cultivars from different ecological regions in China. World Mycotoxin J. 2020, 13, 189–199. [Google Scholar] [CrossRef]
- China Statistical Yearbook. 2024. Available online: https://www.stats.gov.cn/sj/ndsj/2024/indexeh.htm (accessed on 31 March 2025).
- Ma, H.X.; Zhang, X.; Yao, J.B.; Cheng, S.H. Breeding for the resistance to Fusarium head blight of wheat in China. Front. Agric. Sci. Eng. 2019, 6, 251–264. [Google Scholar] [CrossRef]
- Beres, B.L.; Brûlé-Babel, A.L.; Ye, Z.; Graf, R.J.; Turkington, T.K.; Harding, M.W.; Kutcher, H.R.; Hooker, D.C. Exploring Genotype× Environment× Management synergies to manage Fusarium head blight in wheat. Can. J. Plant Pathol. 2018, 40, 179–188. [Google Scholar] [CrossRef]
- Bai, G.H.; Su, Z.Q.; Cai, J. Wheat resistance to Fusarium head blight. Can. J. Plant Pathol. 2018, 40, 336–346. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Steiner, B.; Hartl, L.; Griesser, M.; Angerer, N.; Lengauer, D.; Miedaner, T.; Schneider, B.; Lemmens, M. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. II. Resistance to fungal penetration and spread. Theor. Appl. Genet. 2003, 107, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Yan, Z.; Zhou, H.; Fan, Y.; Wang, C.; Zhang, J.; Liao, Y.; Wu, A. Validation of LC-MS/MS Coupled with a Chiral Column for the Determination of 3- or 15-Acetyl Deoxynivalenol Mycotoxins from Fusarium graminearum in Wheat. Toxins 2021, 13, 659. [Google Scholar] [CrossRef]
- Sharma, P.; Gangola, M.; Huang, C.; Kutcher, H.; Ganeshan, P.; Chibbar, R. Single Nucleotide Poly-morphisms in B-Genome Specific UDP-Glucosyl Transferases Associated with Fusarium Head Blight Resistance and Reduced Deoxynivalenol Accumulation in Wheat Grain. Phytopathology 2018, 108, 124–132. [Google Scholar] [CrossRef]
- Bai, G.H.; Shaner, G. Scab of wheat: Prospects for control. Plant Dis. 1994, 78, 760–766. [Google Scholar]
- Jin, F.; Zhang, D.D.; Bockus, W.; Baenziger, P.S.; Carver, P.S.; Bai, G.H. Fusarium Head Blight Resistance in U.S. Winter Wheat Cultivars and Elite Breeding Lines. Crop Sci. 2013, 53, 2006–2013. [Google Scholar] [CrossRef]
- Stack, R.W.; McMullen, M.P. A Visual Scale to Estimate Severity of Fusarium Head Blight in Wheat; Publication PP-1095; North Dakota State University Extension Service: Fargo, ND, USA, 1995. [Google Scholar]
- Huang, C.; Gangola, M.P.; Kutcher, H.R.; Hucl, P.; Ganeshan, S.; Chibbar, R.N. In Vitro Wheat Immature Spike Culture Screening Identified Fusarium Head Blight Resistance in Wheat Spike Cultured Derived Variants and in the Progeny of Their Crosses with an Elite Cultivar. Plant Pathol. J. 2020, 36, 558–569. [Google Scholar] [CrossRef]
- Huang, C.; Gangola, M.P.; Chibbar, R.N. Utilization of wheat spike culture to assess Fusarium head blight disease progression and mycotoxin accumulation. Can. J. Plant Pathol. 2020, 42, 62–71. [Google Scholar] [CrossRef]
- Horevaj, P.; Milus, E.A.; Bluhm, B.H. A real-time qPCR assay to quantify Fusarium graminearum biomass in wheat kernels. J. Appl. Microbiol. 2011, 111, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Miedaner, T.; Reinbrecht, C.; Lauber, U.; Schollenberger, M.; Geiger, H.H. Effects of genotype and genotype—Environment interaction on deoxynivalenol accumulation and resistance to Fusarium head blight in rye, triticale, and wheat. Plant Breed. 2001, 120, 97–105. [Google Scholar] [CrossRef]
- Özdemir, F. Host Susceptibility of CIMMYT’s International Spring Wheat Lines to Crown and Root Rot Caused by Fusarium culmorum and F. pseudograminearum. Agronomy 2022, 12, 3038. [Google Scholar] [CrossRef]
- Touati-Hattab, S.; Barreau, C.; Verdal-Bonnin, M.N.; Chereau, S.; Richard-Forget, F.; Hadjout, S.; Mek-liche, L.; Bouznad, Z. Pathogenicity and trichothecenes production of Fusarium culmorum strains causing head blight on wheat and evaluation of resistance of the varieties cultivated in Algeria. Eur. J. Plant Pathol. 2016, 145, 797–814. [Google Scholar] [CrossRef]
- Bjørnstad, Å.; He, X.; Tekle, S.; Klos, K.; Huang, Y.F.; Tinker, N.A.; Dong, Y.; Skinnes, H. Genetic variation and associations involving Fusarium head blight and deoxynivalenol accumulation in cultivated oat (Avena sativa L.). Plant Breed. 2017, 136, 620–636. [Google Scholar] [CrossRef]
- Gorczyca, A.; Oleksy, A.; Gala-Czekaj, D.; Urbaniak, M.; Laskowska, M.; Waśkiewicz, A.; Stępień, Ł. Fusarium head blight incidence and mycotoxin accumulation in three durum wheat cultivars in relation to sowing date and density. Sci. Nat. 2018, 105, 2. [Google Scholar] [CrossRef]
- Ji, F.; Wu, J.; Zhao, H.; Xu, J.; Shi, J. Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance. Toxins 2015, 7, 728–742. [Google Scholar] [CrossRef]
- He, X.; Singh, P.K.; Schlang, N.; Duveiller, E.; Dreisigacker, S.; Payne, T.; He, Z. Characterization of Chinese wheat germplasm for resistance to Fusarium head blight at CIMMYT, Mexico. Euphytica 2014, 195, 383–395. [Google Scholar] [CrossRef]
- Góral, T.; Wiśniewska, H.; Ochodzki, P.; Twardawska, A.; Walentyn-Góral, D. Resistance to Fusarium Head Blight, Kernel Damage, and Concentration of Fusarium Mycotoxins in Grain of Winter Triticale (x Tritico secale Wittmack) Lines. Agronomy 2021, 11, 16. [Google Scholar] [CrossRef]
- Ochodzki, P.; Twardawska, A.; Wiśniewska, H.; Góral, T. Resistance to Fusarium Head Blight, Kernel Damage, and Concentrations of Fusarium Mycotoxins in the Grain of Winter Wheat Lines. Agronomy 2021, 11, 1690. [Google Scholar] [CrossRef]
- Chhabra, B.; Thrasu, S.; Wallace, S.; Schoen, A.; Shahoveisi, F.; Dong, Y.; Tiwari, V.; Rawat, N. Evaluation of speed breeding conditions for accelerating Fusarium head blight and deoxynivalenol screening in wheat. Crop Sci. 2024, 64, 1586–1594. [Google Scholar] [CrossRef]
- Schweiger, W.; Steiner, B.; Ametz, C.; Siegwart, G.; Wiesenberger, G.; Berthiller, F.; Lemmens, M.; Jia, H.; Adam, G.; Muehlbauer, G.J.; et al. Transcriptomic characterization of two major Fusarium resistance quantitative trait loci (QTLs), Fhb1 and Qfhs.ifa-5A, identifies novel candidate genes. Mol. Plant Pathol. 2013, 14, 772–785. [Google Scholar] [CrossRef]
- Lemmens, M.; Steiner, B.; Sulyok, M.; Nicholson, P.; Mesterhazy, A.; Buerstmayr, H. Masked mycotoxins: Does breeding for enhanced Fusarium head blight resistance result in more deoxynivalenol-3-glucoside in new wheat varieties? World Mycotoxin J. 2016, 9, 741–754. [Google Scholar] [CrossRef]
- Nakagawa, H.; He, X.; Matsuo, Y.; Singh, P.K.; Kushiro, M. Analysis of the Masked Metabolite of Deoxynivalenol and Fusarium Resistance in CIMMYT Wheat Germplasm. Toxins 2017, 9, 238. [Google Scholar] [CrossRef] [PubMed]
- Audenaert, K.; De Boevre, M.; Vanheule, A.; Callewaert, J.; Bekaert, B.; Höfte, M.; De Saeger, S.; Haesaert, G. Mycotoxin glucosylation in commercial wheat varieties: Impact on resistance to Fusarium graminearum under laboratory and field conditions. Food Control 2013, 34, 756–762. [Google Scholar] [CrossRef]
- Ovando-Martínez, M.; Ozsisli, B.; Anderson, J.; Whitney, K.; Ohm, J.B.; Simsek, S. Analysis of deoxynivalenol and deoxynivalenol-3-glucoside in hard red spring wheat inoculated with Fusarium graminearum. Toxins 2013, 5, 2522–2532. [Google Scholar] [CrossRef]
- Schweiger, W.; Boddu, J.; Shin, S.; Poppenberger, B.; Berthiller, F.; Lemmens, M.; Muehlbauer, G.J.; Adam, G. Validation of a candidate deoxynivalenol-inactivating UDP-glucosyltransferase from barley by heterologous expression in yeast. Mol. Plant-Microbe Interact. 2010, 23, 977–986. [Google Scholar] [CrossRef]
- Shin, S.; Torres-Acosta, J.A.; Heinen, S.J.; McCormick, S.; Lemmens, M.; Paris, M.P.K.; Berthiller, F.; Adam, G.; Muehlbauer, G.J. Transgenic Arabidopsis thaliana expressing a barley UDP-glucosyltransferase exhibit resistance to the mycotoxin deoxynivalenol. J. Exp. Bot. 2012, 63, 4731–4740. [Google Scholar] [CrossRef]
- Brar, G.S.; Dokken-Bouchard, F.; Peluola, C.; Sliva, T.; Stephens, D.; Singh, G.; Kutcher, H.R.; Fernandez, M.R. Fusarium head blight in common and durum wheat in Saskatchewan in 2015. Can. Plant Dis. Surv. 2016, 96, 117–119. [Google Scholar]
- Qiu, J.B.; Xu, J.H.; Shi, J.R. Molecular characterization of the Fusarium graminearum species complex in Eastern China. Eur. J. Pant Path. 2014, 139, 811–823. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Xu, Y. Variation in the concentrations of deoxynivalenol in the spikes of winter wheat infected by Fusarium graminearum Schw. Acta Phytopathol. Sin. 1996, 26, 25–28. [Google Scholar]
- Miller, J.D.; Young, J.C.; Sampson, D.R. Deoxynivalenol and Fusarium head blight resistance in spring cereals. J. Phytopathol. 1985, 113, 359–367. [Google Scholar] [CrossRef]
Trait | Source | DF a | MS b | F Value | P (>F) |
---|---|---|---|---|---|
FHB-H1-Greenhouse | Cultivar | 98 | 0.2395 | 8.97 | <0.0001 |
Replication | 1 | 0.0302 | 1.13 | 0.2890 | |
Error | 98 | 0.0267 | |||
FHB-H1-Field nursery-Jinan | Cultivar | 41 | 0.3043 | 12.47 | <0.0001 |
Replication | 1 | 0.0183 | 0.75 | 0.3866 | |
Error | 41 | 0.0244 | |||
FHB-H1-Field nursery-Jiyang | Cultivar | 41 | 0.2750 | 10.35 | <0.0001 |
Replication | 1 | 0.0200 | 0.75 | 0.3879 | |
Error | 41 | 0.0266 |
FHB Resistance Group | Cultivar | FHB Severity (Mean ± Standard Deviation) % | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Greenhouse | Jinan | Jiyang | ||||||||
H1 | H2 | H3 | H1 | H2 | H3 | H1 | H2 | H3 | ||
Resistant (R) | Sumai-3 | 16.7 ± 5.8 | 16.7 ± 6.4 | 21.2 ± 7.4 | 16.0 ± 6.3 | 21.1 ± 9.5 | 20.1 ± 4.4 | 14.1 ± 11.6 | 7.3 ± 3.3 | 5.7 ± 0.2 |
Wangshuibai | 10.2 ± 3.6 | 15.3 ± 7.6 | 18.6 ± 16.2 | 20.9 ± 8.0 | 21.3 ± 7.9 | 13.2 ± 2.9 | 5.7 ± 0.5 | 6.0 ± 0.4 | 9.1 ± 3.5 | |
Huaimai20 | 25.1 ± 7.5 | 25.6 ± 11.6 | 40.1 ± 22.4 | 35.4 ± 7.2 | 37.4 ± 4.9 | 38.8 ± 20.2 | 29.0 ± 29.0 | 30.5 ± 7.6 | 39.8 ± 6.0 | |
Shannong20 | 35.9 ± 15.0 | 28.0 ± 13.3 | 32.7 ± 10.6 | 20.4 ± 5.1 | 23.7 ± 5.8 | 19.6 ± 10.0 | 18.6 ± 5.4 | 33.0 ± 24.2 | 16.5 ± 7.3 | |
Sunlin | 4.6 ± 0.2 | 8.5 ± 4.7 | 11.7 ± 3 | 24.5 ± 7.5 | 19.9 ± 4.1 | 16.1 ± 3.4 | 23.9 ± 12.6 | 19.4 ± 10.9 | 12.7 ± 2.1 | |
Moderate Resistant (MR) | SD-34 | 59.8 ± 9.6 | 55.8 ± 13.1 | 50.8 ± 13.7 | 51.6 ± 14.5 | 55.2 ± 14.9 | 40.6 ± 18.8 | 37.3 ± 15.9 | 42.7 ± 6.2 | 58.5 ± 28.3 |
SD-4 | 50.2 ± 24.0 | 54.5 ± 15.4 | 64.2 ± 19.1 | 68.7 ± 10.2 | 51.5 ± 13.2 | 51.3 ± 27.6 | 83.7 ± 14.0 | 59.3 ± 11.9 | 50.6 ± 8.2 | |
SD-33 | 66.3 ± 17.2 | 40.5 ± 14.9 | 56.2 ± 21.7 | 49.7 ± 14.0 | 51.2 ± 17.2 | 47.1 ± 3.4 | 53.9 ± 13.3 | 67.3 ± 8.8 | 47.0 ± 7.9 | |
SD-17 | 68.5 ± 11.7 | 73.7 ± 13.3 | 67.2 ± 30.7 | 48.6 ± 18.7 | 51.1 ± 10.8 | 36.6 ± 9.9 | 60.8 ± 30.2 | 50.1 ± 2.6 | 52.8 ± 6.5 | |
SD-46 | 70.7 ± 8.7 | 65.8 ± 6.4 | 68.8 ± 4.9 | 61.9 ± 15.4 | 49.5 ± 16.2 | 65.0 ± 26.1 | 58.16 ± 23.44 | 52.5 ± 27.4 | 65.2 ± 12.3 | |
SD-18 | 67.9 ± 6.3 | 72.4 ± 9.8 | 65.4 ± 24.2 | 58.1 ± 15.4 | 69.2 ± 8.2 | 44.0 ± 13.8 | 59.2 ± 19.3 | 50.9 ± 10.4 | 50.2 ± 20.3 | |
SD-37 | 67.9 ± 12.6 | 62.8 ± 15.8 | 70.1 ± 0.9 | 49.3 ± 7.7 | 52.1 ± 5.3 | 56.1 ± 31.0 | 64.2 ± 20.1 | 47.8 ± 22.3 | 67.3 ± 5.1 | |
Susceptible (S) | Jimai22 | 93.3 ± 8.2 | 90.6 ± 14.2 | 79.3 ± 16.4 | 60.7 ± 9.5 | 62.2 ± 9.3 | 83.2 ± 15.7 | 70.2 ± 19.1 | 71.9 ± 28.0 | 75.3 ± 10.7 |
SD-51 | 89.4 ± 12.4 | 98.3 ± 3.3 | 98.1 ± 3.8 | 75.9 ± 11.2 | 72.5 ± 10.2 | 78.5 ± 13.0 | 90.0 ± 4.0 | 82.5 ± 5.3 | 81.1 ± 5.3 | |
SD-66 | 100.0 ± 0.0 | 90.3 ± 11.5 | 85.7 ± 12.7 | 90.3 ± 13.1 | 98.4 ± 2.8 | 76.9 ± 30.2 | 97.1 ± 3.4 | 65.7 ± 14.9 | 80.5 ± 21.3 | |
SD-32 | 92.3 ± 15.4 | 94.5 ± 6.9 | 94.2 ± 11.5 | 79.2 ± 25.2 | 79.1 ± 7.9 | 67.2 ± 13.6 | 75.51 ± 24.4 | 77.5 ± 18.5 | 74.0 ± 13.2 | |
SD-15 | 89.3 ± 13.7 | 91.0 ± 3.0 | 96.2 ± 4.4 | 59.6 ± 20.1 | 72.0 ± 3.2 | 79.8 ± 12.1 | 81.8 ± 11.5 | 70.2 ± 25.1 | 84.9 ± 5.6 | |
SD-58 | 97.9 ± 4.2 | 93.2 ± 9.4 | 98.2 ± 3.6 | 89.7 ± 10.0 | 78.4 ± 4.8 | 81. 6 ± 7.8 | 80.3 ± 14.6 | 81.1 ± 15.6 | 82.2 ± 12.9 | |
SD-56 | 94.5 ± 6.9 | 78.7 ± 11.3 | 80.3 ± 21.8 | 69.4 ± 17.7 | 64.3 ± 19.2 | 54.7 ± 32.0 | 79.8 ± 12.0 | 75.7 ± 23.3 | 63.4 ± 14.7 |
Greenhouse-H1 | Greenhouse-H2 | Greenhouse-H3 | Jinan-H1 | Jinan-H2 | Jinan-H3 | Jiyang-H1 | Jiyang-H2 | Jiyang-H3 | |
---|---|---|---|---|---|---|---|---|---|
Greenhouse-H1 | 1 | ||||||||
Greenhouse-H2 | 0.955 ** | 1 | |||||||
Greenhouse-H3 | 0.953 ** | 0.958 ** | 1 | ||||||
Jinan-H1 | 0.707 * | 0.733 ** | 0.856 ** | 1 | |||||
Jinan-H2 | 0.511 | 0.550 | 0.661 * | 0.815 ** | 1 | ||||
Jinan-H3 | 0.646 * | 0.632 * | 0.748 ** | 0.842 ** | 0.503 | 1 | |||
Jiyang-H1 | 0.659 * | 0.689 * | 0.812 ** | 0.964 ** | 0.828 ** | 0.852 ** | 1 | ||
Jiyang-H2 | 0.865 ** | 0.865 ** | 0.912 ** | 0.836 ** | 0.561 | 0.814 ** | 0.820 ** | 1 | |
Jiyang-H3 | 0.676 * | 0.671 * | 0.780 ** | 0.749 ** | 0.638 * | 0.516 | 0.578 | 0.804 ** | 1 |
FHB Resistance Group | Cultivar | DON (µg/kg) | D3G (µg/kg) | ||||
---|---|---|---|---|---|---|---|
H1 a | H2 | H3 | H1 | H2 | H3 | ||
Resistant (R) | Sumai-3 | 254.0 f | 715.6 g | 49.5 f | 528.0 ef | 1163.8 a | 465.9 c |
Wangshuibai | 1273.4 f | 2144.1 fg | 3571.9 def | 558.2 ef | 820.2 a | 1338.7 bc | |
Sunlin | 429.7 f | 412.3 g | 1090.8 f | 223.4 f | 451.3 a | 683.9 c | |
Shannong20 | 889.9 f | 1349.5 g | 1408.8 f | 704.2 ef | 1487.2 a | 1133.9 c | |
Huaimai20 | 1121.1 f | 1940.9 fg | 1724.2 f | 1195.0 def | 1697.1 a | 2491.1 c | |
Moderate Resistant (MR) | SD-18 | 3578.0 ef | 5136.2 fg | 5560.4 ef | 5503.6 bcdef | 4711.2 a | 5214.7 abc |
SD-37 | 3805.0 ef | 7772.2 defg | 6987.1 def | 2551.4 cdef | 4827.0 a | 5542.8 abc | |
SD-33 | 5461.6 ef | 4647.3 fg | 7865.0 def | 6015.3 bcde | 5366.6 a | 8521.1 abc | |
SD-17 | 5869.6 ef | 4404.2 fg | 4879.5 ef | 3872.1 cdef | 4242.0 a | 3696.8 bc | |
SD-46 | 6022.7 ef | 6904.5 fg | 7747.3 def | 7582.6 abc | 8594.4 a | 8139.1 abc | |
SD-34 | 10,319.2 ef | 11,023.3 cdefg | 11,790.9 cdef | 3897.7 cdef | 3115.1 a | 4881.2 abc | |
SD-4 | 12,452.4 def | 14,452.3 bcdef | 18,107.0 bcde | 3941.9 cdef | 4108.8 a | 4389.8 abc | |
Susceptible (S) | Jimai-22 | 18,907.1 bcde | 20,122.9 bcd | 20,377.0 abcd | 5450.8 bcdef | 6348.9 a | 6417.3 abc |
SD-32 | 15,513.7 cdef | 19,551.7 bcde | 14,092.3 bcdef | 5580.0 bcdef | 5757.6 a | 6114.1 abc | |
SD-56 | 8887.2 ef | 7666.1 efg | 7517.5 def | 7815.8 abc | 6311.8 a | 10,962.5 ab | |
SD-51 | 27,092.2 abcd | 22,921.5 abc | 22,409.1 abc | 5153.6 bcdef | 2908.3 a | 4124.6 abc | |
SD-15 | 30,417.5 abc | 24,302.8 ab | 17,609.5 bcde | 7102.1 abcd | 8182.8 a | 6731.7 abc | |
SD-6 | 34,313.6 ab | 23,254.8 abc | 8927.3 cdef | 6917.7 abcd | 4484.9 a | 3127.7 bc | |
SD-58 | 34,847.6 a | 20,719.5 bc | 27,947.8 ab | 11,877.0 a | 5535.8 a | 6102.3 abc | |
SD-66 | 37,271.4 a | 34,314.8 a | 33,058.4 a | 9944.1 ab | 8464.0 a | 12,068.7 a |
FHB Resistance Group | Cultivar | Mycotoxin Accumulation at Physiological Maturity (PM) (µg/kg) | |||||
---|---|---|---|---|---|---|---|
DON a | 15ADON | 3ADON | D3G | ZEN | D3G/DON | ||
R | Sumai-3 | 488.2 h | 82.8 b | 12.3 b | 779.4 efg | 0.1 b | 1.1 abc |
Wangshuibai | 1884.5 gh | 112.0 b | 30.1 b | 526.7 defg | 0.2 b | 0.3 bcd | |
Huaimai20 | 1744.9 gh | 38.9 b | 116.1 b | 1993.1 cdefg | 2.9 ab | 1.1 ab | |
Shannong20 | 1216.0 h | 112.2 b | 62.9 b | 1108.4 fg | 0.5 b | 0.9 abcd | |
Sunlin | 627.8 h | 98.2 b | 69.9 b | 435.2 g | 0.6 b | 0.7 abcd | |
MR | SD-34 | 12,359.2 cdefg | 1219.9 ab | 1061.5 a | 4363.0 b–g | 31.4 ab | 0.4 bcd |
SD-4 | 9791.1 defgh | 360.6 b | 203.2 b | 4201.8 b–g | 25.8 ab | 0.5 abcd | |
SD-33 | 6467.0 fgh | 1159.1 ab | 475.7 ab | 7617.8 abc | 1.4 ab | 0.9 abcd | |
SD-17 | 3333.1 gh | 207.2 b | 60.0 b | 4239.3 b–g | 0.7 ab | 1.4 a | |
SD-46 | 7468.5 efgh | 2036.6 a | 570.4 ab | 7414.1 abc | 1.0 ab | 1.0 abcd | |
SD-18 | 7149.7 fgh | 1129.6 ab | 596.4 ab | 7400.3 abc | 102.6 a | 1.1 abc | |
SD-37 | 5527.6 fgh | 72.1 b | 33.6 b | 4283.5 b–g | 1.9 ab | 0.8 abcd | |
S | SD-51 | 23,702.1 bc | 405.4 b | 384.7 ab | 4425.6 b–g | 1.8 ab | 0.2 d |
SD-66 | 38,272.6 a | 1127.6 ab | 745.9 ab | 12,282.2 a | 0.0 b | 0.3 bcd | |
SD-32 | 17,345.9 bcdef | 426.8 b | 187.4 b | 6788.3 abcde | 1.6 ab | 0.4 bcd | |
SD-15 | 21,289.5 bcd | 323.0 b | 163.0 b | 7120.0 abcd | 1.7 ab | 0.4 bcd | |
SD-58 | 29,459.2 ab | 946.6 ab | 741.7 ab | 7528.1 abc | 1.8 ab | 0.3 cd | |
SD-56 | 8262.4 efgh | 1923.9 a | 485.4 ab | 7890.1 ab | 1.9 ab | 1.0 abcd | |
SD-6 | 23,321.4 bc | 393.7 b | 189.9 b | 5729.6 bcdef | 0.9 ab | 0.2 cd | |
Jimai22 | 19,813.4 bcde | 305.0 b | 101.0 b | 7120.2 abcd | 0.0 b | 0.4 bcd |
FHB Resistance Group | Cultivar | Mycotoxin Accumulation at Dough Stage (DS) (µg/kg) | |||||
---|---|---|---|---|---|---|---|
DON | 15ADON | 3ADON | D3G | ZEN | D3G/DON | ||
R | Sumai-3 | 191.2 e | 67.7 b | 3.9 a | 659.0 c | 2.2 a | 3.0 a |
Wangshuibai | 2212.7 e | 58.6 b | 71.6 a | 1014.0 c | 0.3 a | 0.7 a | |
Huaimai20 | 1061.8 de | 6.6 b | 60.6 a | 1348.2 abc | 1.5 a | 1.1 a | |
Shannong20 | N/A | N/A | N/A | N/A | N/A | N/A | |
Sunlin | N/A | N/A | N/A | N/A | N/A | N/A | |
MR | SD-34 | 9729.7 cde | 1106.5 ab | 659.0 a | 3566.3 abc | 5.1 a | 0.4 a |
SD-4 | 20,216.6 abc | 273.2 b | 281.8 a | 4091.9 abc | 5.9 a | 0.2 a | |
SD-33 | 5515.5 de | 1449.2 ab | 895.6 a | 5650.9 abc | 5.3 a | 0.8 a | |
SD-17 | 6769.1 de | 636.5 ab | 146.4 a | 3634.6 abc | 0.4 a | 0.6 a | |
SD-46 | 6314.5 de | 2261.8 a | 762.8 a | 8796.6 a | 6.4 a | 1.4 a | |
SD-18 | 2366.7 e | 60.4 b | 26.6 a | 2886.0 bc | 3.3 a | 1.2 a | |
SD-37 | 6172.8 de | 57.8 b | 20.8 a | 3938.8 abc | 2.0 a | 1.2 a | |
S | SD-51 | 24,579.8 ab | 518.7 ab | 430.4 a | 3698.6 abc | 0.3 a | 0.1 a |
SD-66 | 31,490.5 a | 926.5 ab | 768.4 a | 8035.7 ab | 0.2 a | 0.3 a | |
SD-32 | 15,425.9 bcd | 300.2 b | 117.1 a | 4846.2 abc | 0.5 a | 0.4 a | |
SD-15 | 26,930.3 ab | 461.1 b | 254.1 a | 7557.8 ab | 5.8 a | 0.3 a | |
SD-58 | 26,217.4 ab | 675.8 ab | 474.9 a | 8148.6 ab | 0.4 a | 0.3 a | |
SD-56 | 7784.7 de | 1125.0 ab | 340.0 a | 8836.6 a | 1.5 a | 1.1 a | |
SD-6 | 21,009.0 abc | 401.3 b | 181.1 a | 3957.3 abc | 0.0 a | 0.2 a | |
Jimai22 | 19,791.2 bc | 275.6 b | 110.6 a | 5024.5 abc | 0.0 a | 0.3 a |
FHB Severity | DON | 15ADON | 3ADON | D3G | ZEN | D3G/DON | |
---|---|---|---|---|---|---|---|
FHB Severity | 1 | ||||||
DON | 0.735 ** | 1 | |||||
15ADON | 0.274 * | 0.195 | 1 | ||||
3ADON | 0.237 | 0.317 * | 0.596 ** | 1 | |||
D3G | 0.649 ** | 0.669 ** | 0.488 ** | 0.367 ** | 1 | ||
ZEN | 0.019 | −0.038 | 0.177 | 0.356 ** | 0.112 | 1 | |
D3G/DON | −0.359 ** | −0.599 ** | 0.071 | −0.128 | −0.078 | 0.059 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.; Cui, D.; Li, Y.; Zhuang, Y.; Sui, X.; Fan, Q. Identification and Assessment of Resistance to Fusarium Head Blight and Mycotoxin Accumulation Among 99 Wheat Varieties. Agronomy 2025, 15, 1542. https://doi.org/10.3390/agronomy15071542
Huang C, Cui D, Li Y, Zhuang Y, Sui X, Fan Q. Identification and Assessment of Resistance to Fusarium Head Blight and Mycotoxin Accumulation Among 99 Wheat Varieties. Agronomy. 2025; 15(7):1542. https://doi.org/10.3390/agronomy15071542
Chicago/Turabian StyleHuang, Chen, Dezhou Cui, Yongbo Li, Yamei Zhuang, Xinxia Sui, and Qingqi Fan. 2025. "Identification and Assessment of Resistance to Fusarium Head Blight and Mycotoxin Accumulation Among 99 Wheat Varieties" Agronomy 15, no. 7: 1542. https://doi.org/10.3390/agronomy15071542
APA StyleHuang, C., Cui, D., Li, Y., Zhuang, Y., Sui, X., & Fan, Q. (2025). Identification and Assessment of Resistance to Fusarium Head Blight and Mycotoxin Accumulation Among 99 Wheat Varieties. Agronomy, 15(7), 1542. https://doi.org/10.3390/agronomy15071542