Rapeseed Green Manure Coupled with Biochar and Vermicompost Enhances Soil Aggregates and Fungal Communities in Gleyed Paddy Fields
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
2.3. Sample Collection and Measurement
2.4. Soil DNA Extraction and High-Throughput Sequencing
2.5. Statistical Analysis
3. Results
3.1. Effects of Different Treatments on Soil Physicochemical Properties
3.2. Effects of Different Treatments on Soil Aggregate Composition and Stability, and GRSP
3.3. Soil Fungal Community Composition
3.4. Correlation Between Bacterial Genus and Aggregate Mass Ratio, Average Weight Diameter, and Cemented Substance
4. Discussion
4.1. Effects of Rapeseed Green Manure and Coupled Organic Matter Returning on Soil Physicochemical Properties and Aggregate Distribution and Stability
4.2. Effects of Rapeseed Green Manure and Coupled Organic Matter Returning on Soil Fungal Community
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
SOC | Soil organic carbon |
BD | Bulk density |
TN | Total nitrogen |
AP | Available phosphorus |
AK | Available potassium |
Fe2+ | Ferrous iron |
GRSP | Glomalin-related soil protein |
T-GRSP | Total glomalin-related soil protein |
EE-GRSP | Easily extractable glomalin-related soil protein |
DE-GRSP | Difficulty extractable glomalin-related soil protein |
D | Fractal dimension |
AMF | Arbuscular mycorrhizal fungi |
AN | Available nitrogen |
SOM | Soil organic matter |
References
- Yu, J.; Wu, J. The sustainability of agricultural development in China: The agriculture–environment nexus. Sustainability 2018, 10, 1776. [Google Scholar] [CrossRef]
- Zeng, J.; Gong, X.; Yu, Z.; Liu, X.; Chen, C.; Fu, Z.; Dai, Z.; Huang, R.; Liu, D.; Chen, L.; et al. Development and utilization technology of cold coaked field and comprehensive planting and breeding in southern rice area. China Rice 2022, 28, 102–106. [Google Scholar] [CrossRef]
- Li, Y.; Guo, J.; Cai, A.; Gao, J.; Wang, Y.; Yu, Y.; Zhou, Y.; Yu, B. Characteristics of groundwater in the cold waterlogged paddyfield of the Jianghan plain. Resour. Environ. Eng. 2023, 37, 163–170+216. [Google Scholar] [CrossRef]
- Son, Y.; Martínez, C.E.; Kniffin, J.K. Three important roles and chemical properties of glomalin-related soil protein. Front. Soil Sci. 2024, 4, 1418072. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, X.; Zheng, K.; Gu, S.; Yu, H.; Ma, K.; Zhao, Y.; Wang, Y.; Zheng, H.; Liu, H.; et al. Response of organic fertilizer application to soil microorganisms and forage biomass in grass–legume mixtures. Agronomy 2023, 13, 481. [Google Scholar] [CrossRef]
- Zhao, M.; Dai, Z.; Gu, C.; Hu, W.; Li, Y.; Qin, L.; Lu, M.; Liao, X. Advantage of oilseed rape (Brassica napus L.) in land use and conservation and its application for winter fallow field. Chin. J. Oil Crop Sci. 2022, 44, 1139–1147. [Google Scholar] [CrossRef]
- Wei, X.; Qin, D.; Yin, Z.; Wang, G.; Li, L.; Feng, L.; Xu, Q. Evaluating the impact of green manure incorporation on cotton yield, soil fertility, and net eco–economic benefits. Agronomy 2025, 15, 559. [Google Scholar] [CrossRef]
- Yang, J.; Schrader, S.; Tebbe, C.C. Legacy effects of earthworms on soil microbial abundance, diversity, and community dynamics. Soil Biol. Biochem. 2024, 190, 109294. [Google Scholar] [CrossRef]
- Balachandar, R.; Baskaran, L.; Yuvaraj, A.; Thangaraj, R.; Subbaiya, R.; Ravindran, B.; Chang, S.W.; Karmegam, N. Enriched pressmud vermicompost production with green manure plants using Eudrilus eugeniae. Bioresour. Technol. 2020, 299, 122578. [Google Scholar] [CrossRef]
- Yao, R.J.; Li, H.Q.; Yang, J.S.; Wang, X.P.; Xie, W.P.; Zhang, X. Biochar addition inhibits nitrification by shifting community structure of ammonia-oxidizing microorganisms in salt-affected irrigation-silting soil. Microorganisms 2022, 10, 436. [Google Scholar] [CrossRef]
- Feng, H.; Han, X.; Zhu, Y.; Zhang, M.; Ji, Y.; Lu, X.; Chen, X.; Yan, J.; Zou, W. Effects of long-term application of organic ma-terials on soil water extractable organic matter, fulvic acid, humic acid structure and microbial driving mechanisms. Plant Soil 2024, 501, 323–341. [Google Scholar] [CrossRef]
- Li, J.; Ren, T.; Li, Y.; Chen, N.; Yin, Q.; Li, M.; Liu, H.; Liu, G. Organic materials with high C/N ratio: More beneficial to soil improvement and soil health. Biotechnol. Lett. 2022, 44, 1415–1429. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.G.B.d.; Paiva, A.B.; Viana, R.d.S.R.; Jindo, K.; Figueiredo, C.C.d. Biochar as a Feedstock for Sustainable Fertilizers: Recent Advances and Perspectives. Agriculture 2025, 15, 894. [Google Scholar] [CrossRef]
- Bao, S.D. Soil and Agricultural Chemistry Analysis, 3rd ed.; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- GB/T 3049-2006; General Method for Determination of Iron Content in Industrial Chemical Products 1,10-Phenanthroline Spectrophotometry. General Administration of Quality Supervision; Inspection and Quarantine of the People’s Republic of China; China National Standardization Management Committee: Beijing, China, 2006.
- Elliott, E.T. Aggregate Structure and Carbon, Nitrogen, and Phosphorus in Native and Cultivated Soils1. Soil Sci. Soc. Am. J. 1986, 50, 627–633. [Google Scholar] [CrossRef]
- Wright, S.F.; Upadhyaya, A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996, 161, 575–586. [Google Scholar] [CrossRef]
- Martin, K.F.; Ryiewicz, P.T. Fungal-specific PCR primers developed for analysis of the ITS region of environmental DNA extracts. BMC Microbiol. 2005, 5, 28. [Google Scholar] [CrossRef]
- Wang, P.; Yu, A.; Wang, F.; Shang, Y.; Wang, Y.; Yin, B.; Liu, Y.; Zhang, D. Mechanistic Insights into Farmland Soil Carbon Sequestration: A Review of Substituting Green Manure for Nitrogen Fertilizer. Agronomy 2025, 15, 1042. [Google Scholar] [CrossRef]
- Li, F.; Zhao, X.; Qi, R.; He, L.; Wan, D.; Zhang, J.; Zhang, X.; Wang, Y.; Wu, G.; Huang, H.; et al. Remediation of Heavy Metal Contaminated Soil by Functional Pellets of Charcoal Organic Fertilizer: Rhizosphere and Non-Rhizosphere Soil Microorganisms. Water Air Soil Pollut. 2025, 236, 408. [Google Scholar] [CrossRef]
- Chen, K.-S.; Lai, H.-Y. Effect of increased soil available phosphorus from vermicompost application on the bioavailability, chemical form, and bioaccessibility of heavy metals. Environ. Geochem. Health 2024, 46, 343. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Q.; Chen, X.; Leng, Q.; Aljerib, Y.M.; Geng, M. Co-incorporation of rice straw and green manure with reduced nitrogen fertilizer application maintained rice yield and lowered ammonia volatilization. Plant Soil 2024, 507, 335–350. [Google Scholar] [CrossRef]
- Wang, G.; Li, H.; Hu, F.; Yin, W.; Fan, Z.; Fan, H.; Sun, Y.; He, W.; Chai, Q. Application of green manure combined with synthetic nitrogen fertilizer enhances soil aggregate stability in an arid wheat cropping system. Appl. Soil Ecol. 2025, 206, 105849. [Google Scholar] [CrossRef]
- Liu, F.; Fang, C.; Yu, Z.; Gao, Y.; Zhang, J.; Lu, Y.; Liao, Y.; Cao, W.; Nie, J.; Tu, N. Effects of green manure, rice straw return and lime combination on soil acidity and rice yield. Acta Pedol. Sin. 2024, 61, 1616–1627. [Google Scholar] [CrossRef]
- Wang, W.; Pang, J.; Zhang, F.; Sun, L.; Yang, L.; Zhao, Y.; Yang, Y.; Wang, Y.; Siddique, K.H.M. Integrated transcriptomics and metabolomics analysis to characterize alkali stress responses in canola (Brassica napus L.). Plant Physiol. Biochem. 2021, 166, 605–620. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, F.; Jia, X.; Chen, J. Distinct responses of ammonia-oxidizing bacteria and archaea to green manure combined with reduced chemical fertilizer in a paddy soil. J. Soils Sediments 2019, 19, 1613–1623. [Google Scholar] [CrossRef]
- Wang, Q.; Bo, Y.; Yu, K.; Liu, X. Analysis and research prospect of effect of green manure returning on rice cropping ecosystem. Soils 2021, 53, 243–249. [Google Scholar] [CrossRef]
- Xia, Y.; Gao, P.; Lei, W.; Gao, J.; Luo, Y.; Peng, F.; Mou, T.; Zhao, Z.; Zhang, K.; Guggenberger, G.; et al. Covering green manure increases rice yields via improving nitrogen cycling between soil and crops in paddy fields. Agric. Ecosyst. Environ. 2025, 383, 109517. [Google Scholar] [CrossRef]
- Gao, L.; Wang, C.; Wu, A.; Chen, H.; Liao, Q.; Liao, Y. Effect of layered fertilizer strategies on rapeseed (Brassica napus L.) productivity and soil macropore characteristics under mechanical direct-sowing. Sci. Rep. 2024, 14, 25457. [Google Scholar] [CrossRef]
- Mikha, M.M.; Green, T.R.; Untiedt, T.J.; Hergret, G.W. Land management affects soil structural stability: Multi-index principal component analyses of treatment interactions. Soil Tillage Res. 2024, 235, 105890. [Google Scholar] [CrossRef]
- Zhao, N.; Wang, X.; Ma, J.; Li, X.; Cao, J.; Zhou, J.; Wu, L.; Zhao, P.; Cao, W. Co-incorporating green manure and crop straw increases crop productivity and improves soil quality with low greenhouse-gas emissions in a crop rotation. Crop J. 2024, 12, 1233–1241. [Google Scholar] [CrossRef]
- Yang, W.; Wang, Z.; Zhao, H.; Li, D.; Jia, H.; Xu, W. Biochar application influences the stability of soil aggregates and wheat yields. Plant Soil Environ. 2024, 70, 125–141. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Shao, M.A. Application of earthworm cast improves soil aggregation and aggregate-associated carbon stability in typical soils from Loess Plateau. J. Environ. Manag. 2021, 278, 111504. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Chen, X.; Huang, C.; Tan, W. Arbuscular mycorrhizal hyphal networks and glomalin-related soil protein jointly promote soil aggregation and alter aggregate hierarchy in calcaric regosol. Geoderma 2024, 452, 117096. [Google Scholar] [CrossRef]
- Xia, Z.; Zhao, J.; Li, Y.; Wang, B.; Fan, M. Effect of annual rotation and fallow pattern on the soil glomalin and aggregate stability. J. Agro Environ. Sci. 2022, 41, 99–106. [Google Scholar] [CrossRef]
- Deshoux, M.; Sadet-Bourgeteau, S.; Gentil, S.; Prévost-Bouré, N.C. Effects of biochar on soil microbial communities: A meta-analysis. Sci. Total Environ. 2023, 902, 166079. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; García-Palacios, P.; Tedersoo, L.; Guirado, E.; Heiden, M.G.A.; Wagg, C.; Chen, D.; Wang, Q.; Wang, J.; Singh, B.K.; et al. Phylotype diversity within soil fungal functional groups drives ecosystem stability. Nat. Ecol. Evol. 2022, 6, 900–909. [Google Scholar] [CrossRef]
- Yiallouris, A.; Pana, Z.D.; Marangos, G.; Tzyrka, I.; Karanasios, S.; Georgiou, I.; Kontopyrgia, K.; Triantafyllou, E.; Seidel, D.; Cornely, O.A.; et al. Fungal diversity in the soil mycobiome: Implications for one health. One Health 2024, 18, 100720. [Google Scholar] [CrossRef] [PubMed]
- Lejoly, J.D.M.; Quideau, S.A.; Laganière, J.; Karst, J.; Martineau, C.; Samad, A. Earthworm cast microbiomes differ across soil types in northern forests. Appl. Soil Ecol. 2024, 200, 105466. [Google Scholar] [CrossRef]
- Xie, W.; Yan, Y.; Tian, X.; Qu, J.; Zhang, L.; Zhu, Q.; Zhou, J.; Zhang, J.; Cai, Z.; Huang, X. Effects of facility cultivation on soil fungal community structure and function in Ningxia. Acta Ecol. Sin. 2024, 44, 8383–8396. [Google Scholar] [CrossRef]
- Kowal, J.; Pressel, S.; Duckett, J.G.; Bidartondo, M.I.; Field, K.J. From rhizoids to roots? Experimental evidence of mutualism between liverworts and ascomycete fungi. Ann. Bot. 2018, 121, 221–227. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Z.; Tang, H.; Dong, W.; Wei, C.; He, T. The application of varying amount of green manure combined with nitrogen fertilizer altered the soil bacterial community and rice yield in karst paddy areas. BMC Plant Biol. 2024, 24, 646. [Google Scholar] [CrossRef]
- Tarin, M.W.K.; Fan, L.; Xie, D.; Tayyab, M.; Rong, J.; Chen, L.; Muneer, M.; Zheng, Y. Response of soil fungal diversity and community composition to varying levels of bamboo biochar in red soils. Microorganisms 2021, 9, 1385. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Chen, L.; Redmile-Gordon, M.; Zhang, J.; Zhang, C.; Ning, Q.; Li, W. Mortierella elongata’s roles in organic agriculture and crop growth promotion in a mineral soil. Land Degrad. Dev. 2018, 29, 1642–1651. [Google Scholar] [CrossRef]
- Ning, Q.; Chen, L.; Li, F.; Zhang, C.; Ma, H.; Cao, Z.; Zhang, J. Effects of mortierella on nutrient availability and straw decomposition in soil. Acta Pedol. Sin. 2022, 59, 206–217. [Google Scholar] [CrossRef]
- Song, H.Y.; El Sheikha, A.F.; Zhong, P.A.; Liao, J.L.; Wang, Z.H.; Huang, Y.J.; Hu, D.M. Westerdykella aquatica sp. nov., producing phytase. Mycotaxon 2020, 135, 281–292. [Google Scholar] [CrossRef]
- Guan, Y.; Wu, M.; Che, S.; Yuan, S.; Yang, X.; Li, S.; Tian, P.; Wu, L.; Yang, M.; Wu, Z. Effects of continuous straw returning on soil functional microorganisms and microbial communities. J. Microbiol. 2023, 61, 49–62. [Google Scholar] [CrossRef]
Depth (cm) | pH | SOM (g/kg) | AN (mg/kg) | AP (mg/kg) | AK (mg/kg) | BD (g/cm3) |
---|---|---|---|---|---|---|
0–10 | 6.65 | 31.81 | 204.66 | 9.88 | 236.19 | 1.14 |
10–20 | 6.59 | 30.37 | 206.82 | 8.26 | 255.70 | 1.37 |
Depth | Treatment | BD | pH | SOC | TN | AP | AK | Fe2+ |
---|---|---|---|---|---|---|---|---|
(cm) | (g/cm3) | (g/kg) | (g/kg) | (mg/kg) | (mg/kg) | (mg/kg) | ||
0–10 | CK | 1.22 ± 0.03 a | 6.42 ± 0.03 a | 19.71 ± 0.56 b | 2.01 ± 0.06 b | 17.90 ± 0.94 ab | 366.02 ± 25.02 b | 814.45 ± 21.09 a |
GM | 1.18 ± 0.05 a | 6.26 ± 0.07 b | 19.84 ± 0.47 b | 2.07 ± 0.04 a | 19.89 ± 2.16 a | 377.54 ± 11.09 b | 594.77 ± 59.32 c | |
GMB | 1.12 ± 0.02 b | 6.44 ± 0.15 a | 21.05 ± 0.62 a | 2.07 ± 0.00 a | 17.91 ± 0.79 ab | 416.78 ± 11.97 a | 721.16 ± 18.49 b | |
GMVC | 1.20 ± 0.01 a | 6.53 ± 0.11 a | 20.00 ± 0.54 b | 2.05 ± 0.01 ab | 17.63 ± 0.78 b | 413.16 ± 10.43 a | 685.79 ± 51.35 b | |
10–20 | CK | 1.43 ± 0.04 a | 6.60 ± 0.08 b | 16.19 ± 0.93 a | 1.74 ± 0.07 a | 12.51 ± 0.75 a | 369.67 ± 10.17 a | 279.19 ± 8.75 c |
GM | 1.40 ± 0.02 a | 6.59 ± 0.10 b | 16.41 ± 0.78 a | 1.78 ± 0.06 a | 12.01 ± 0.10 ab | 368.21 ± 3.19 a | 401.56 ± 38.47 b | |
GMB | 1.44 ± 0.01 a | 6.72 ± 0.05 b | 16.51 ± 1.11 a | 1.77 ± 0.03 a | 12.05 ± 0.41 ab | 368.16 ± 9.34 a | 595.02 ± 39.04 a | |
GMVC | 1.48 ± 0.04 a | 6.88 ± 0.11 a | 16.35 ± 0.93 a | 1.71 ± 0.04 a | 11.66 ± 0.23 b | 356.57 ± 10.02 a | 287.52 ± 31.22 c | |
Treatment | 0.000 ** | 0.000 ** | 0.180 | 0.067 * | 0.076 * | 0.003 ** | 0.000 ** | |
Depth | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | 0.000 ** | |
Treatment × Depth | 0.000 ** | 0.305 | 0.463 | 0.443 | 0.078 * | 0.000 ** | 0.000 ** |
Depth | Treatment | EE-GRSP | DE-GRSP | T-GRSP | EE-GRSP/ |
---|---|---|---|---|---|
(cm) | (g/kg) | (g/kg) | (g/kg) | T-GRSP | |
0–10 | CK | 8.79 ± 0.89 ab | 63.51 ± 1.88 ab | 72.31 ± 2.56 a | 0.12 ± 0.01 ab |
GM | 9.51 ± 0.56 a | 62.66 ± 0.66 b | 72.18 ± 0.98 a | 0.13 ± 0.01 a | |
GMB | 8.23 ± 0.26 b | 64.83 ± 3.10 ab | 73.06 ± 3.01 a | 0.11 ± 0.01 b | |
GMVC | 8.49 ± 0.62 ab | 66.55 ± 1.58 a | 75.04 ± 0.99 a | 0.11 ± 0.01 b | |
10–20 | CK | 8.22 ± 1.44 a | 64.86 ± 3.56 ab | 73.08 ± 2.55 ab | 0.11 ± 0.02 b |
GM | 9.46 ± 0.57 a | 56.32 ± 2.46 c | 65.78 ± 2.44 c | 0.14 ± 0.01 a | |
GMB | 8.22 ± 0.66 a | 67.66 ± 2.68 a | 75.89 ± 2.35 a | 0.11 ± 0.01 b | |
GMVC | 8.99 ± 0.24 a | 61.04 ± 2.26 bc | 70.03 ± 2.15 b | 0.13 ± 0.01 ab | |
Treatment | 0.042 * | 0.001 ** | 0.003 ** | 0.000 ** | |
Depth | 0.916 | 0.065 | 0.043 * | 0.003 ** | |
Treatment × Depth | 0.668 | 0.005 ** | 0.004 ** | 0.231 |
Depth | Treatment | Chao 1 | Shannon | ACE | Simpson |
---|---|---|---|---|---|
(cm) | |||||
0–10 | CK | 298.69 ± 93.34 a | 3.92 ± 0.51 ab | 296.24 ± 89.92 a | 0.09 ± 0.08 a |
GM | 277.23 ± 68.62 a | 3.31 ± 0.63 b | 272.75 ± 66.28 a | 0.16 ± 0.12 a | |
GMB | 419.73 ± 75.35 a | 4.29 ± 0.08 a | 417.61 ± 72.84 a | 0.03 ± 0.00 a | |
GMVC | 300.26 ± 72.09 a | 4.28 ± 0.21 a | 301.26 ± 72.33 a | 0.03 ± 0.01 a | |
10–20 | CK | 276.97 ± 107.66 a | 4.09 ± 0.06 a | 272.55 ± 101.75 a | 0.04 ± 0.01 a |
GM | 154.56 ± 74.03 ab | 3.67 ± 0.44 a | 154.23 ± 72.55 ab | 0.06 ± 0.02 a | |
GMB | 146.29 ± 87.27 ab | 3.52 ± 0.80 a | 144.66 ± 84.98 ab | 0.07 ± 0.05 a | |
GMVC | 111.38 ± 44.13 b | 3.02 ± 1.01 a | 110.42 ± 43.01 b | 0.19 ± 0.21 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Gao, S.; Zhang, Y.; Si, G.; Xu, X.; Peng, C.; Zhao, S.; Liu, W.; Zhu, Q.; Geng, M. Rapeseed Green Manure Coupled with Biochar and Vermicompost Enhances Soil Aggregates and Fungal Communities in Gleyed Paddy Fields. Agronomy 2025, 15, 1510. https://doi.org/10.3390/agronomy15071510
Zhu Z, Gao S, Zhang Y, Si G, Xu X, Peng C, Zhao S, Liu W, Zhu Q, Geng M. Rapeseed Green Manure Coupled with Biochar and Vermicompost Enhances Soil Aggregates and Fungal Communities in Gleyed Paddy Fields. Agronomy. 2025; 15(7):1510. https://doi.org/10.3390/agronomy15071510
Chicago/Turabian StyleZhu, Zhenhao, Shihong Gao, Yuhao Zhang, Guohan Si, Xiangyu Xu, Chenglin Peng, Shujun Zhao, Wei Liu, Qiang Zhu, and Mingjian Geng. 2025. "Rapeseed Green Manure Coupled with Biochar and Vermicompost Enhances Soil Aggregates and Fungal Communities in Gleyed Paddy Fields" Agronomy 15, no. 7: 1510. https://doi.org/10.3390/agronomy15071510
APA StyleZhu, Z., Gao, S., Zhang, Y., Si, G., Xu, X., Peng, C., Zhao, S., Liu, W., Zhu, Q., & Geng, M. (2025). Rapeseed Green Manure Coupled with Biochar and Vermicompost Enhances Soil Aggregates and Fungal Communities in Gleyed Paddy Fields. Agronomy, 15(7), 1510. https://doi.org/10.3390/agronomy15071510