Combined Analysis of SRAP and SSR Markers Reveals Genetic Diversity and Phylogenetic Relationships in Raspberry (Rubus idaeus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Genomic DNA Isolation and Quality Assessment
2.3. SSR-PCR Amplification Optimization in Raspberry
2.3.1. Primer Screening of SSR
2.3.2. SSR-PCR Amplification Protocol Optimization
2.4. SRAP-PCR Amplification Optimization in Raspberry
2.4.1. Primer Screening of SRAP
2.4.2. Optimization of SRAP-PCR Amplification System Reaction Parameters
2.5. Analysis of Amplification Products
2.6. Data Statistics and Analysis
3. Results
3.1. Amplification Efficiency and Polymorphism Analysis
3.2. Genetic Diversity Analysis of Raspberry Germplasm
3.3. Genetic Similarity Analysis of Raspberry Germplasm
3.4. SSR and SRAP Cluster Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moyer, R.A.; Hummer, K.E.; Finn, C.E.; Frei, B.; Wrolstad, R.E. Anthocyanins, phenolics, and antioxidant capacity in diverse small fruits: Vaccinium, Rubus, and Ribes. J. Agric. Food Chem. 2002, 50, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Socha, M.W.; Flis, W.; Wartega, M.; Szambelan, M.; Pietrus, M.; Kazdepka-Zieminska, A. Raspberry leaves and extracts-molecular mechanism of action and its effectiveness on human cervical ripening and the induction of labor. Nutrients 2023, 15, 3206. [Google Scholar] [CrossRef] [PubMed]
- Halvorsen, B.L.; Carlsen, M.H.; Phillips, K.M.; Bøhn, S.K.; Holte, K.; Jacobs, D.R.; Blomhoff, R. Content of redox-active compounds (Ie, Antioxidants) in foods consumed in the United States2. Am. J. Clin. Nutr. 2006, 84, 95–135. [Google Scholar] [CrossRef] [PubMed]
- Daubeny, H.; Kempler, C. ’Tulameen’ red raspberry. J. Am. Pomol. Soc. 2003, 57, 42–44. [Google Scholar] [CrossRef]
- de Oliveira, P.B.; Silva, M.J.; Ferreira, R.B.; Oliveira, C.M.; Monteiro, A.A. Dry matter partitioning, carbohydrate composition, protein reserves, and fruiting in “Autumn Bliss” red raspberry vary in response to pruning date and cane density. HortScience 2007, 42, 77–82. [Google Scholar] [CrossRef]
- Sousa, M.B.; Canet, W.; Alvarez, M.D.; Tortosa, M.E. The effect of the pre-treatments and the long and short-term frozen storage on the quality of raspberry (Cv. Heritage). Eur. Food Res. Technol. 2005, 221, 132–144. [Google Scholar] [CrossRef]
- Reed, D.H.; Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Yuksel, C.; Mutaf, F.; Demirtas, I.; Ozturk, G.; Pektas, M.; Ergul, A. Characterization of anatolian traditional quince cultivars, based on microsatellite markers. Genet. Mol. Res. 2013, 12, 5880–5888. [Google Scholar] [CrossRef]
- Peter, B.M.; Slatkin, M. Detecing range expansions from genetic data. Evolution 2013, 67, 3274–3289. [Google Scholar] [CrossRef]
- Al-Faifi, S.A.; Migdadi, H.M.; Algamdi, S.S.; Khan, M.A.; Al-Obeed, R.S.; Ammar, M.H.; Jakse, J. Development of genomic simple sequence repeats (SSR) by enrichment libraries in date palm. In Date Palm Biotechnology Protocols Volume II; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1638, pp. 315–337. [Google Scholar] [CrossRef]
- Khierallah, H.S.M.; Bader, S.M.; Hamwieh, A.; Baum, M. Date palm genetic diversity analysis using microsatellite polymorphism. In Date Palm Biotechnology Protocols Volume II; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2017; Volume 1638, pp. 113–124. [Google Scholar] [CrossRef]
- Dai, S.; Long, Y. Genotyping analysis using an RFLP assay. In Plant Genotyping: Methods and Protocols; Batley, J., Ed.; Springer: New York, NY, USA, 2015; pp. 91–99. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Wu, X. Molecular marker systems for genetic mapping. In The Handbook of Plant Genome Mapping; Meksem, K., Kahl, G., Eds.; Wiley: Hoboken, NJ, USA, 2005; pp. 23–52. [Google Scholar] [CrossRef]
- Matsuda, K. Chapter two—PCR-based detection methods for single-nucleotide polymorphism or mutation: Real-time PCR and its substantial contribution toward technological refinement. In Advances in Clinical Chemistry; Makowski, G.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 80, pp. 45–72. [Google Scholar] [CrossRef]
- Woodhead, M.; McCallum, S.; Smith, K.; Cardle, L.; Mazzitelli, L.; Graham, J. Identification, characterisation and mapping of simple sequence repeat (SSR) markers from raspberry root and bud ESTs. Mol. Breed. 2008, 22, 555–563. [Google Scholar] [CrossRef]
- Zhou, L.; Rajesh, Y.; Hongxing, C.; Zhao, Z. Sequence-related amplified polymorphism (SRAP) markers based genetic diversity and population structure analysis of oil palm (Elaeis guineensis Jacq. ). Trop. Plant Biol. 2021, 14, 63–71. [Google Scholar] [CrossRef]
- Biswas, A.; Melmaiee, K.; Elavarthi, S.; Jones, J.; Reddy, U. Characterization of strawberry (Fragaria spp.) accessions by genotyping with SSR markers and phenotyping by leaf antioxidant and trichome analysis. Sci. Hortic. 2019, 256, 108561. [Google Scholar] [CrossRef]
- Girichev, V.; Hanke, M.-V.; Peil, A.; Flachowsky, H. SSR Fingerprinting of a German Rubus collection and pedigree based evaluation on trueness-to-type. Genet. Resour. Crop Evol. 2017, 64, 189–203. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Y.; Guo, J.; Hu, C.; Zhu, R. Taxonomic status of deyangshi based on chromosome number and SRAP markers. Sci. Hortic. 2016, 207, 57–64. [Google Scholar] [CrossRef]
- Kostamo, K.; Toljamo, A.; Antonius, K.; Kokko, H.; Kärenlampi, S.O. Morphological and molecular identification to secure cultivar maintenance and management of self-sterile Rubus arcticus. Ann. Bot. 2013, 111, 713–721. [Google Scholar] [CrossRef]
- Hassan, F.A.S.; Ismail, I.A.; Mazrou, R.; Hassan, M. Applicability of inter-simple sequence repeat (ISSR), start codon targeted (SCoT) markers and ITS2 gene sequencing for genetic diversity assessment in Moringa oleifera Lam. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100256. [Google Scholar] [CrossRef]
- Barbier, F.F.; Chabikwa, T.G.; Ahsan, M.U.; Cook, S.E.; Powell, R.; Tanurdzic, M.; Beveridge, C.A. A phenol/chloroform-free method to extract nucleic acids from recalcitrant, woody tropical species for gene expression and sequencing. Plant Methods 2019, 15, 62. [Google Scholar] [CrossRef]
- Graham, J.; Smith, K.; MacKenzie, K.; Jorgenson, L.; Hackett, C.; Powell, W. The construction of a genetic linkage map of red raspberry (Rubus Idaeus Subsp. Idaeus) based on AFLPs, genomic-SSR and EST-SSR Markers. Theor. Appl. Genet. 2004, 109, 740–749. [Google Scholar] [CrossRef]
- Aneja, B.; Yadav, N.R.; Chawla, V.; Yadav, R.C. Sequence-related amplified polymorphism (SRAP) molecular marker system and its applications in crop improvement. Mol. Breed. 2012, 30, 1635–1648. [Google Scholar] [CrossRef]
- Longhi, S.; Giongo, L.; Buti, M.; Surbanovski, N.; Viola, R.; Velasco, R.; Ward, J.A.; Sargent, D.J. Molecular genetics and genomics of the rosoideae: State of the art and future perspectives. Hortic. Res. 2014, 1, 1. [Google Scholar] [CrossRef]
- Bassil, N.V.; Nyberg, A.; Hummer, K.E.; Graham, J.; Dossett, M.; Finn, C.E. A universal fingerprining set for red raspberry. Acta Hortic. 2012, 946, 83–87. [Google Scholar] [CrossRef]
- Fernández-Fernández, F.; Antanaviciute, L.; Govan, C.L.; Sargent, D.J. Development of a multiplexed microsatellite set for fingerprinting red raspberry (Rubus idaeus) germplasm and its transferability to other Rubus species. J. Berry Res. 2011, 1, 177–187. [Google Scholar] [CrossRef]
- Marulanda, M.; López, A.M.; Uribe, M. Molecular characterization of the andean blackberry, Rubus glaucus, using SSR markers. Genet. Mol. Res. 2012, 11, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Arroyo-Garcia, R.; Lefort, F.; de Andres, M.T.; Ibanez, J.; Borrego, J.; Jouve, N.; Cabello, F.; Martinez-Zapater, J.M. Chloroplast microsatellite polymorphisms in vitis species. Genome 2002, 45, 1142–1149. [Google Scholar] [CrossRef]
- Eujayl, I.; Sorrells, M.; Baum, M.; Wolters, P.; Powell, W. Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. In Wheat in a Global Environment; Developments in Plant Breeding; Bedö, Z., Láng, L., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2001; Volume 9, pp. 597–602. [Google Scholar] [CrossRef]
- Xuan, D.T.K.; Nguyen, Q.T.; Khang, N.H.M.; Mai, H.N.X.; Trung, D.D.M.; Chau, N.N.B.; Thao, N.P.; Quoc, N.B. Molecular characterization of coconut (Cocos nucifera L.) varieties in vietnam using sequence-related amplified polymorphism (SRAP) markers. Biologia 2022, 77, 3087–3097. [Google Scholar] [CrossRef]
- Agbagwa, I.O.; Patil, P.; Datta, S.; Nadarajan, N. Comparative efficiency of SRAP, SSR and AFLP-RGA markers in resolving genetic diversity in pigeon pea (Cajanus sp.). Indian J. Biotechnol. 2014, 13, 486–495. [Google Scholar]
- Hazarika, T.K.; Hazarika, B.N.; Shukla, A.C. Genetic variability and phylogenetic relationships studies of genus Citrus L. with the application of molecular markers. Genet. Resour. Crop Evol. 2014, 61, 1441–1454. [Google Scholar] [CrossRef]
- Zhang, R.; Wu, J.; Li, X.; Khan, M.A.; Chen, H.; Korban, S.S.; Zhang, S. An AFLP, SRAP, and SSR genetic linkage map and identification of QTLs for fruit traits in pear (Pyrus L.). Plant Mol. Biol. Report. 2013, 31, 678–687. [Google Scholar] [CrossRef]
- Sabir, A.; Ikten, H.; Mutlu, N.; Sari, D. Genetic identification and conservation of local turkish grapevine (Vitis vinifera L.) genotypes on the edge of extinction. Erwerbs—Obstbau 2018, 60, 31–38. [Google Scholar] [CrossRef]
- Amar, M.H.; Biswas, M.K.; Zhang, Z.; Guo, W.-W. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of citrus germplasm collection. Sci. Hortic. 2011, 128, 220–227. [Google Scholar] [CrossRef]
- Du, P.; He, H.-Y.; Wu, N.-Y.; Cao, T.-X.; Cui, B.-K. Medicinal value, genetic diversity, and genetic relationship analysis of Auricularia Cornea (Agaricomycetes) based on ITS, ISSR, and SRAP markers. Int. J. Med. Mushrooms 2024, 26, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Du, P.; Cao, T.-X.; Cui, B.-K.; Yuan, Y.; Dai, Y.-C. Genetic diversity and relationships of 24 strains of genus Auricularia (Agaricomycetes) assessed using SRAP markers. Int. J. Med. Mushrooms 2016, 18, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Guo, Y.; Zhao, Y.; Su, K.; Zhang, J. Construction of a molecular genetic map for hawthorn based on SRAP markers. Biotechnol. Biotechnol. Equip. 2015, 29, 441–447. [Google Scholar] [CrossRef]
- Ikten, H.; Solak, S.S.; Gulsen, O.; Mutlu, N.; Ikten, C. Construction of genetic linkage map for ficus Carica L. based on AFLP, SSR, and SRAP markers. Hortic. Environ. Biotechnol. 2019, 60, 701–709. [Google Scholar] [CrossRef]
- Jing, Z.; Ruan, X.; Wang, R.; Yang, Y. Genetic diversity and relationships between and within persimmon (Diospyros L.) wild species and cultivated varieties by SRAP markers. Plant Syst. Evol. 2013, 299, 1485–1492. [Google Scholar] [CrossRef]
- Wei, B.; Cao, L.; Li, S.; Huang, D.; Cai, G.; Lu, X. Population structure of euodia rutaecarpa in China revealed by amplified fragment length polymorphism (AFLP) and sequence-related amplified polymorphism (SRAP). J. Med. Plants Res. 2011, 5, 6628–6635. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, Z.-A.; Shu, Q.-Y.; Zhang, R.; De Rick, J.; Wang, L.-S. Studies on paeonia cultivars and hybrids identification based on SRAP analysis. Hereditas 2008, 145, 38–47. [Google Scholar] [CrossRef]
- Uzun, A.; Yesilo, T.; Aka-Kacar, Y.; Tuzcu, O.; Gulsen, O. Genetic diversity and relationships within citrus and related genera based on sequence related amplified polymorphism markers (SRAPs). Sci. Hortic. 2009, 121, 306–312. [Google Scholar] [CrossRef]
- Sun, S.-J.; Gao, W.; Lin, S.-Q.; Zhu, J.; Xie, B.-G.; Lin, Z.-B. Analysis of genetic diversity in ganoderma population with a novel molecular marker SRAP. Appl. Microbiol. Biotechnol. 2006, 72, 537–543. [Google Scholar] [CrossRef]
- Da-Long, G.; Zheng-Rong, L. Genetic relationships of some PCNA persimmons (Diospyros kaki Thunb.) from China and Japan revealed by SRAP analysis. Genet. Resour. Crop Evol. 2006, 53, 1597–1603. [Google Scholar] [CrossRef]
- Robarts, D.W.H.; Wolfe, A.D. Sequence-related amplified polymorphism (SRAP) markers: A potential resource for studies in plant molecular biology1. Appl. Plant Sci. 2014, 2, 1400017. [Google Scholar] [CrossRef]
- Bossdorf, O.; Auge, H.; Lafuma, L.; Rogers, W.E.; Siemann, E.; Prati, D. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 2005, 144, 1–11. [Google Scholar] [CrossRef]
No. | Sample | Latin Name | No. | Sample | Latin Name |
---|---|---|---|---|---|
1 | Boyne 1 | R. idaeus L. | 39 | Autumn Miss 2 | R. idaeus L. |
2 | Big Red Raspberry 1 | R. idaeus L. | 40 | Yellow Raspberry2 2 | R. idaeus L. |
3 | Seeding20 1 | R. idaeus L. | 41 | R. parvifolius L. 2 | R. parvifolius L. |
4 | Beauty22 1 | R. idaeus L. | 42 | R. hirsutus Thunb. 2 | R. hirsutus Thunb. |
5 | Meeker 1 | R. idaeus L. | 43 | R. feddei Levl. 2 | R. feddei Levl. |
6 | Fertod Zamatos Seeding 1 | R. idaeus L. | 44 | R. komarovi Nakai. 2 | R. komarovi Nakai. |
7 | Heritage Seeding 1 | R. idaeus L. | 45 | Shopskarena 2 | R. idaeus L. |
8 | Tulameen 1 | R. idaeus L. | 46 | Black Red Berry 2 | R. idaeus L. |
9 | Caroline 1 | R. idaeus L. | 47 | R. crataegifolius Bunge. 2 | R. crataegifolius Bunge. |
10 | European Red 1 | R. idaeus L. | 48 | Double Season Raspberry 2 | R. idaeus L. |
11 | Seeding32 1 | R. idaeus L. | 49 | Suiberry1 2 | R. idaeus L. |
12 | Reveille 1 | R. idaeus L. | 50 | Canada1 2 | R. idaeus L. |
13 | Heritage 1 | R. idaeus L. | 51 | Bulgaria1 2 | R. idaeus L. |
14 | Erika 1 | R. idaeus L. | 52 | Thornless 2 | R. idaeus L. |
15 | Him Top 1 | R. idaeus L. | 53 | Black Raspberry 2 | R. occidentalis L. |
16 | Lyulin 1 | R. idaeus L. | 54 | Australian Red 2 | R. idaeus L. |
17 | Sweet Raspberry 1 | R. idaeus L. | 55 | Aures 2 | R. idaeus L. |
18 | Nova 1 | R. idaeus L. | 56 | Ruby 2 | R. idaeus L. |
19 | Fertod Zamatos 1 | R. idaeus L. | 57 | Met 2 | R. idaeus L. |
20 | Trust 1 | R. idaeus L. | 58 | Fall Gold 2 | R. idaeus L. |
21 | Kirzhach 1 | R. idaeus L. | 59 | Feng Manhong 2 | R. idaeus L. |
22 | Barnaulskaja 1 | R. idaeus L. | 60 | Qiu Feng 2 | R. idaeus L. |
23 | Humility 1 | R. idaeus L. | 61 | Nootka 2 | R. idaeus L. |
24 | Sun 1 | R. idaeus L. | 62 | Willamette 2 | R. idaeus L. |
25 | Meteor 1 | R. idaeus L. | 63 | R. buergeri Miq. 3 | R. buergeri Miq. |
26 | DNS20 1 | R. idaeus L. | 64 | R. pectinellus Maxim. 3 | R. pectinellus Maxim. |
27 | Yellow Giant 1 | R. idaeus L. | 65 | R. xanthocarpus Bureau et Franch. 3 | R. xanthocarpus Bureau et Franch. |
28 | DNS29 1 | R. idaeus L. | 66 | R. trianthus Focke 3 | R. trianthus Focke |
29 | DNS33 1 | R. idaeus L. | 67 | Guizhou1 3 | – |
30 | DNS34 1 | R. idaeus L. | 68 | Guizhou3 3 | – |
31 | Ruby Necklace 1 | R. idaeus L. | 69 | R. eustephanus Focke ex Diels. 3 | R. eustephanus Focke ex Diels. |
32 | DNS35 1 | R. idaeus L. | 70 | R. coreanus Miq. 3 | R. coreanus Miq. |
33 | Taiberi 1 | R. idaeus L. | 71 | Mount Fanjing1 3 | – |
34 | Reward 1 | R. idaeus L. | 72 | Qiu Ping 4 | R. idaeus L. |
35 | Local Red Raspberry 2 | R. idaeus L. | 73 | Polka 4 | R. idaeus L. |
36 | Ruby Jade 2 | R. idaeus L. | 74 | Autumn Bliss 4 | R. idaeus L. |
37 | Yellow Raspberry 2 | R. idaeus L. | 75 | Ding Kang 4 | R. idaeus L. |
38 | Xiao Nieman 2 | R. idaeus L. | 76 | Xin Xing 4 | R. idaeus L. |
Type | Primer | Total Number of Bands | Number of Polymorphic Bands | Percentage of Polymorphic Bands | Nei’s Gene Diversity Index | Shannon’s Information Index |
---|---|---|---|---|---|---|
SSR | Rubus1 | 18 | 16 | 88.9% | 0.0539 | 0.1550 |
Rubus2 | 21 | 21 | 100.0% | 0.1898 | 0.4538 | |
Rubus3 | 25 | 22 | 88.0% | 0.2392 | 0.3559 | |
Rubus4 | 25 | 23 | 92.0% | 0.2506 | 0.3867 | |
Rubus5 | 10 | 8 | 80.0% | 0.1652 | 0.2692 | |
Rubus6 | 30 | 28 | 93.3% | 0.4131 | 0.6018 | |
Rubus7 | 26 | 25 | 96.1% | 0.3551 | 0.5140 | |
Rubus8 | 10 | 10 | 100.0% | 0.2025 | 0.3312 | |
Rubus9 | 26 | 24 | 92.3% | 0.2394 | 0.3691 | |
Rubus10 | 18 | 17 | 94.4% | 0.4615 | 0.6537 | |
Tol | 209 | 194 | 9.26 | 2.570 | 4.090 | |
Mean | 20.9 | 19.4 | 92.6% | 0.2570 | 0.4090 | |
SRAP | Me1/Em2 | 20 | 15 | 75.0% | 0.1540 | 0.2595 |
Me2/Em2 | 15 | 15 | 100% | 0.2285 | 0.3707 | |
Me2/Em3 | 32 | 29 | 90.6% | 0.3544 | 0.4991 | |
Me2/Em4 | 23 | 23 | 100% | 0.3603 | 0.5371 | |
Me3/Em1 | 39 | 36 | 92.3% | 0.2387 | 0.3626 | |
Me3/Em3 | 19 | 19 | 100% | 0.3004 | 0.4749 | |
Me3/Em4 | 30 | 30 | 100% | 0.3405 | 0.4845 | |
Me4/Em1 | 22 | 22 | 100% | 0.2241 | 0.3584 | |
Me4/Em4 | 64 | 61 | 95.3% | 0.2311 | 0.3520 | |
Me1/Em4 | 26 | 20 | 76.9% | 0.2647 | 0.3326 | |
Tol | 290 | 270 | 9.30 | 2.697 | 4.0314 | |
Mean | 29 | 27 | 93.0% | 0.2697 | 0.4031 |
Type | Name | Number of Samples | Number of Polymorphic Loci | Percentage of Polymorphic Loci | Effective Number of Alleles | Nei’s Gene Diversity Index | Shannon’s Information Index |
---|---|---|---|---|---|---|---|
SSR | A1 | 9 | 37 | 64.91% | 1.3873 | 0.2243 | 0.3356 |
A2 | 62 | 52 | 91.23% | 1.4332 | 0.2495 | 0.3769 | |
A3 | 5 | 31 | 54.39% | 1.3205 | 0.1885 | 0.2837 | |
SRAP | A1 | 9 | 39 | 53.42% | 1.2651 | 0.1643 | 0.2647 |
A2 | 62 | 69 | 94.52% | 1.3951 | 0.2332 | 0.3568 | |
A3 | 5 | 49 | 67.12% | 1.2491 | 0.1643 | 0.2661 |
Type | Name | A1 | A2 | A3 |
---|---|---|---|---|
SSR | A1 | ***** | 0.9260 | 0.8723 |
A2 | 0.0769 | ***** | 0.9391 | |
A3 | 0.1366 | 0.0628 | ***** | |
SRAP | A1 | ***** | 0.9257 | 0.9321 |
A2 | 0.0772 | ***** | 0.9434 | |
A3 | 0.0703 | 0.0582 | ***** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Fan, Z.; Li, X.; Du, H.; Wu, Z.; Li, T.; Yang, G. Combined Analysis of SRAP and SSR Markers Reveals Genetic Diversity and Phylogenetic Relationships in Raspberry (Rubus idaeus L.). Agronomy 2025, 15, 1492. https://doi.org/10.3390/agronomy15061492
Guo Z, Fan Z, Li X, Du H, Wu Z, Li T, Yang G. Combined Analysis of SRAP and SSR Markers Reveals Genetic Diversity and Phylogenetic Relationships in Raspberry (Rubus idaeus L.). Agronomy. 2025; 15(6):1492. https://doi.org/10.3390/agronomy15061492
Chicago/Turabian StyleGuo, Zhifeng, Zhenzhu Fan, Xueyi Li, Haoqi Du, Zhuolong Wu, Tiemei Li, and Guohui Yang. 2025. "Combined Analysis of SRAP and SSR Markers Reveals Genetic Diversity and Phylogenetic Relationships in Raspberry (Rubus idaeus L.)" Agronomy 15, no. 6: 1492. https://doi.org/10.3390/agronomy15061492
APA StyleGuo, Z., Fan, Z., Li, X., Du, H., Wu, Z., Li, T., & Yang, G. (2025). Combined Analysis of SRAP and SSR Markers Reveals Genetic Diversity and Phylogenetic Relationships in Raspberry (Rubus idaeus L.). Agronomy, 15(6), 1492. https://doi.org/10.3390/agronomy15061492