Novel Breeding Techniques and Strategies for Enhancing Greenhouse Vegetable Product Quality
Abstract
1. Introduction
2. Classical Breeding Strategies for Quality Improvement in Fruit and Leaf Vegetables
3. Biotechnological Approaches for Quality Improvement
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. 2024. Available online: https://www.fao.org/faostat/en/#home (accessed on 18 November 2024).
- Kaur, C.; Kapoor, H.C. Antioxidants in Fruits and Vegetables—The Millennium’s Health. Int. J. Food Sci. Technol. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Gruda, N.; Savvas, D.; Colla, G.; Rouphael, Y. Impacts of Genetic Material and Current Technologies on Product Quality of Selected Greenhouse Vegetables—A Review. Eur. J. Hortic. Sci. 2018, 83, 319–328. [Google Scholar] [CrossRef]
- Peña-Jorquera, H.; Cid-Jofré, V.; Landaeta-Díaz, L.; Petermann-Rocha, F.; Martorell, M.; Zbinden-Foncea, H.; Ferrari, G.; Jorquera-Aguilera, C.; Cristi-Montero, C. Plant-Based Nutrition: Exploring Health Benefits for Atherosclerosis, Chronic Diseases, and Metabolic Syndrome—A Comprehensive Review. Nutrients 2023, 15, 3244. [Google Scholar] [CrossRef]
- Samuel, P.O.; Edo, G.I.; Emakpor, O.L.; Oloni, G.O.; Exekiel, G.O.; Essaghah, A.E.A.; Agoh, E.; Agbo, J.J. Lifestyle Modifications for Preventing and Managing Cardiovascular Diseases. Sport. Health 2024, 20, 23–36. [Google Scholar] [CrossRef]
- Wijnands, J.H.M. The International Competitiveness of Fresh Tomatoes, Peppers, and Cucumbers. Acta Hortic. 2001, 611, 79–90. [Google Scholar] [CrossRef]
- Gruda, N. Impact of Environmental Factors on Product Quality of Greenhouse Vegetables for Fresh Consumption. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Gruda, N.; Tanny, J. Protected Crops. In Horticulture—Plants for People and Places Volume 1: Production Horticulture; Springer Science+Business Media: Dordrecht, The Netherlands, 2014; Volume 1, pp. 327–405. [Google Scholar]
- Gruda, N.; Tanny, J. Protected Crops—Recent Advances, Innovative Technologies and Future Challenges. Acta Hortic. 2015, 1107, 271–277. [Google Scholar] [CrossRef]
- Tüzel, Y.; Kacira, M. Recent Developments in Protected Cultivation. Acta Hortic. 2021, 1320, 1–14. [Google Scholar] [CrossRef]
- Castilla, N.; Hernández, J.; Abou Hadid, A. Strategic Crop and Greenhouse Management in Mild Winter Climate Areas. Acta Hortic. 2004, 633, 183–196. [Google Scholar] [CrossRef]
- Ramasamy, S.; Lin, M.-Y.; Wu, W.-J.; Wan, H.-I.; Sotelo-Cardona, P. Evaluating the Potential of Protected Cultivation for Off-Season Leafy Vegetable Production: Prospects for Crop Productivity and Nutritional Improvement. Front. Sustain. Food Syst. 2021, 5, 731181. [Google Scholar] [CrossRef]
- Otiende, M.; Cheruiyot, J.K.; Opunga, J. Evaluating Challenges and Opportunities in Greenhouse Farming among Smallholder Vegetable Producers in Kericho County, Kenya. East Afr. J. Agric. Biotechnol. 2024, 7, 173–187. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Suárez-Rey, E.M.; Antón, A.; Castilla, N.; Soriano, T. Environmental Impact of Screenhouse and Open-Field Cultivation Using a Life Cycle Analysis: The Case Study of Green Bean Production. J. Clean. Prod. 2012, 28, 63–69. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, Y.; Li, D.; Xu, S.; Huang, Y. Smart Horticulture as an Emerging Interdisciplinary Field Combining Novel Solutions: Past Development, Current Challenges, and Future Perspectives. Hort. Plant J. 2024, 2024, 1257–1273. [Google Scholar] [CrossRef]
- Gruda, N.; Dong, J.; Li, X. From Salinity to Nutrient-Rich Vegetables: Strategies for Quality Enhancement in Protected Cultivation. Crit. Rev. Plant Sci. 2024, 43, 327–347. [Google Scholar] [CrossRef]
- Song, B.; Robinson, G.M.; Bardsley, D.K.; Xue, Y.; Wang, B. Multifunctional Agriculture in a Peri-Urban Fringe: Chinese Farmers’ Responses to Shifts in Policy and Changing Socio-Economic Conditions. Land Use Policy 2023, 27, 106869. [Google Scholar] [CrossRef]
- Hanna, H. Influence of Cultivar, Growing Media, and Cluster Pruning on Greenhouse Tomato Yield and Fruit Quality. HortTechnology 2009, 19, 395–399. [Google Scholar] [CrossRef]
- Gruda, N.; Bisbis, M.; Tanny, J. Influence of Climate Change on Protected Cultivation: Impacts and Sustainable Adaptation Strategies—A Review. J. Clean. Prod. 2019, 225, 481–495. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Li, T.; Gan, R.-Y.; Wang, Z.; Peng, J.; Hu, J.; Guo, J.; Zhang, Y.; Li, Q.; et al. Plant Factory Technology as a Powerful Tool for Improving Vegetable Quality: Lettuce as an Application Example. Hortic. Res. 2024, 4, e017. [Google Scholar] [CrossRef]
- Weiss, J.; Gruda, N. Enhancing nutritional quality in vegetables through breeding and cultivar choice in protected cultivation. Sci. Hortic. 2025, 339, 113914. [Google Scholar] [CrossRef]
- Singh, H.; Sekhon, B.S.; Kumar, P.; Dhall, R.K.; Devi, R.; Dhillon, T.S.; Sharma, S.; Khar, A.; Yadav, R.K.; Tomar, B.S.; et al. Genetic Mechanisms for Hybrid Breeding in Vegetable Crops. Plants 2023, 12, 2294. [Google Scholar] [CrossRef]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-Wide Association Studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Martin, L.; Fei, Z.; Giovannoni, J.; Rose, J. Catalyzing Plant Science Research with RNA-Seq. Front. Plant Sci. 2013, 4, 66. [Google Scholar] [CrossRef] [PubMed]
- Tzfira, T.; Citovsky, V. Agrobacterium-Mediated Genetic Transformation of Plants: Biology and Biotechnology. Curr. Opin. Biotechnol. 2006, 17, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Van Eck, J. Genome Editing and Plant Transformation of Solanaceous Food Crops. Curr. Opin. Biotechnol. 2018, 49, 35–41. [Google Scholar] [CrossRef]
- Mata-Nicolás, E.; Montero-Pau, J.; Gimeno-Paez, E.; Garcia-Carpintero, V.; Ziarsolo, P.; Menda, N.; Mueller, L.A.; Blanca, J.; Cañizares, J.; van der Knaap, E.; et al. Exploiting the Diversity of Tomato: The Development of a Phenotypically and Genetically Detailed Germplasm Collection. Hortic. Res. 2020, 7, 66. [Google Scholar] [CrossRef]
- Ikeda, H.; Shibuya, T.; Nishiyama, M.; Nakata, Y.; Kanayama, Y. Physiological Mechanisms Accounting for the Lower Incidence of Blossom-End Rot in Tomato Introgression Line IL8-3 Fruit. Hortic. J. 2017, 86, 327–333. [Google Scholar] [CrossRef]
- Pereira da Costa, J.H.; Rodríguez, G.R.; Pratta, G.R.; Picardi, L.A.; Zorzoli, R. QTL Detection for Fruit Shelf Life and Quality Traits across Segregating Populations of Tomato. Sci. Hortic. 2013, 156, 47–53. [Google Scholar] [CrossRef]
- Blando, F.; Berland, H.; Maiorano, G.; Durante, M.; Mazzucato, A.; Picarella, M.E.; Nicoletti, I.; Gerardi, C.; Mita, G.; Andersen, Ø.M. Nutraceutical Characterization of Anthocyanin-Rich Fruits Produced by “Sun Black” Tomato Line. Front. Nutr. 2019, 6, 133. [Google Scholar] [CrossRef]
- Cebolla-Cornejo, J.; Roselló, S.; Nuez, F. Phenotypic and Genetic Diversity of Spanish Tomato Landraces. Sci. Hortic. 2013, 162, 150–164. [Google Scholar] [CrossRef]
- Romero Molina, J.M.; Benítez-Cruz, G.; Molero-Mesa, J.; Jiménez Olivencia, Y.; Gonzáles-Tejero García, M.R. Variedades Locales Hortícolas de la Alpujarra Granadina: Agrodiversidad para la Sostenibilidad Rural; Universidad De Granada: Granada, Spain, 2024. [Google Scholar]
- Conesa, M.À.; Fullana-Pericàs, M.; Granell, A.; Galmés, J. Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement. Front. Plant Sci. 2019, 10, 1651. [Google Scholar] [CrossRef]
- Martínez-Carrasco, L.; Brugarolas, M.; Martinez-Poveda, A.; Ruiz, J.; García-Martínez, S. Aceptación de Variedades Tradicionales de Tomate En Mercados Locales. Un Estudio de Valoración Contingente. Inf. Tec. Econ. Agrar. 2015, 111, 56–72. [Google Scholar] [CrossRef]
- Tomato genome Consortium. The Tomato Genome Sequence Provides Insights into Fleshy Fruit Evolution. Nature 2012, 485, 635–641. [Google Scholar] [CrossRef]
- Víquez-Zamora, M.; Vosman, B.; van de Geest, H.; Bovy, A.; Visser, R.G.; Finkers, R.; van Heusden, A.W. Tomato Breeding in the Genomics Era: Insights from a SNP Array. BMC Genom. 2013, 14, 354. [Google Scholar] [CrossRef]
- Fernandez-Pozo, N.; Menda, N.; Edwards, J.D.; Saha, S.; Tecle, I.Y.; Strickler, S.R.; Bombarely, A.; Fisher-York, T.; Pujar, A.; Foerster, H.; et al. The Sol Genomics Network (SGN)—From Genotype to Phenotype to Breeding. Nucleic Acids Res. 2015, 43, D1036–D1041. [Google Scholar] [CrossRef]
- Tripodi, P.; Francese, G.; Sanajà, V.O.; Di Cesare, C.; Festa, G.; D’Alessandro, A.; Mennella, G. A Multi-Methodological Approach to Study Genomic Footprints and Environmental Influence on Agronomic and Metabolic Profiles in a Panel of Italian Traditional Sweet Pepper Varieties. J. Food Compos. Anal. 2021, 103, 104116. [Google Scholar] [CrossRef]
- Rivera, A.; Monteagudo, A.B.; Igartua, E.; Taboada, A.; García-Ulloa, A.; Pomar, F.; Riveiro-Leira, M.; Silvar, C. Assessing Genetic and Phenotypic Diversity in Pepper (Capsicum annuum L.) Landraces from North-West Spain. Sci. Hortic. 2016, 203, 1–11. [Google Scholar] [CrossRef]
- Pereira-Dias, L.; Vilanova, S.; Fita, A.; Prohens, J.; Rodríguez-Burruezo, A. Genetic Diversity, Population Structure, and Relationships in a Collection of Pepper (Capsicum spp.) Landraces from the Spanish Centre of Diversity Revealed by Genotyping-by-Sequencing (GBS). Hortic. Res. 2019, 6, 54. [Google Scholar] [CrossRef]
- Heuvelink, E.; Körner, O. Parthenocarpic Fruit Growth Reduces Yield Fluctuation and Blossom-End Rot in Sweet Pepper. Ann. Bot. 2001, 88, 69–74. [Google Scholar] [CrossRef]
- Ziv, C.; Lers, A.; Fallik, E.; Paran, I. Genetic and Biotechnological Tools to Identify Breeding Targets for Improving Postharvest Quality and Extending Shelf Life of Peppers. Curr. Opin. Biotechnol. 2022, 78, 102794. [Google Scholar] [CrossRef]
- Taher, D.; Solberg, S.Ø.; Prohens, J.; Chou, Y.; Rakha, M.; Wu, T. World Vegetable Center Eggplant Collection: Origin, Composition, Seed Dissemination and Utilization in Breeding. Front. Plant Sci. 2017, 8, 1484. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Ispizua, E.; Calatayud, Á.; Marsal, J.I.; Basile, F.; Cannata, C.; Abdelkhalik, A.; Soler, S.; Valcárcel, J.V.; Martínez-Cuenca, M.-R. Postharvest Changes in the Nutritional Properties of Commercial and Traditional Lettuce Varieties in Relation with Overall Visual Quality. Agronomy 2022, 12, 403. [Google Scholar] [CrossRef]
- Prohens, J.; Rodríguez-Burruezo, A.; Raigón, M.D.; Nuez, F. Total Phenolic Concentration and Browning Susceptibility in a Collection of Different Varietal Types and Hybrids of Eggplant: Implications for Breeding for Higher Nutritional Quality and Reduced Browning. J. Am. Soc. Hortic. Sci. 2007, 132, 638–646. [Google Scholar] [CrossRef]
- Alam, I.; Salimullah, M. Genetic Engineering of Eggplant (Solanum melongena L.): Progress, Controversy and Potential. Horticulturae 2021, 7, 78. [Google Scholar] [CrossRef]
- Dey, S.S.; Singh, S.; Munshi, A.D.; Behera, T.K. Classical Genetics and Traditional Breeding. In The Cucumber Genome; Pandey, S., Weng, Y., Behera, T.K., Bo, K., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 159–183. ISBN 978-3-030-88647-9. [Google Scholar]
- Osipowski, P.; Pawełkowicz, M.; Wojcieszek, M.; Skarzyńska, A.; Przybecki, Z.; Pląder, W. A High-Quality Cucumber Genome Assembly Enhances Computational Comparative Genomics. Mol. Genet. Genom. 2020, 295, 177–193. [Google Scholar] [CrossRef]
- Cui, Y.; Li, S.; Dong, Y.; Wu, H.; Gao, Y.; Feng, Z.; Zhao, X.; Shan, L.; Zhang, Z.; Liu, Z.; et al. Genetic Regulation and Molecular Mechanism of Immature Cucumber Peel Color: A Review. Veg. Res. 2023, 3, 9. [Google Scholar] [CrossRef]
- Pradeepkumara, N.; Sharma, P.K.; Munshi, A.D.; Behera, T.K.; Bhatia, R.; Kumari, K.; Singh, J.; Jaiswal, S.; Iquebal, M.A.; Arora, A.; et al. Fruit Transcriptional Profiling of the Contrasting Genotypes for Shelf Life Reveals the Key Candidate Genes and Molecular Pathways Regulating Post-Harvest Biology in Cucumber. Genomics 2022, 114, 110273. [Google Scholar] [CrossRef]
- Venkatesh, J.; Song, K.; Lee, J.-H.; Kwon, J.-K.; Kang, B.-C. Development of Bi Gene-Based SNP Markers for Genotyping for Bitter-Free Cucumber Lines. Hortic. Environ. Biotechnol. 2018, 59, 231–238. [Google Scholar] [CrossRef]
- Shimomura, K.; Sugiyama, M.; Kawazu, Y.; Yoshioka, Y. Quantitative Trait Locus Analysis of Cucumber Fruit Texture Using Double-digest Restriction-site-associated DNA Sequencing. Euphytica 2021, 217, 107. [Google Scholar] [CrossRef]
- Shatilov, M.V.; Razin, A.F.; Ivanova, M.I. Analysis of the World Lettuce Market. IOP Conf. Ser. Earth Environ. Sci. 2019, 395, 012053. [Google Scholar] [CrossRef]
- Guo, Z.; Li, B.; Du, J.; Shen, F.; Zhao, Y.; Deng, Y.; Kuang, Z.; Tao, Y.; Wan, M.; Lu, X.; et al. LettuceGDB: The Community Database for Lettuce Genetics and Omics. Plant Commun. 2023, 4, 100425. [Google Scholar] [CrossRef]
- da Silveira, A.J.; Finzi, R.R.; Neto, L.D.C.; Maciel, G.M.; Beloti, I.F.; Jacinto, A.C.P. Genetic Dissimilarity Between Lettuce Genotypes with Different Levels of Carotenoids Biofortification. Nativa 2019, 7, 656–660. [Google Scholar] [CrossRef]
- Javaid, A.; Junaid, J.A.; Ayub, B.; Chattha, W.S.; Khan, A.I.; Saleem, H. Biofortified Lettuce (Lactuca sativa L.): A Potential Option to Fight Hunger. In Biofortification of Grain and Vegetable Crops; Azhar, M.T., Ahmad, M.Q., Rana, I.A., Atif, R.M., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 291–305. ISBN 978-0-323-91735-3. [Google Scholar]
- Missio, J.C.; Rivera, A.; Figàs, M.R.; Casanova, C.; Camí, B.; Soler, S.; Simó, J. A Comparison of Landraces vs. Modern Varieties of Lettuce in Organic Farming During the Winter in the Mediterranean Area: An Approach Considering the Viewpoints of Breeders, Consumers, and Farmers. Front. Plant Sci. 2018, 9, 1491. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liao, L.; Yin, F.; Song, M.; Shang, F.; Shuai, L.; Cai, J. Integration of Metabolome and Transcriptome Profiling Reveals the Effect of 6-Benzylaminopurine on the Browning of Fresh-Cut Lettuce during Storage. Postharvest Biol. Technol. 2022, 192, 112015. [Google Scholar] [CrossRef]
- Jenni, S.; Hayes, R.J. Genetic Variation, Genotype × Environment Interaction, and Selection for Tipburn Resistance in Lettuce in Multi-Environments. Euphytica 2010, 171, 427–439. [Google Scholar] [CrossRef]
- Maroufi, K.; Farahani, H.A.; Moaven, P. Effects of Hydropriming on Seedling Vigor in Spinach. Adv. Environ. Biol. 2011, 5, 2224–2227. [Google Scholar]
- Abolghasemi, R.; Haghighi, M.; Etemadi, N.; Wang, S.; Soorni, A. Transcriptome Architecture Reveals Genetic Networks of Bolting Regulation in Spinach. BMC Plant Biol. 2021, 21, 179. [Google Scholar] [CrossRef]
- Egea-Gilabert, C.; Fernández, J.A.; Migliaro, D.; Martínez-Sánchez, J.J.; Vicente, M.J. Genetic Variability in Wild vs. Cultivated Eruca vesicaria Populations as Assessed by Morphological, Agronomical and Molecular Analyses. Sci. Hortic. 2009, 121, 260–266. [Google Scholar] [CrossRef]
- Guijarro-Real, C.; Navarro, A.; Esposito, S.; Festa, G.; Macellaro, R.; Di Cesare, C.; Fita, A.; Rodríguez-Burruezo, A.; Cardi, T.; Prohens, J.; et al. Large Scale Phenotyping and Molecular Analysis in a Germplasm Collection of Rocket Salad (Eruca vesicaria) Reveal a Differentiation of the Gene Pool by Geographical Origin. Euphytica 2020, 216, 53. [Google Scholar] [CrossRef]
- Datta, A. Genetic Engineering for Improving Quality and Productivity of Crops. Agric. Food Secur. 2013, 2, 15. [Google Scholar] [CrossRef]
- Gao, L.; Hao, N.; Wu, T.; Cao, J. Advances in Understanding and Harnessing the Molecular Regulatory Mechanisms of Vegetable Quality. Front. Plant Sci. 2022, 13, 836515. [Google Scholar] [CrossRef] [PubMed]
- Vishwanath, P.P.; Bidaramali, V.; Lata, S.; Yadav, R.K. Transcriptomics: Illuminating the Molecular Landscape of Vegetable Crops: A Review. J. Plant Biochem. Biotechnol. 2024. [Google Scholar] [CrossRef]
- Zhang, C.; Wenyi, D.; Chen, K.; Zhang, B. Transcriptome and Methylome Analysis Reveals Effects of Ripening on and off the Vine on Flavor Quality of Tomato Fruit. Postharvest Biol. Technol. 2020, 162, 111096. [Google Scholar] [CrossRef]
- Amin, A.; He, Y.; Wang, X.; Li, P.; Hassan, M.; Soltani, M.; Zhang, Y.; Amin, M.; Ahmadzai, A.S.; Liu, Y.; et al. Comparative Transcriptomic Analysis of Two Tomato Cultivars with Different Shelf-Life Traits. Phyton-Int. J. Exp. Bot. 2024, 93, 2075–2093. [Google Scholar] [CrossRef]
- de Freitas, S.T.; Martinelli, F.; Feng, B.; Reitz, N.F.; Mitcham, E.J. Transcriptome Approach to Understand the Potential Mechanisms Inhibiting or Triggering Blossom-End Rot Development in Tomato Fruit in Response to Plant Growth Regulators. J. Plant Growth Regul. 2018, 37, 183–198. [Google Scholar] [CrossRef]
- Yanhong, L.; Nie, J.; Liangliang, S.; Yuming, X.; Tan, D.; Yang, X.; Zhang, C.; Zheng, J. Transcriptomic and metabolomic profiling reveals the mechanisms of color and taste development in cherry tomato cultivars LWT 2022, 167, 113810. LWT 2022, 167, 113810. [Google Scholar] [CrossRef]
- Sun, H.; Li, Q.; Mao, L.-Z.; Yuan, Q.-L.; Huang, Y.; Chen, M.; Fu, C.-F.; Zhao, X.-H.; Li, Z.-Y.; Dai, Y.-H.; et al. Investigating the Molecular Mechanisms of Pepper Fruit Tolerance to Storage via Transcriptomics and Metabolomics. Horticulturae 2021, 7, 242. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, S.; Cao, X.; Li, Z.; Pan, B.; Song, Y.; Wang, Q.; Shen, H.; Sun, L. Morphological, Histological and Transcriptomic Mechanisms Underlying Different Fruit Shapes in Capsicum spp. PeerJ 2024, 12, e17909. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, M.; Tan, J.; Huang, S.; Wang, C.; Zhang, H.; Tan, T. Comparative Transcriptome Analysis Provides Insights into Molecular Mechanisms for Parthenocarpic Fruit Development in Eggplant (Solanum melongena L.). PLoS ONE 2017, 12, e0179491. [Google Scholar] [CrossRef]
- Zhang, A.; Huang, Q.; Li, J.; Zhu, W.; Liu, X.; Wu, X.; Zha, D. Comparative Transcriptome Analysis Reveals Gene Expression Differences in Eggplant (Solanum melongena L.) Fruits with Different Brightness. Foods 2022, 11, 2506. [Google Scholar] [CrossRef]
- Ren, J.; Fu, S.; Wang, H.; Wang, W.; Wang, X.; Zhang, H.; Wang, Z.; Huang, M.; Liu, Z.; Wu, C.; et al. Comparative Transcriptome Analysis of Cucumber Fruit Tissues Reveals Novel Regulatory Genes in Ascorbic Acid Biosynthesis. PeerJ 2024, 12, e18327. [Google Scholar] [CrossRef] [PubMed]
- Chase, K.; Belisle, C.; Ahlawat, Y.; Yu, F.; Sargent, S.; Sandoya, G.; Begcy, K.; Liu, T. Examining Preharvest Genetic and Morphological Factors Contributing to Lettuce (Lactuca sativa L.) Shelf-Life. Sci. Rep. 2024, 14, 6618. [Google Scholar] [CrossRef]
- Escobedo-Avellaneda, Z.; Velazquez, G.; Torres, J.A.; Welti-Chanes, J. Inclusion of the Variability of Model Parameters on Shelf-Life Estimations for Low and Intermediate Moisture Vegetables. LWT-Food Sci. Technol. 2012, 47, 364–370. [Google Scholar] [CrossRef]
- Dalal, M.; Dani, R.; Kumar, P. Current Trends in the Genetic Engineering of Vegetable Crops. Sci. Hortic. 2005, 107, 215–225. [Google Scholar] [CrossRef]
- Lee, J.; Lim, K.; Kim, A.; Mok, Y.G.; Chung, E.; Cho, S.-I.; Lee, J.M.; Kim, J.-S. Prime Editing with Genuine Cas9 Nickases Minimizes Unwanted Indels. Nat. Commun. 2023, 14, 1786. [Google Scholar] [CrossRef]
- de Oliveira, M.A.; Lima, R.N.; Florentino, L.H.; de Almeida, M.M.S.; Melo, F.L.; Bonnet, R.V.; Lacorte, C.; Rech, E. Development of Int-Plex@ Binary Memory Switch System: Plant Genome Modulation Driven by Large Serine-Integrases. bioRxiv 2024, 2024.01.11.575089. [Google Scholar] [CrossRef]
- Ortega-Salazar, I.; Crum, D.; Sbodio, A.O.; Sugiyama, Y.; Adaskaveg, A.; Wang, D.; Seymour, G.B.; Li, X.; Wang, S.C.; Blanco-Ulate, B. Double CRISPR Knockout of Pectin Degrading Enzymes Improves Tomato Shelf-Life While Ensuring Fruit Quality. Plants People Planet 2024, 6, 330–340. [Google Scholar] [CrossRef]
- Wang, D.; Samsulrizal, N.H.; Yan, C.; Allcock, N.S.; Craigon, J.; Blanco-Ulate, B.; Ortega-Salazar, I.; Marcus, S.E.; Bagheri, H.M.; Perez Fons, L.; et al. Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato. Plant Physiol. 2019, 179, 544–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Tavano, E.C.d.R.; Lammers, M.; Martinelli, A.P.; Angenent, G.C.; de Maagd, R.A. Re-Evaluation of Transcription Factor Function in Tomato Fruit Development and Ripening with CRISPR/Cas9-Mutagenesis. Sci. Rep. 2019, 9, 1696. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, B.; Li, N.; Tang, Y.; Yang, S.; Yang, T.; Xu, J.; Guo, C.; Yan, P.; Wang, Q.; et al. CRISPR/Cas9-Induced Targeted Mutagenesis and Gene Replacement to Generate Long-Shelf Life Tomato Lines. Sci. Rep. 2017, 7, 11874. [Google Scholar] [CrossRef]
- Jeon, C.; Chung, M.-Y.; Lee, J.M. Reassessing the Contribution of TOMATO AGAMOUS-LIKE1 to Fruit Ripening by CRISPR/Cas9 Mutagenesis. Plant Cell Rep. 2024, 43, 41. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, M.; Wu, X.-H.; Li, D.; Borthakur, D.; Ye, J.-H.; Zheng, X.-Q.; Lu, J.-L. Analysis of Differentially Expressed Genes in Tissues of Camellia Sinensis during Dedifferentiation and Root Redifferentiation. Sci. Rep. 2019, 9, 2935. [Google Scholar] [CrossRef]
- Ito, Y.; Nishizawa-Yokoi, A.; Endo, M.; Mikami, M.; Toki, S. CRISPR/Cas9-Mediated Mutagenesis of the RIN Locus That Regulates Tomato Fruit Ripening. Biochem. Biophys. Res. Commun. 2015, 467, 76–82. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, Y.-P.; Fan, Z.-Q.; Jing, Y.; Chen, J.-Y.; Grierson, D.; Yang, R.; Fu, D.-Q.; Gao, Y.; Zhang, Y.-P.; et al. Mutagenesis of SlNAC4 by CRISPR/Cas9 Alters Gene Expression and Softening of Ripening Tomato Fruit. Veg. Res. 2021, 1, 8. [Google Scholar] [CrossRef]
- Gianoglio, S.; Comino, C.; Moglia, A.; Acquadro, A.; García-Carpintero, V.; Diretto, G.; Sevi, F.; Rambla, J.L.; Dono, G.; Valentino, D.; et al. In-Depth Characterization of Greenflesh Tomato Mutants Obtained by CRISPR/Cas9 Editing: A Case Study with Implications for Breeding and Regulation. Front. Plant Sci. 2022, 13, 936089. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Fu, D.; Zhu, B.; Luo, Y.; Zhu, H. CRISPR/Cas9-Mediated Mutagenesis of lncRNA1459 Alters Tomato Fruit Ripening. Plant J. 2018, 94, 513–524. [Google Scholar] [CrossRef] [PubMed]
- Nagar, E.; Mokhtar, M. Genetic Engineering to Improve β-Carotene Content in Pepper. Ann. Agric. Sci. Moshtohor 2018, 56, 119–126. [Google Scholar] [CrossRef]
- Wurbs, D.; Ruf, S.; Bock, R. Contained Metabolic Engineering in Tomatoes by Expression of Carotenoid Biosynthesis Genes from the Plastid Genome. Plant J. 2007, 49, 276–288. [Google Scholar] [CrossRef]
- Sun, T.; Yuan, H.; Cao, H.; Yazdani, M.; Tadmor, Y.; Li, L. Carotenoid Metabolism in Plants: The Role of Plastids. Mol. Plant 2018, 11, 58–74. [Google Scholar] [CrossRef] [PubMed]
- Efremov, G.I.; Slugina, M.A.; Shchennikova, A.V.; Kochieva, E.Z. Differential Regulation of Phytoene Synthase PSY1 During Fruit Carotenogenesis in Cultivated and Wild Tomato Species (Solanum Section Lycopersicon). Plants 2020, 9, 1169. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, J.; Nageswaran, D.; Li, L. Carotenoid Metabolism and Regulation in Horticultural Crops. Hortic. Res. 2015, 2, 15036. [Google Scholar] [CrossRef]
- Tan, J.; Lin, L.; Luo, H.; Zhou, S.; Zhu, Y.; Wang, X.; Miao, L.; Wang, H.; Zhang, P. Recent Progress in the Regeneration and Genetic Transformation System of Cucumber. Appl. Sci. 2022, 12, 7180. [Google Scholar] [CrossRef]
- Cho, E.A.; Lee, C.A.; Kim, Y.S.; Baek, S.H.; de los Reyes, B.G.; Yun, S.J. Expression of γ-Tocopherol Methyltransferase Transgene Improves Tocopherol Composition in Lettuce (Latuca Sativa L.). Mol. Cells 2005, 19, 16–22. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, Y.; Zhang, Y.; Zhang, H.; Qin, Z.; Bai, C.; Zhang, H.; Ma, D.; Wang, Q.; Fu, C.; et al. Efficient Editing of SoCSLD2 by CRISPR/Cas9 Affects Morphogenesis of Root Hair in Spinach. Horticulturae 2022, 8, 735. [Google Scholar] [CrossRef]
- Hummel, A. Editing a Healthier Future in Plants. Trends Biotechnol. 2023, 41, 255–256. [Google Scholar] [CrossRef] [PubMed]
- Ricroch, A. Global Developments of Genome Editing in Agriculture. Transgenic Res. 2019, 28, 45–52. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, H. Development and Prospect of Gene-Edited Fruits and Vegetables. Food Qual. Saf. 2024, 8, fyad045. [Google Scholar] [CrossRef]
- Regnault Roger, C.; Toppan, A.; Thibier, M. Does genome editing have a future in EU agriculture? In Proceedings of the XXIIth UEAA Meeting Bucharest Romania: New research techniques and the Agricultural Progress, Bucharest, Romania, 10–11 October 2024. [Google Scholar]
- Azadi, P.; Bagheri, H.; Nalousi, A.M.; Nazari, F.; Chandler, S.F. Current Status and Biotechnological Advances in Genetic Engineering of Ornamental Plants. J. Clean. Prod. 2016, 371, 133296. [Google Scholar] [CrossRef]
Quality Attribute | Biological Samples for RNA Seq | Pathways/Terms of Differentially Expressed Genes | Outstanding Differentially Expressed Genes | Reference |
---|---|---|---|---|
Tomato | ||||
Fruit flavor | Off-vine ripened tomato fruits treated with ethylene (Off) versus Fruits matured on the vine to the red stage (On) | Malic acid metabolism Lipoxygenase activity Synthesis of specific volatiles Ethylene biosynthesis, signaling, response and regulation Ripening-associated transcription factors Auxin response genes | Up in (Off) MALATE DEHYDROGENASE 1 (MDH1); LOXC, BCAT1, AADC1A, ACS2, ACO1, NR, RIN, TAGL1, UL1 ERF.E4, ARF2A, Aux/IAA3, Aux/IAA9, SAUR69 UP in (On) MADS1, ERF.E1, ERF.B3, NAC4, Aux/IAA1, Aux/IAA2, Aux/IAA4, Aux/IAA8, Aux/IAA13, Aux/IAA35, TPL6 | [67] |
Shelf lifespan | Long shelf-life cultivars (LS) versus Short shelf-life cultivars (SS) | Ethylene biosynthesis and response Cell wall loosening Cell wall | Up in (LS) ERF2, ERF, ACO1, ACO4, ACS6, ACS2, XTH3, XTH7, XTH23, 1,3;1,4-β-D-Gluc-like, pGlcT1, CELLULASE, PGH1, PL5, PL-like 1, PL-like 2 | [68] |
Blossom-end rot (BER) | Blossom-end fruit tissue-26 days after pollination Fruits sprayed weekly after pollination with: Apogee 1 (Pro1exadione calcium) (A) versus Abscisic acid 1 (AA) versus Water 2 (control) versus Gibberellins 4 + 7 (GA4 + 7) 3 (G) (BER incidence: 1 = 0; 2 = medium; 3 = high) | Transcriptional regulation Hormone Oxidation-reduction Protein metabolism Lipid Defense response Detoxification Nutrient Cell wall | UP in (A); (AA) (low BER): SRO2, DREB, MAF1, ERF109, ERF110, CBFq, NAC-NOR, MeJA, WAT1, AREB, PYL9, TAS14, TOC23, Class-III ADH; FBNL2, 2PIIFs, SRP 7S, UBLCP1, 2CIPKs, RABA5a, DNAJC2, SDF2, PP2-A13, MSR-B5, 2 GDSL, AAE7, LTP1, 2 JRLs 19, STO, PRP6, LGL, TAT, Td, MTP1, CCH UP in (G) (high BER) TIFY10A, RBOH, AO, SOBIR1, PME3 | [69] |
Fruit color | Yellow-color fruit (YF) versus Green-color fruit (GF) versus Red-color fruit (RF) | Phenylpropanoid biosynthesis Flavonoid biosynthesis Flavone biosynthesis Flavonol biosynthesis Carotenoids | Up in (GF) PSY2, PDS, PDS Z-ISO, ZDS UP in (RF) PSY1 | [70] |
Pepper | ||||
Storage tolerance | Resistant to storage (R) versus Non-resistant to storage (NR) | Ethylene and response Cell wall Polygalacturonase | UP in (R) POLYGALACTURONASE INHIBITOR (PGI), CELLULOSE SYNTHASE (CESA), ERF1B-LIKE Down in (R) POLYGALACTURONASE (PG), ERF3-LIKE, ERF096-LIKE, ERFRAP2-13-LIKE | [71] |
Fruit shape | Anthesis ovaries of: Flat-shaped versus blocky-shaped versus horn-shaped versus helical-shaped (H) versus slender-shaped (S) | OFP-TRM pathway IQD-CaM pathway Amino acid transport and metabolism Lipid transport and metabolism Cell wall/membrane/envelope biogenesis Hormone Development Cell proliferation/division Cytoskeleton Cell wall | Up in (S) (compared to other shapes) IQD14 Down in (S) (compared to other shapes) IQD25, EXO84A, NEDD1, SWEET1, SWEET10 Up in (H) (compared to other shapes) MLP28, CYCA2;4, ECA2, ATK4, FLA11 Down in (H) (compared to other shapes) CYCA2;1, SWEET, CC1, LRX, PLL | [72] |
Eggplant | ||||
Seedless fruits | Natural parthenocarpic lines (P) versus Non-parthenocarpic lines (NP) | Auxin signaling Auxin distribution Auxin-dependent cell division Inactivation of IAA, Interference of auxin signaling | UP in (P) CALCIUM-BINDING PROTEIN PBP1, E2FB, NAC DOMAIN-CONTAINING PROTEINS, AGAMOUS-LIKE MADS-BOX PROTEIN Down in (P) GH3.1, SMALL AUXIN-UP PROTEIN 58. AUX/IAA, PP6-ARS-B, CYP83B1, SAPK2, GIBBERELLIN 3-BETA-DIOXYGENASE, COL HOMOLOG | [73] |
Fruit brightness | Dull peel (DP) Versus Glossy peel (GP) | Cuticle cutin and wax content Elongation of fatty acids Export of wax components | Down in (GP) KCS6 (Β-KETOACYL-COA SYNTHASES) AND ABC TRANSPORTER PROTEINS | [74] |
Cucumber | ||||
Shelf-life | Extended shelf-life genotype (ES) versus Poor shelf-life genotype (PS) | Cell wall degradation Chlorophyll metabolism Ethylene metabolism | Down in (ES) POLYGALATURONASE GENES, EXPANSIN-A4, XYCLOGLUCAN GENES (GLYCOSYLTRANSFERASE, ENDOTRANSGLUCOSYLASE/HYDROLASE PROTEIN) PECTINESTERASE, CHLOROPHYLL CATALYTIC ENZYMES, KEY GENES FOR ETHYLENE METABOLISM (ACO, ACS, EFTS) | [50] |
Ascorbic acid (AsA) content | Exocarp (EXC) (high AsA) versus Endocarp (ENC) (high AsA) versus Mesocarp (MC) (low AsA) | L-Galactose, D-Galacturonate, Myo-inositol and ascorbate recycling pathway | Up in (EX) and (ENC) PHOSPHOMANNOMUTASE (PMM), GDP-MANNOSE-3′, 5′-EPIMERASE (GME), DEHYDROASCORBATE REDUCTASE (DHAR) | [75] |
Leafy vegetables | ||||
Spinach bolting | Early-bolting accessions (EB) versus Late-bolting accessions (LB) | Vernalization Photoperiod/circadian clock Gibberellin Autonomous pathways Aging pathways Carbohydrate | UP in (LB) FRUCTOSE-1, 6-BISPHOSPHATE ALDOLASE (FBA), TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1), COP1 UP in (EB) FLOWERING PROMOTING FACTOR 1 (FPF1), TRANSCRIPTION FACTOR MADS-BOX, ELF, GI, CERTAIN AP2/ERF TFS, AGAMOUS-LIKE MADS-BOX PROTEIN | [61] |
Lettuce shelf-life | Short shelf-life cultivar (SSL) versus Long shelf-life (LSL) | Cell wall integrity Cell enlargement Cell wall degradation Senescence Jasmonic acid biosynthesis and signaling | Down in (LSL) PECTATE LYSATE (PL) AND EXPANSIN (EXP) GENES Up in (LSL) SENESCENCE NEG. REGULATORS (SNAC83, LSWRKY48, AND LSWRKY70) JA BIOSYNTHESIS GENES LSPLA1, LSLOX, LSAOS, LSAOC, LSKAT, LSJAR1, LSSAM-MTASE | [76] |
CRISPR-Mutagenized Gene | Effect on Fruit Ripening | Reference |
---|---|---|
Pectin degrading enzymes POLYGALACTURONASE (SlPG2A) and PECTATE LYASE (SlPL) | Increased fruit firmness and shelf-life | [81] |
PECTATE LYASE (PL) | Increased fruit firmness | [82] |
Transcription factors APETALA2a (AP2a), and FRUITFULL (FUL1/TDR4 and FUL2/MBP7) | Orange-ripe phenotype | [83] |
Transcription factor NON-RIPENING (NOR) | Delayed ripening | [83] |
Transcription factor ALCOBACA (ALC)–(NOR allele) | Enhanced shelf-life | [84] |
Transcription factor TOMATO AGAMOUS LIKE 1 (TAGL1) | Reduced ethylene biosynthesis, increased firmness, delayed ripening | [85] |
Transcription factors SBP box-Colourless non-ripening (SBP-CNR) and NAC-Non ripening (NAC-NOR) | Delayed or partial non-ripening phenotypes | [86] |
MADS-box TF RIN | Incomplete-ripening fruits reduces red color pigmentation | [87] |
Transcription factor SlNAC4 | Inhibition of fruit softening | [88] |
GF locus (Mg-dechelatase) | Reduced chlorophyll degradation, fruits accumulate carotenoids and chlorophylls. | [89] |
Ripening-related long non-coding RNA (lncRNA1459) | Repression ripening, ethylene production, and lycopene accumulation | [90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weiss, J.; Gruda, N.S. Novel Breeding Techniques and Strategies for Enhancing Greenhouse Vegetable Product Quality. Agronomy 2025, 15, 207. https://doi.org/10.3390/agronomy15010207
Weiss J, Gruda NS. Novel Breeding Techniques and Strategies for Enhancing Greenhouse Vegetable Product Quality. Agronomy. 2025; 15(1):207. https://doi.org/10.3390/agronomy15010207
Chicago/Turabian StyleWeiss, Julia, and Nazim S. Gruda. 2025. "Novel Breeding Techniques and Strategies for Enhancing Greenhouse Vegetable Product Quality" Agronomy 15, no. 1: 207. https://doi.org/10.3390/agronomy15010207
APA StyleWeiss, J., & Gruda, N. S. (2025). Novel Breeding Techniques and Strategies for Enhancing Greenhouse Vegetable Product Quality. Agronomy, 15(1), 207. https://doi.org/10.3390/agronomy15010207