Comparative Analysis of Components Involved in the Synthesis of Cellulose in Agave Species
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Cellulose Content
3.2. Absolute and Relative Quantification of the CesA Gene
3.3. Fiber Structure and Organization
3.4. Analysis of Subunit A of Protein CESA in Agave
4. Discussion
4.1. Expression of the CesA Gene in Agave and Its Relationship with Quantification
4.2. Impact, Use of Cellulose Fibrils and Histological Analysis of Agave spp.
4.3. Genetic Specialization of CesA in the Agave Crop
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CESA | Cellulose synthase |
TAPPI | Technical association of pulp and paper industries |
cDNA | Complementary Deoxyribonucleic acid |
References
- Richmond, T.A.; Somerville, C.R. The cellulose synthase superfamily. Plant Physiol. 2000, 124, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L.; Llewellyn, D.J.; Furbank, R.T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development. Plant Cell 2003, 15, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Morgan, J.L.W.; Strumillo, J.; Zimmer, J. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 2013, 493, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Xiao, M.; Xi, J.G.; He, C.P.; Zheng, J.L.; Chen, H.L.; Gao, J.M.; Zhang, S.Q.; Wu, W.H.; Liang, Y.Q.; et al. De Novo Transcriptome Assembly of Agave H11648 by Illumina Sequencing and Identification of Cellulose Synthase Genes in Agave Species. Genes 2019, 10, 103. [Google Scholar] [CrossRef]
- Li, A.; Xia, T.; Xu, W.; Chen, T.T.; Li, X.L.; Fan, J.; Wang, R.Y.; Feng, S.Q.; Wang, Y.T.; Wang, B.R.; et al. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense. Planta 2013, 237, 1585–1597. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, B.; Zheng, H.J.; Hu, Y.; Lu, G.; Yang, C.Q.; Chen, J.D.; Chen, J.J.; Chen, D.Y.; Zhang, L.; et al. Gossypium barbadense genome sequence provides insight into the evolution of extra-long staple fiber and specialized metabolites. Sci. Rep. 2015, 5, 14139. [Google Scholar] [CrossRef]
- Lu, S.F.; Li, L.G.; Yi, X.P.; Joshi, C.P.; Chiang, V.L. Differential expression of three eucalyptus secondary cell wall-related cellulose synthase genes in response to tension stress. J. Exp. Bot. 2008, 59, 681–695. [Google Scholar] [CrossRef]
- Djerbi, S.; Aspeborg, H.; Nilsson, P.; Sundberg, B.; Mellerowicz, E.; Blomqvist, K.; Teeri, T.T. Identification and expression analysis of genes encoding putative cellulose synthases (CesA) in the hybrid aspen, Populus tremula (L.) × P. tremuloides (Michx.). Cellulose 2004, 11, 301–312. [Google Scholar] [CrossRef]
- Pancaldi, F.; van Loo, E.N.; Schranz, M.E.; Trindade, L.M. Genomic Architecture and Evolution of the Cellulose synthase Gene Superfamily as Revealed by Phylogenomic Analysis. Front. Plant Sci. 2022, 13, 870818. [Google Scholar] [CrossRef]
- García-Castillo, M.J.; Rodríguez-Zapata, L.C.; Teyer, L.F.S. Differential expression of CesA genes and the relationship with fiber content in henequen. Trop. Subtrop. Agroecosyst. 2022, 25, #129. [Google Scholar] [CrossRef]
- Ai, Y.; Wang, H.; Liu, P.; Yu, H.; Sun, M.; Zhang, R.; Tang, J.; Wang, Y.; Feng, S.; Peng, L. Insights into contrastive cellulose nanofibrils assembly and nanocrystals catalysis from dual regulations of plant cell walls. Sci. Bull. 2024, 69, 3815–3819. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Ordonez, M.C.; Ayil-Gutierrez, B.A.; Tamayo-Ordonez, Y.J.; Rodriguez-Zapata, L.C.; Monforte-Gonzalez, M.; De la Cruz-Arguijo, E.A.; Garcia-Castillo, M.J.; Sanchez-Teyer, L.F. Review and in silico analysis of fermentation, bioenergy, fiber, and biopolymer genes of biotechnological interest in Agave L. for genetic improvement and biocatalysis. Biotechnol. Prog. 2018, 34, 1314–1334. [Google Scholar] [CrossRef] [PubMed]
- Galinousky, D.V.; Anisimova, N.V.; Raiski, A.P.; Leontiev, V.N.; Titok, V.V.; Khotyleva, L.V. Cellulose synthase genes that control the fiber formation of flax (Linum usitatissimum L.). Russ. J. Genet. 2014, 50, 20–27. [Google Scholar] [CrossRef]
- Gou, J.Y.; Wang, L.J.; Chen, S.P.; Hu, W.L.; Chen, X.Y. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res. 2007, 17, 422–434. [Google Scholar] [CrossRef]
- Maceda, A.; Soto-Hernandez, M.; Terrazas, T. Chemical-Anatomical Characterization of Stems of Asparagaceae Species with Potential Use for Lignocellulosic Fibers and Biofuels. Forests 2022, 13, 1853. [Google Scholar] [CrossRef]
- Raya, F.T.; Marone, M.P.; Carvalho, L.M.; Rabelo, S.C.; de Paula, M.S.; Campanari, M.F.Z.; Freschi, L.; Mayer, J.L.S.; Silva, O.R.R.F.; Mieczkowski, P.; et al. Extreme physiology: Biomass and transcriptional profiling of three abandoned Agave cultivars. Ind. Crop Prod. 2021, 172, 114043. [Google Scholar] [CrossRef]
- Francucci, G.; Vazquez, A.; Rodriguez, E.S. Key differences on the compaction response of natural and glass fiber preforms in liquid composite molding. Text. Res. J. 2012, 82, 1774–1785. [Google Scholar] [CrossRef]
- Munasinghe, H.T.; Winterstein-Beckmann, A.; Schiele, C.; Manzani, D.; Wondraczek, L.; Afshar, V.S.; Monro, T.M.; Ebendorff-Heidepriem, H. Lead-germanate glasses and fibers: A practical alternative to tellurite for nonlinear fiber applications. Opt. Mater. Express 2013, 3, 1488–1503. [Google Scholar] [CrossRef]
- Zizumbo-Villarreal, D.; Vargas-Ponce, O.; Rosales-Adame, J.J.; Colunga-GarciaMarin, P. Sustainability of the traditional management of Agave genetic resources in the elaboration of mezcal and tequila spirits in western Mexico. Genet. Resour. Crop Evol. 2013, 60, 33–47. [Google Scholar] [CrossRef]
- Megiatto, J.D.; Silva, C.G.; Rosa, D.S.; Frollini, E. Sisal chemically modified with lignins: Correlation between fibers and phenolic composites properties. Polym. Degrad. Stabil. 2008, 93, 1109–1121. [Google Scholar] [CrossRef]
- Abdurakhmonov, I.Y.; Buriev, Z.T.; Saha, S.; Jenkins, J.N.; Abdukarimov, A.; Pepper, A.E. Phytochrome RNAi enhances major fibre quality and agronomic traits of the cotton Gossypium hirsutum L. Nat. Commun. 2014, 5, 3062. [Google Scholar] [CrossRef]
- Samanta, P.; Sadhukhan, S.; Basu, A. Identification of differentially expressed transcripts associated with bast fibre development in Corchorus capsularis by suppression subtractive hybridization. Planta 2015, 241, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, L.K.; Ghosh, S. Bioconversion of lignocellulosic fraction of water-hyacinth (Eichhornia crassipes) hemicellulose acid hydrolysate to ethanol by Pichia stipitis. Bioresour. Technol. 2009, 100, 3293–3297. [Google Scholar] [CrossRef]
- Ta Espinosa-Barrera, L.; Sánchez-Teyer, L.; Quiroz-Moreno, A.; Narváez-Zapata, J. Identification and characterization of a new satellite-like DNA family in three Agave species. Plant Gene 2018, 16, 8–18. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. Clustal-W—Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Position-Specific Gap Penalties and Weight Matrix Choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef]
- Derbyshire, M.K.; Gonzales, N.R.; Lu, S.; He, J.; Marchler, G.H.; Wang, Z.; Marchler-Bauer, A. Improving the consistency of domain annotation within the Conserved Domain Database. Database 2015, 2015, bav012. [Google Scholar] [CrossRef] [PubMed]
- Bandelt, H.J.; Forster, P.; Rohl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 1999, 16, 37–48. [Google Scholar] [CrossRef]
- Biasini, M.; Bienert, S.; Waterhouse, A.; Arnold, K.; Studer, G.; Schmidt, T.; Kiefer, F.; Cassarino, T.G.; Bertoni, M.; Bordoli, L.; et al. SWISS-MODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014, 42, W252–W258. [Google Scholar] [CrossRef]
- Rubio-Pina, J.; Quiroz-Moreno, A.; Felipe Sanchez-Teyer, L. A quantitative PCR approach for determining the ribosomal DNA copy number in the genome of Agave tequila Weber. Electron. J. Biotechnol. 2016, 22, 9–15. [Google Scholar] [CrossRef]
- Whelan, J.A.; Russell, N.B.; Whelan, M.A. A method for the absolute quantification of cDNA using real-time PCR. J. Immunol. Methods 2003, 278, 261–269. [Google Scholar] [CrossRef]
- Tamayo-Ordonez, M.C.; Rodriguez-Zapata, L.C.; Narvaez-Zapata, J.A.; Tamayo-Ordonez, Y.J.; Ayil-Gutierrez, B.A.; Barredo-Pool, F.; Sanchez-Teyer, L.F. Morphological features of different polyploids for adaptation and molecular characterization of CC-NBS-LRR and LEA gene families in Agave L. J. Plant Physiol. 2016, 195, 80–94. [Google Scholar] [CrossRef]
- Yuan, J.S.; Burris, J.; Stewart, N.R.; Mentewab, A.; Stewart, C.N. Statistical tools for transgene copy number estimation based on real-time PCR. BMC Bioinform. 2007, 8, S6. [Google Scholar] [CrossRef]
- Tamayo-Ordonez, Y.J.; Narvaez-Zapata, J.A.; Sanchez-Teyer, L.F. Comparative Characterization of Ribosomal DNA Regions in Different Agave Accessions with Economical Importance. Plant Mol. Biol. Report. 2015, 33, 2014–2029. [Google Scholar] [CrossRef]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Mayorga-Hernández, E.; Rössel-Kipping, D.; Ortiz-Laurel, H.; Quero-Carrillo, A.R.; Amante-Orozco, A. Análisis comparativo en la calidad de fibra de Agave lecheguilla Torr., procesada manual y mecánicamente. Agrociencia 2004, 38, 219–225. [Google Scholar]
- Perez-Nunez, M.T.; Chan, J.L.; Saenz, L.; Gonzalez, T.; Verdeil, J.L.; Oropeza, C. Improved somatic embryogenesis from Cocos nucifera (L.) plumule explants. Cell. Dev. Biol.–Plant 2006, 42, 37–43. [Google Scholar] [CrossRef]
- Corbin, K.R.; Byrt, C.S.; Bauer, S.; DeBolt, S.; Chambers, D.; Holtum, J.A.M.; Karem, G.; Henderson, M.; Lahnstein, J.; Beahan, C.T.; et al. Prospecting for Energy-Rich Renewable Raw Materials: Agave Leaf Case Study. PLoS ONE 2015, 10, e0135382. [Google Scholar] [CrossRef]
- Ben Mlik, Y.; Jaoudi, M.; Khoffi, F.; Slah, M.; Durand, B. Study the Effect of Chemical and Enzymatic Extraction Methods on the Kenaf Fibers Properties. J. Nat. Fibers 2020, 19, 1168–1177. [Google Scholar] [CrossRef]
- Mylsamy, K.; Rajendran, I. Influence of alkali treatment and fibre length on mechanical properties of short Agave fibre reinforced epoxy composites. Mater. Des. 2011, 32, 4629–4640. [Google Scholar] [CrossRef]
- Kern, Z.; Kimak, A.; Hatvani, I.G.; Llanos Campana, D.M.; Leuenberger, M. Cellulose in Foliage and Changes during Seasonal Leaf Development of Broadleaf and Conifer Species. Plants 2022, 11, 2412. [Google Scholar] [CrossRef] [PubMed]
- Burrola-Núñez, H.; Herrera-Franco, P.; Soto-Valdez, H.; Rodríguez-Félix, D.E.; Meléndrez-Amavizca, R.; Madera-Santana, T.J. Production of biocomposites using different pre-treated cut jute fibre and polylactic acid matrix and their properties. J. Nat. Fibers 2021, 18, 1604–1617. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Panigrahi, S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: A review. J. Polym. Environ. 2007, 15, 25–33. [Google Scholar] [CrossRef]
- Marinho, N.P.; de Muñiz, G.I.B.; Nisgoski, S.; Venson, I.; de Cademartori, P.H.G.; de Andrade, A.S. Histochemical analysis of stem and fiber of ramie (Boehmeria nivea (L.) Gaud var. Murakami). Acta Sci. Biol. Sci. 2018, 40, e37207. [Google Scholar] [CrossRef]
- Aripov, K.; Ioelovich, M. Comparative study of supramolecular structure of cellulose in cotton fibers of Gossypium hirsutum and Gossypium barbadense. Cellul. Chem. Technol. 2020, 54, 635–641. [Google Scholar] [CrossRef]
- Guillemin, F.; Devaux, M.-F.; Guillon, F. Evaluation of plant histology by automatic clustering based on individual cell morphological features. Image Anal. Stereol. 2004, 23, 13–22. [Google Scholar] [CrossRef]
- Qin, J.; Yang, Y.; Jiang, J.; Yi, Z.; Xiao, L.; Ai, X.; Chen, Z. Comparison of lignocellulose composition in four major species of Miscanthus. Afr. J. Biotechnol. 2012, 11, 12529–12537. [Google Scholar]
- Hulle, A.; Kadole, P.; Katkar, P. Agave Americana Leaf Fibers. Fibers 2015, 3, 64–75. [Google Scholar] [CrossRef]
- Thamae, T.; Baillie, C. Influence of fibre extraction method, alkali and silane treatment on the interface of Agave americana waste HDPE composites as possible roof ceilings in Lesotho. Compos. Interface 2007, 14, 821–836. [Google Scholar] [CrossRef]
- Ben Sghaier, A.E.; Chaabouni, Y.; Msahli, S.; Sakli, F. Morphological and crystalline characterization of NaOH and NaOCl treated Agave americana L. fiber. Ind. Crop Prod. 2012, 36, 257–266. [Google Scholar] [CrossRef]
- Garcia-Reyes, R.B.; Rangel-Mendez, J.R. Contribution of agro-waste material main components (hemicelluloses, cellulose, and lignin) to the removal of chromium (III) from aqueous solution. J. Chem. Technol. Biot. 2009, 84, 1533–1538. [Google Scholar] [CrossRef]
- Mcdougall, G.J.; Morrison, I.M.; Stewart, D.; Weyers, J.D.B.; Hillman, J.R. Plant Fibers—Botany, Chemistry and Processing for Industrial Use. J. Sci. Food Agric. 1993, 62, 1–20. [Google Scholar] [CrossRef]
- Vieira, M.C.; Heinze, T.; Antonio-Cruz, R.; Mendoza-Martinez, A.M. Cellulose derivatives from cellulosic material isolated from Agave lechuguilla and fourcroydes. Cellulose 2002, 9, 203–212. [Google Scholar] [CrossRef]
- Cruz, M.C. Tequila production from agave: Historical influences and contemporary processes. In The Alcohol Textbook; Nottingham University Press: Nottingham, UK, 2003; Volume 223. [Google Scholar]
- Parra-Negrete, L.; Villar-Quiñones, P.; Prieto-Rodríguez, A. Extraction of agave fibers to make paper and crafts. Acta Univ. 2010, 20, 77–83. [Google Scholar]
- Zeng, X.F.; Sheng, J.J.; Zhu, F.L.; Wei, T.Z.; Zhao, L.L.; Hu, X.H.; Zheng, X.F.; Zhou, F.S.; Hu, Z.L.; Diao, Y.; et al. Genetic, transcriptional, and regulatory landscape of monolignol biosynthesis pathway in Miscanthus x giganteus. Biotechnol. Biofuels 2020, 13, 179. [Google Scholar] [CrossRef]
- McKinley, B.; Rooney, W.; Wilkerson, C.; Mullet, J. Dynamics of biomass partitioning, stem gene expression, cell wall biosynthesis, and sucrose accumulation during development of Sorghum bicolor. Plant J. 2016, 88, 662–680. [Google Scholar] [CrossRef]
- Li, Y.; He, Y.; Lin, Y.; Wan, T.; Li, M.; Chen, Z. Bioinformatics Analysis of Cellulose Synthase CesA Gene from Miscanthus lutarioriparius. Mol. Plant Breed. 2021, 12, 1–8. [Google Scholar] [CrossRef]
- Hu, H.; Zhang, R.; Feng, S.; Wang, Y.; Wang, Y.; Fan, C.; Li, Y.; Liu, Z.; Schneider, R.; Xia, T.; et al. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. Plant Biotechnol. J. 2018, 16, 976–988. [Google Scholar] [CrossRef]
- Zhang, L.; Ming, R.; Zhang, J.; Tao, A.; Fang, P.; Qi, J. De novo transcriptome sequence and identification of major bast-related genes involved in cellulose biosynthesis in jute (Corchorus capsularis L.). BMC Genom. 2015, 16, 1062. [Google Scholar] [CrossRef]
- Baduel, P.; Bray, S.; Vallejo-Marin, M.; Kolar, F.; Yant, L. The “Polyploid Hop”: Shifting Challenges and Opportunities over the Evolutionary Lifespan of Genome Duplications. Front. Ecol. Evol. 2018, 6, 117. [Google Scholar] [CrossRef]
- Cheng, F.; Wu, J.; Cai, X.; Liang, J.; Freeling, M.; Wang, X. Gene retention, fractionation and subgenome differences in polyploid plants. Nat. Plants 2018, 4, 258–268. [Google Scholar] [CrossRef]
- Zhang, B.; Gao, Y.; Zhang, L.; Zhou, Y. The plant cell wall: Biosynthesis, construction, and functions. J. Integr. Plant Biol. 2021, 63, 251–272. [Google Scholar] [CrossRef]
- Fernandes, A.N.; Thomas, L.H.; Altaner, C.M.; Callow, P.; Forsyth, V.T.; Apperley, D.C.; Kennedy, C.J.; Jarvis, M.C. Nanostructure of cellulose microfibrils in spruce wood. Proc. Natl. Acad. Sci. USA 2011, 108, E1195–E1203. [Google Scholar] [CrossRef]
- Newman, R.H.; Hill, S.J.; Harris, P.J. Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls. Plant Physiol. 2013, 163, 1558–1567. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.H.; Forsyth, V.T.; Sturcova, A.; Kennedy, C.J.; May, R.P.; Altaner, C.M.; Apperley, D.C.; Wess, T.J.; Jarvis, M.C. Structure of Cellulose Microfibrils in Primary Cell Walls from Collenchyma. Plant Physiol. 2013, 161, 465–476. [Google Scholar] [CrossRef]
- Wang, T.; Hong, M. Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Bot. 2016, 67, 503–514. [Google Scholar] [CrossRef]
- Turner, S.; Kumar, M. Cellulose synthase complex organization and cellulose microfibril structure. Philos. Trans. R. Soc. A 2018, 376, 20170048. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, D.J. Wall Structure and Wall Loosening. A Look Backwards and Forwards1. Plant Physiol. 2001, 125, 131–134. [Google Scholar] [CrossRef]
- Cosgrove, D.J. Diffuse Growth of Plant Cell Walls. Plant Physiol. 2017, 176, 16–27. [Google Scholar] [CrossRef]
- Zhang, D.; Xu, Z.; Cao, S.; Chen, K.; Li, S.; Liu, X.; Gao, C.; Zhang, B.; Zhou, Y. An Uncanonical CCCH-Tandem Zinc-Finger Protein Represses Secondary Wall Synthesis and Controls Mechanical Strength in Rice. Mol. Plant 2018, 11, 163–174. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Meents, M.J.; McDonnell, L.M.; Barkwill, S.; Sampathkumar, A.; Cartwright, H.N.; Demura, T.; Ehrhardt, D.W.; Samuels, A.L.; Mansfield, S.D. Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science 2015, 350, 198–203. [Google Scholar] [CrossRef] [PubMed]
- De la Torre-Espinosa, Z.Y.; Barredo-Pool, F.; de la Serna, E.C.; Sanchez-Teyer, L.F. Active telomerase during leaf growth and increase of age in plants from Agave tequilana var. Azul. Physiol. Mol. Biol. Plants 2020, 26, 639–647. [Google Scholar] [CrossRef]
- Pace, M.R.; Lohmann, L.G.; Angyalossy, V. Evolution of disparity between the regular and variant phloem in Bignonieae (Bignoniaceae). Am. J. Bot. 2011, 98, 602–618. [Google Scholar] [CrossRef]
- Cao, S.; Cheng, H.; Zhang, J.; Aslam, M.; Yan, M.; Hu, A.; Lin, L.; Ojolo, S.P.; Zhao, H.; Priyadarshani, S.V.G.N.; et al. Genome-Wide Identification, Expression Pattern Analysis and Evolution of the Ces/Csl Gene Superfamily in Pineapple (Ananas comosus). Plants 2019, 8, 275. [Google Scholar] [CrossRef]
- Beeckman, T.; Przemeck, G.K.H.; Stamatiou, G.; Lau, R.; Terryn, N.; De Rycke, R.; Inze, D.; Berleth, T. Genetic complexity of cellulose synthase A gene function in Arabidopsis embryogenesis. Plant Physiol. 2002, 130, 1883–1893. [Google Scholar] [CrossRef]
- Cano-Delgado, A.; Penfield, S.; Smith, C.; Catley, M.; Bevan, M. Reduced cellulose synthesis invokes lignification and defense responses in Arabidopsis thaliana. Plant J. 2003, 34, 351–362. [Google Scholar] [CrossRef]
- Fagard, M.; Desnos, T.; Desprez, T.; Goubet, F.; Refregier, G.; Mouille, G.; McCann, M.; Rayon, C.; Vernhettes, S.; Hofte, H. PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of arabidopsis. Plant Cell 2000, 12, 2409–2423. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.M.; Zeef, L.A.H.; Ellis, J.; Goodacre, R.; Turner, S.R. Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 2005, 17, 2281–2295. [Google Scholar] [CrossRef]
- Persson, S.; Paredez, A.; Carroll, A.; Palsdottir, H.; Doblin, M.; Poindexter, P.; Khitrov, N.; Auer, M.; Somerville, C.R. Genetic evidence for three unique components in primary cell-wall cellulose synthase complexes in Arabidopsis. Proc. Natl. Acad. Sci. USA 2007, 104, 15566–15571. [Google Scholar] [CrossRef]
- Timmers, J.; Vernhettes, S.; Desprez, T.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M. Interactions between membrane-bound cellulose synthases involved in the synthesis of the secondary cell wall. FEBS Lett. 2009, 583, 978–982. [Google Scholar] [CrossRef] [PubMed]
- Casas, A.; Blancas, J.; Otero-Arnaiz, A.; Cruse-Sanders, J.; Lira, R.; Avendaño, A.; Parra, F.; Guillén, S.; Figueredo, C.J.; Torres, I.; et al. Evolutionary Ethnobotanical Studies of Incipient Domestication of Plants in Mesoamerica. In Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica; Lira, R., Casas, A., Blancas, J., Eds.; Springer: New York, NY, USA, 2016; pp. 257–285. [Google Scholar]
- Robertson, I.; Cortes, M.O.C. Teotihuacan pottery as evidence for subsistence practices involving maguey sap. Archaeol. Anthropol. Sci. 2017, 9, 11–27. [Google Scholar] [CrossRef]
- Huang, X.; Wang, B.; Xi, J.; Zhang, Y.; He, C.; Zheng, J.; Gao, J.; Chen, H.; Zhang, S.; Wu, W.; et al. Transcriptome Comparison Reveals Distinct Selection Patterns in Domesticated and Wild Agave Species, the Important CAM Plants. Int. J. Genom. 2018, 2018, 5716518. [Google Scholar] [CrossRef] [PubMed]
A. tequilana (2×) | A. sisalana (5×) | A. fourcroydes (5×) | |
---|---|---|---|
Length of leaf (L) (cm) | 70.3 ± 2 a | 81.2 ± 1.3 c | 72.7 ± 4 b |
Width of leaf (W) (cm) | 4.1 ± 0.5 a | 9.0 ± 0.6 c | 5.5 ± 0.7 b |
Foliar area (L × W) (cm2) | 288.0 ± 11.6 a | 730.5 ± 33.8 c | 397.7 ± 21.2 b |
Dimeter of bole Plant (cm) | 112.3 ± 6.3 a | 177.3 ± 7.1 c | 133.7 ± 10.3 b |
Cellulose content (%) | 38 ± 0.6 a | 62 ± 2 c | 53 ± 2.6 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Castillo, M.J.; Tamayo-Ordóñez, Y.d.J.; Tamayo-Ordóñez, M.C.; Barredo-Pool, F.; Rodríguez-Zapata, L.C.; Ayíl-Gutiérrez, B.A.; Pulido-Salas, M.T.; Sánchez-Teyer, L.F. Comparative Analysis of Components Involved in the Synthesis of Cellulose in Agave Species. Agronomy 2025, 15, 1435. https://doi.org/10.3390/agronomy15061435
García-Castillo MJ, Tamayo-Ordóñez YdJ, Tamayo-Ordóñez MC, Barredo-Pool F, Rodríguez-Zapata LC, Ayíl-Gutiérrez BA, Pulido-Salas MT, Sánchez-Teyer LF. Comparative Analysis of Components Involved in the Synthesis of Cellulose in Agave Species. Agronomy. 2025; 15(6):1435. https://doi.org/10.3390/agronomy15061435
Chicago/Turabian StyleGarcía-Castillo, María José, Yahaira de Jesús Tamayo-Ordóñez, María Concepción Tamayo-Ordóñez, Felipe Barredo-Pool, Luis Carlos Rodríguez-Zapata, Benjamin Abraham Ayíl-Gutiérrez, María Teresa Pulido-Salas, and Lorenzo Felipe Sánchez-Teyer. 2025. "Comparative Analysis of Components Involved in the Synthesis of Cellulose in Agave Species" Agronomy 15, no. 6: 1435. https://doi.org/10.3390/agronomy15061435
APA StyleGarcía-Castillo, M. J., Tamayo-Ordóñez, Y. d. J., Tamayo-Ordóñez, M. C., Barredo-Pool, F., Rodríguez-Zapata, L. C., Ayíl-Gutiérrez, B. A., Pulido-Salas, M. T., & Sánchez-Teyer, L. F. (2025). Comparative Analysis of Components Involved in the Synthesis of Cellulose in Agave Species. Agronomy, 15(6), 1435. https://doi.org/10.3390/agronomy15061435