The Combined Application of Biological Nanoselenium and Biochar Promotes Selenium Enrichment and Cadmium Content Reduction in Rice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for Testing
2.2. Experimental Design
2.3. Sample Collection
2.4. Determination of Soil Physical and Chemical Properties
2.5. Determination of Selenium and Cadmium Contents in Soils
2.6. Determination of the Selenium and Cadmium Contents in Each Part of Rice
2.7. Determination of the Subcellular Selenium and Cadmium Fractions in Rice Leaves
2.8. Determination of Antioxidant Indexes in Rice Leaves
2.9. Determination of Photosynthesis Traits in Rice Leaves
2.10. Data Analysis and Processing
3. Results
3.1. Changes in Soil Se and Cd Speciation Under Different Treatments
3.2. Effects of Different Treatments on the Photosynthetic Traits of Rice Leaves
3.3. Effects of Different Treatments on the Antioxidant Traits of Rice Leaves
3.4. Effects of Different Treatments on the Subcellular Se and Cd Contents of Rice Leaves
3.5. Effects of Different Treatments on the Se and Cd Contents in Various Parts of Rice
3.6. Effects of Different Treatments on Rice Yield and the Se and Cd Contents of Rice Grains
3.7. Correlation Analysis
3.8. Principal Component Analysis (PCA) and Pearson Correlation Matrix Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aziz, R.; Rafiq, M.T.; Li, T.Q.; Liu, D.; He, Z.L.; Stoffella, P.J.; Sun, K.W.; Yang, X.E. Uptake of cadmium by rice grown on contaminated soils and its bioavailability/toxicity in human cell lines (Caco-2/HL-7702). J. Agric. Food Chem. 2015, 63, 3599–3608. [Google Scholar] [CrossRef] [PubMed]
- Xie, P.P.; Deng, J.W.; Zhang, H.M.; Ma, Y.H.; Cao, D.J.; Ma, R.X.; Liu, R.J.; Liu, C.; Liang, Y.G. Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.). Ecotox. Environ. Safe. 2015, 122, 392–398. [Google Scholar] [CrossRef] [PubMed]
- Xue, D.W.; Jiang, H.; Deng, X.X.; Zhang, X.Q.; Wang, H.; Xu, X.B.; Hu, J.; Zeng, D.L.; Guo, L.B.; Qian, Q. Comparative proteomic analysis provides new insights into cadmium accumulation in rice grain under cadmium stress. J. Hazard. Mater. 2014, 280, 269–278. [Google Scholar] [CrossRef]
- Satarug, S.; Vesey, D.A.; Gobe, G.C.; Phelps, K.R. Estimation of health risks associated with dietary cadmium exposure. Arch. Toxicol. 2023, 97, 329–358. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.N.; Zhou, L.J.Y.; Wu, H.B.; Li, J.S.; Kong, L.J.; Yang, H.Y. Effects of Applying Biochar on Soil Cadmium Immobilisation and Cadmium Pollution Control in Lettuce (Lactuca sativa L.). Agriculture 2024, 14, 1068. [Google Scholar] [CrossRef]
- Wang, H.; Huang, Q.N.; Zhang, Y.; Shao, G.S.; Hu, Y.J.; Xu, Y.X. Biochar Decreases Soil Cadmium (Cd) Availability and Regulates Expression Levels of Cd Uptake/Transport-Related Genes to Reduce Cd Translocation in Rice. Rice Sci. 2024, 31, 494–498. [Google Scholar]
- Melo, L.C.A.; Lehmann, J.; Carneiro, J.S.D.S.; Camps Arbestain, M. Biochar-based fertilizer effects on crop productivity: A meta-analysis. Plant Soil 2022, 472, 1–14. [Google Scholar] [CrossRef]
- Yang, X.; Lu, K.P.; McGrouther, K.; Che, L.; Hu, G.T.; Wang, Q.Y.; Liu, X.Y.; Shen, L.L.; Huang, H.G.; Ye, Z.Q.; et al. Bioavailability of Cd and Zn in soils treated with biochars derived from tobacco stalk and dead pigs. J. Soils Sediment. 2017, 17, 751–762. [Google Scholar] [CrossRef]
- EI-Naggar, A.; Chen, Z.H.; Jiang, W.T.; Cai, Y.J.; Chang, S.X. Biochar effectively remediates Cd contamination in acidic or coarse- and medium-textured soils: A global meta-analysis. Chem. Eng. J. 2022, 442, 136225. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Dinh, G.D.; Nguyen, T.X.; Nguyen, D.T.P.; Vu, T.N.; Tran, H.T.T.; Van Thai, N.; Vu, H.; Do, D.D. The Potential of Biochar to Ameliorate the Major Constraints of Acidic and Salt-Affected Soils. J. Soil Sci. Plant Nut. 2022, 22, 1–11. [Google Scholar] [CrossRef]
- Park, J.H.; Choppala, G.K.; Bolan, N.S.; Chung, J.W.; Chuasavathi, T. Biochar reduces the bioavailability and phytotoxicity of heavy metals. Plant Soil 2011, 348, 439–451. [Google Scholar] [CrossRef]
- Zong, Y.T.; Chen, H.; Malik, Z.; Xiao, Q.; Lu, S.G. Comparative study on the potential risk of contaminated-rice straw, its derived biochar and phosphorus modified biochar as an amendment and their implication for environment. Environ. Pollut. 2021, 293, 118515. [Google Scholar] [CrossRef] [PubMed]
- Josef, K. Selenium, Iodine and Iron–Essential Trace Elements for Thyroid Hormone Synthesis and Metabolism. Int. J. Mol. Sci. 2023, 24, 3393. [Google Scholar]
- Manuel, R.R.; Fátima, N.; Olimpia, C.; Luisa, O.M. Selenium, selenoproteins and cancer of the thyroid. J. Trace Elem. Med. Bio. 2023, 76, 127115. [Google Scholar]
- Zhu, Y.J.; Hu, J.; Zeng, S.M.; Gao, M.; Guo, S.J.; Wang, M.N.; Hong, Y.J.; Zhao, G. L-selenomethionine affects liver development and glucolipid metabolism by inhibiting autophagy in zebrafish embryos. Ecotox. Environ. Safe 2023, 252, 114589. [Google Scholar] [CrossRef]
- Dinh, Q.T.; Cui, Z.W.; Huang, J.; Tran, T.A.T.; Wang, D.; Yang, W.X.; Zhou, F.; Wang, M.K.; Yu, D.S.; Liang, D.L. Selenium distribution in the Chinese environment and its relationship with human health: A review. Environ. Int. 2018, 112, 294–309. [Google Scholar] [CrossRef]
- Wang, J.; Yang, L.S.; Li, H.R.; Li, Y.H.; Wei, B.G. Dietary selenium intake based on the Chinese Food Pagoda: The influence of dietary patterns on selenium intake. Nutr. J. 2018, 17, 50. [Google Scholar] [CrossRef]
- Chen, H.P.; Yang, X.P.; Wang, P.; Wang, Z.X.; Li, M.; Zhao, F.J. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Sci. Total Environ. 2018, 639, 271–277. [Google Scholar] [CrossRef]
- Deng, X.F.; Liu, K.Z.; Li, M.F.; Zhang, W.; Zhao, X.H.; Zhao, Z.Q.; Liu, X.W. Difference of selenium uptake and distribution in the plant and selenium form in the grains of rice with foliar spray of selenite or selenate at different stages. Field Crop. Res. 2017, 211, 165–171. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wang, X.; Wong, Y.S. Generation of selenium-enriched rice with enhanced grain yield, selenium content and bioavailability through fertilisation with selenite. Food Chem. 2013, 141, 2385–2393. [Google Scholar] [CrossRef]
- Zambonino, M.C.; Quizhpe, E.M.; Mouheb, L.; Rahman, A.; Agathos, S.N.; Dahoumane, S.A. Biogenic Selenium Nanoparticles in Biomedical Sciences: Properties, Current Trends, Novel Opportunities and Emerging Challenges in Theranostic Nanomedicine. Nanomaterials 2023, 13, 424. [Google Scholar] [CrossRef] [PubMed]
- Svetlana, M.; Sylvie, S.; Jiri, S.; Petr, S.; Pavel, H. Biogenic Selenium Nanoparticles in Animal Nutrition: A Review. Agriculture 2021, 11, 1244. [Google Scholar] [CrossRef]
- Wan, Y.A.; Yu, Y.; Wang, Q.; Qiao, Y.H.; Li, H.F. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium. Ecotox. Environ. Safe 2016, 133, 127–134. [Google Scholar] [CrossRef]
- Cui, J.H.; Liu, T.X.; Li, Y.D.; Li, F.B. Selenium reduces cadmium uptake into rice suspension cells by regulating the expression of lignin synthesis and cadmium-related genes. Sci. Total Environ. 2018, 644, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Elisa, A.; Hendrik, K. Cadmium toxicity in plants. Met. Ions Life Sci. 2013, 11, 395–413. [Google Scholar]
- Huang, H.L.; Li, M.; Rizwan, M.; Dai, Z.H.; Yuan, Y.; Hossain, M.M.; Cao, M.H.; Xiong, S.L.; Tu, S.X. Synergistic effect of silicon and selenium on the alleviation of cadmium toxicity in rice plants. J. Hazard. Mater. 2021, 401, 123393. [Google Scholar] [CrossRef]
- Hussain, B.; Lin, Q.; Hamid, Y.; Sanaullah, M.; Di, L.; Hashmi, M.L.U.R.; Khan, M.B.; He, Z.L.; Yang, X.E. Foliage application of selenium and silicon nanoparticles alleviates Cd and Pb toxicity in rice (Oryza sativa L.). Sci. Total Environ. 2020, 712, 136497. [Google Scholar] [CrossRef]
- Feng, R.W.; Wei, C.Y.; Tu, S.X. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Dong, Y.W.; Zhu, N.; Jin, H.M. Foliar application of biosynthetic nano-selenium alleviates the toxicity of Cd, Pb, and Hg in Brassica chinensis by inhibiting heavy metal adsorption and improving antioxidant system in plant. Ecotox. Environ. Safe 2022, 240, 113681. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Folmanis, G.E.; Tananaev, I.G.; Krivenkov, L.V.; Kosheleva, O.V.; Soldatenko, A.V. Comparative Evaluation of Spinach Biofortification with Selenium Nanoparticles and Ionic Forms of the Element. Nanotechnol. Russ. 2017, 12, 569–576. [Google Scholar] [CrossRef]
- Gu, Q.C.; Luo, H.W.; Lin, L.; Zhang, Q.Q.; Yi, W.T.; Liu, Z.F.; Yu, X.H.; Zuo, C.J.; Qi, J.Y.; Tang, X.R. Effects of Biological Nano-Selenium on Yield, Grain Quality, Aroma, and Selenium Content of Aromatic Rice. Agronomy 2024, 14, 1778. [Google Scholar] [CrossRef]
- Zheng, S.; Xu, C.; Zhu, H.H.; Huang, D.Y.; Wang, H.J.; Zhang, Q.; Li, X.X.; Zhu, Q.H. Foliar application of zinc and selenium regulates cell wall fixation, physiological and gene expression to reduce cadmium accumulation in rice grains. J. Hazard. Mater. 2024, 480, 136302. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.S.; Jiang, D.H.; Huang, X.J. Selenium nanoparticle rapidly synthesized by a novel highly selenite-tolerant strain Proteus penneri LAB-1. IScience 2022, 25, 104904. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Jiang, Z.M.; Li, X.; Liu, H.Y.; Li, N.; Wei, S.Q. Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. Chemosphere 2020, 241, 125106. [Google Scholar] [CrossRef]
- Saeedi, M.; Soltani, F.; Babalar, M.; Izadpanah, F.; WiesnerReinhold, M.; Baldermann, S. Selenium Fortification Alters the Growth, Antioxidant Characteristics and Secondary Metabolite Profiles of Cauliflower (Brassica oleracea var. botrytis) Cultivars in Hydroponic Culture. Plants 2021, 10, 1537. [Google Scholar] [CrossRef]
- NY/T 1104-2006; Determination of Total Se in Soils. Ministry of Agriculture: Beijing, China, 2006.
- GB/T 17141-1997; Soil Quality—Determination of Lead, Cadmium—Graphite Furnace Atomic Absorption Spectrophotometry. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 1997.
- Ran, T.F.; Cao, G.F.; Xiao, L.L.; Li, Y.P.; Xia, R.; Zhao, X.T.; Qin, Y.; Wu, P.; Tian, S.J. Effects of cadmium stress on the growth and physiological characteristics of sweet potato. BMC Plant Biol. 2024, 24, 850. [Google Scholar] [CrossRef]
- Rajendran, M.; Shi, L.Z.; Wu, C.; Li, W.C.; An, W.H.; Liu, Z.Y.; Xue, S.G. Effect of sulfur and sulfur-iron modified biochar on cadmium availability and transfer in the soil–rice system. Chemosphere 2019, 222, 314–322. [Google Scholar] [CrossRef]
- Rong, Q.L.; Chen, J.; Zhang, Y.F.; Tan, Z.B.; Wang, W.J.; Sun, C.X.; Guo, X.; Zhou, C.H.; Cai, H.S.; Zhao, X.M. The interaction between selenium and other elements in soil and rice roots shaped by straw and straw biochar regulated the enrichment of selenium in rice grain. Front. Plant Sci. 2024, 15, 1387460. [Google Scholar] [CrossRef]
- Hla, E.H.; Zheng, T.D.; Umer, F.M.; Zeng, R.; Su, Y.; Zhang, Y.J.; Liang, Y.K.; Tang, Z.C.; Ye, X.Y.; Jia, X.M.; et al. Impact of selenium, zinc and their interaction on key enzymes, grain yield, selenium, zinc concentrations, and seedling vigor of biofortified rice. Environ. Sci. Pollut. Res. Int. 2020, 27, 16940–16949. [Google Scholar]
- Ganguly, R.; Sarkar, A.; Dasgupta, D.; Acharya, K.; Keswani, C.; Popova, V.; Minkina, T.; Maksimov, A.Y.; Chakraborty, N. Unravelling the Efficient Applications of Zinc and Selenium for Mitigation of Abiotic Stresses in Plants. Agriculture 2022, 12, 1551. [Google Scholar] [CrossRef]
- Zhang, T.; Qi, M.; Wu, Q.; Xiang, P.; Tang, D.J.; Li, Q. Recent research progress on the synthesis and biological effects of selenium nanoparticles. Front. Nutr. 2023, 10, 1183487. [Google Scholar] [CrossRef] [PubMed]
- Dorairaj, D.; Ismail, M.R.; Sinniah, U.R.; Ban, T.K. Influence of silicon on growth, yield, and lodging resistance of MR219, a lowland rice of Malaysia. J. Plant Nut. 2017, 40, 1111–1124. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, T.F.; Zheng, W.J.; Yang, Y.F. Selenium enhances antioxidant activity and photosynthesis in Ulva fasciata. J. Appl. Phycol. 2015, 27, 555–562. [Google Scholar] [CrossRef]
- Lyu, L.H.; Wang, H.Q.; Liu, R.F.; Xing, W.J.; Li, J.; Man, Y.B.; Wu, F.Y. Size-dependent transformation, uptake, and transportation of SeNPs in a wheat–soil system. J. Hazard. Mater. 2022, 424, 127323. [Google Scholar] [CrossRef]
- Bamagoos, A.; Alharby, H.; Fahad, S. Biochar coupling with phosphorus fertilization modifies antioxidant activity, osmolyte accumulation and reactive oxygen species synthesis in the leaves and xylem sap of rice cultivars under high-temperature stress. Physiol. Mol. Biol. Plants 2021, 27, 2083–2100. [Google Scholar] [CrossRef]
- Wang, C.R.; Cheng, T.T.; Liu, H.T.; Zhou, F.Y.; Zhang, J.F.; Zhang, M.; Liu, X.Y.; Shi, W.J.; Cao, T. Nano-selenium controlled cadmium accumulation and improved photosynthesis in indica rice cultivated in lead and cadmium combined paddy soils. J. Environ. Sci. 2021, 103, 336–346. [Google Scholar] [CrossRef]
- Guo, Y.K.; Mao, K.; Cao, H.R.; Waqar, A.; Lei, D.; Teng, D.Y.; Chang, C.Y.; Yang, X.F.; Yang, Q.; Khan, N.N.; et al. Exogenous selenium (cadmium) inhibits the absorption and transportation of cadmium (selenium) in rice. Environ. Pollut. 2020, 268, 115829. [Google Scholar] [CrossRef]
- Zhang, L.H.; Chu, C.C. Selenium Uptake, Transport, Metabolism, Reutilization, and Biofortification in Rice. Rice 2022, 15, 30. [Google Scholar] [CrossRef]
- Deng, T.H.B.; van der Ent, A.; Tang, Y.T.; Sterckeman, T.; Echevarria, G.; Morel, J.L.; Qiu, R.L. Nickel hyperaccumulation mechanisms: A review on the current state of knowledge. Plant Soil 2018, 423, 1–11. [Google Scholar] [CrossRef]
- Wang, J.B.; Su, L.Y.; Yang, J.Z.; Yuan, J.G.; Yin, A.G.; Qiu, Q.; Zhang, K.; Yang, Z.Y. Comparisons of cadmium subcellular distribution and chemical forms between low-Cd and high-Cd accumulation genotypes of watercress (Nasturtium officinale L. R. Br.). Plant Soil 2015, 396, 325–337. [Google Scholar] [CrossRef]
- Qi, W.Y.; Li, Q.; Chen, H.; Liu, J.; Xing, S.F.; Xu, M.; Yan, Z.; Song, C.; Wang, S.G. Selenium nanoparticles ameliorate Brassica napus L. cadmium toxicity by inhibiting the respiratory burst and scavenging reactive oxygen species. J. Hazard. Mater. 2021, 417, 125900. [Google Scholar] [CrossRef]
- Wu, C.; Dun, Y.; Zhang, Z.J.; Li, M.L.; Wu, G.Q. Foliar application of selenium and zinc to alleviate wheat (Triticum aestivum L.) cadmium toxicity and uptake from cadmium-contaminated soil. Ecotox. Environ. Safe 2020, 190, 110091. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Zhou, J.; Liu, H.L.; Zhang, W.T.; Hu, Y.M.; Liang, J.N.; Zhou, J. Foliar spraying with silicon and selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. Sci. Total Environ. 2018, 631–632, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.L.; Luo, H.W.; Yao, X.B.; Xing, P.P.; Deng, S.C.; Zhang, Q.Q.; Yi, W.T.; Gu, Q.C.; Peng, L.G.; Yu, X.H.; et al. Nanosized-Selenium-Application-Mediated Cadmium Toxicity in Aromatic Rice at Different Stages. Plants 2024, 13, 2253. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Huang, X.; Li, L.; Muhammad, Z.A.; Li, M.L.; Zheng, T.D.; Guo, Z.; Zhang, Y.; Luo, D.; Ye, X.Y.; et al. Comparative Responses of Silicon to Reduce Cadmium and Enrich Selenium in Rice Varieties. Foods 2023, 12, 1656. [Google Scholar] [CrossRef]
- Su, X.L.; Cai, Y.X.; Pan, B.G.; Li, Y.Q.; Liu, B.Q.; Cai, K.Z.; Wang, W. Significant Synergy Effects of Biochar Combined with Topdressing Silicon on Cd Reduction and Yield Increase of Rice in Cd-Contaminated Paddy Soil. Agronomy 2024, 14, 568. [Google Scholar] [CrossRef]
- Golubkina, N.; Moldovan, A.; Fedotov, M.; Kekina, H.; Kharchenko, V.; Folmanis, G.; Alpatov, A.; Caruso, G. Iodine and Selenium Biofortification of Chervil Plants Treated with Silicon Nanoparticles. Plants 2021, 10, 2528. [Google Scholar] [CrossRef]
- DB 45/T1061-2014; Classification Criteria for Selenium Content in Selenium-Enriched Agricultural Products. Guangxi Zhuang Autonomous Region Quality and Technical Supervision Bureau: Nanning, China, 2014.
Treatment | Chlorophyll a (mg/g) | Chlorophyll b (mg/g) | Carotenoids (mg/g) | ||||||
---|---|---|---|---|---|---|---|---|---|
Tillering Stage | Filling Stage | Mature Stage | Tillering Stage | Filling Stage | Mature Stage | Tillering Stage | Filling Stage | Mature Stage | |
BC0Se0 | 1.96 ± 0.11 f | 1.64 ± 0.03 h | 0.45 ± 0.02 f | 0.47 ± 0.04 g | 0.45 ± 0.01 i | 0.09 ± 0.01 f | 0.41 ± 0.01 e | 0.42 ± 0.01 j | 0.28 ± 0.03 g |
BC0Se5 | 2.45 ± 0.1 e | 2.25 ± 0.01 cd | 0.45 ± 0.01 f | 0.68 ± 0.05 f | 0.67 ± 0.02 de | 0.10 ± 0.01 ef | 0.51 ± 0.01 bc | 0.60 ± 0.02 abc | 0.24 ± 0.04 g |
BC0Se10 | 2.81 ± 0.03 cd | 1.74 ± 0.02 gh | 0.45 ± 0.02 f | 0.94 ± 0.03 e | 0.49 ± 0.01 hi | 0.11 ± 0.01 ef | 0.51 ± 0.06 bc | 0.49 ± 0.02 i | 0.27 ± 0.02 g |
BC0Se20 | 2.31 ± 0.07 e | 2.00 ± 0.03 f | 0.69 ± 0.01 e | 0.61 ± 0.05 fg | 0.59 ± 0.01 g | 0.01 ± 0.02 g | 0.48 ± 0.02 cd | 0.53 ± 0.01 gh | 0.33 ± 0.01 f |
BC1Se0 | 2.69 ± 0.06 d | 2.24 ± 0.03 cd | 1.16 ± 0.01 d | 0.85 ± 0.04 e | 0.68 ± 0.01 de | 0.17 ± 0.02 e | 0.53 ± 0.01 b | 0.55 ± 0.01 efg | 0.40 ± 0.01 de |
BC1Se5 | 3.00 ± 0.06 ab | 2.16 ± 0.01 de | 1.17 ± 0.01 d | 1.22 ± 0.09 d | 0.65 ± 0.03 ef | 0.34 ± 0.05 bc | 0.51 ± 0.04 bc | 0.53 ± 0.01 gh | 0.19 ± 0.03 h |
BC1Se10 | 3.11 ± 0.01 a | 2.57 ± 0.02 a | 1.33 ± 0.1 c | 1.49 ± 0.03 c | 0.85 ± 0.01 a | 0.26 ± 0.04 d | 0.46 ± 0.01 d | 0.62 ± 0.03 a | 0.40 ± 0.02 de |
BC1Se20 | 3.02 ± 0.02 ab | 2.15 ± 0.04 de | 1.15 ± 0.03 d | 1.25 ± 0.02 d | 0.64 ± 0.01 efg | 0.18 ± 0.01 e | 0.51 ± 0.01 bc | 0.57 ± 0.01 def | 0.39 ± 0.01 de |
BC5Se0 | 3.01 ± 0.06 ab | 1.78 ± 0.04 g | 1.06 ± 0.03 d | 1.45 ± 0.04 c | 0.53 ± 0.01 h | 0.16 ± 0.01 ef | 0.49 ± 0.02 bcd | 0.51 ± 0.02 hi | 0.38 ± 0.01 e |
BC5Se5 | 3.09 ± 0.01 a | 2.06 ± 0.03 ef | 1.02 ± 0.04 d | 1.47 ± 0.05 c | 0.62 ± 0.01 efg | 0.14 ± 0.02 ef | 0.53 ± 0.01 b | 0.55 ± 0.01 fg | 0.36 ± 0.01 ef |
BC5Se10 | 3.08 ± 0.01 a | 2.49 ± 0.13 a | 1.47 ± 0.15 c | 2.59 ± 0.07 a | 0.80 ± 0.06 ab | 0.26 ± 0.05 d | 0.27 ± 0.02 h | 0.61 ± 0.02 abc | 0.49 ± 0.02 c |
BC5Se20 | 3.13 ± 0.01 a | 2.45 ± 0.03 ab | 1.48 ± 0.05 c | 2.28 ± 0.01 b | 0.77 ± 0.01 bc | 0.29 ± 0.02 cd | 0.37 ± 0.01 f | 0.61 ± 0.01 abc | 0.49 ± 0.01 c |
BC10Se0 | 2.28 ± 0.1 e | 2.31 ± 0.02 c | 1.74 ± 0.04 b | 0.64 ± 0.05 f | 0.74 ± 0.01 c | 0.37 ± 0.01 b | 0.50 ± 0.02 bc | 0.58 ± 0.01 cde | 0.57 ± 0.01 b |
BC10Se5 | 2.85 ± 0.03 bcd | 2.33 ± 0.02 bc | 2.00 ± 0.04 a | 0.93 ± 0.04 e | 0.73 ± 0.01 cd | 0.44 ± 0.02 a | 0.58 ± 0.01 a | 0.59 ± 0.01 bcd | 0.64 ± 0.01 a |
BC10Se10 | 2.95 ± 0.06 abc | 1.96 ± 0.02 f | 1.11 ± 0.03 d | 1.13 ± 0.08 d | 0.6 ± 0.01 fg | 0.14 ± 0.01 ef | 0.59 ± 0.03 a | 0.49 ± 0.01 i | 0.43 ± 0.01 d |
BC10Se20 | 3.12 ± 0.01 a | 2.44 ± 0.02 ab | 1.96 ± 0.02 a | 2.23 ± 0.08 b | 0.75 ± 0.01 bc | 0.44 ± 0.01 a | 0.33 ± 0.02 g | 0.62 ± 0.08 ab | 0.61 ± 0.04 ab |
Treatment | Pn (μmol CO2/m2/s) | Ci (μL/L) | Tr (mmol H2O/m2/s) | WUE (mmol CO2/mol H2O) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Tillering Stage | Filling Stage | Mature Stage | Tillering Stage | Filling Stage | Mature Stage | Tillering Stage | Filling Stage | Mature Stage | Tillering Stage | Filling Stage | Mature Stage | |
BC0Se0 | 9.43 ± 0.96 h | 8.43 ± 0.96 e | 7.09 ± 0.73 e | 0.036 ± 0.03 g | 0.038 ± 0.03 g | 0.044 ± 0.03 f | 2.24 ± 0.19 abc | 2.19 ± 0.01 abcd | 1.71 ± 0.02 abcd | 4.78 ± 0.21 e | 3.89 ± 0.45 f | 4.21 ± 0.46 g |
BC0Se5 | 11.34 ± 0.26 fg | 9.94 ± 0.26 d | 8.57 ± 0.27 d | 0.045 ± 0.04 ef | 0.047 ± 0.04 def | 0.054 ± 0.01 de | 2.25 ± 0.04 abc | 2.21 ± 0.04 abc | 1.73 ± 0.03 abc | 5.25 ± 0.1 bcde | 4.54 ± 0.17 e | 5 ± 0.22 f |
BC0Se10 | 12.74 ± 0.3 cdef | 11.24 ± 0.3 cd | 9.76 ± 0.4 bcd | 0.05 ± 0.01 b | 0.052 ± 0.01 b | 0.059 ± 0.01 b | 2.41 ± 0.03 a | 2.17 ± 0.03 abcd | 1.7 ± 0.04 abcd | 5.29 ± 0.11 bcde | 5.18 ± 0.13 cde | 5.78 ± 0.22 cdef |
BC0Se20 | 11.5 ± 0.28 efg | 10 ± 0.28 d | 8.59 ± 0.22 d | 0.046 ± 0.02 def | 0.048 ± 0.02 cdef | 0.055 ± 0.02 cde | 2.37 ± 0.05 ab | 2.09 ± 0.05 bcde | 1.62 ± 0.06 bcde | 4.91 ± 0.2 e | 4.86 ± 0.23 de | 5.52 ± 0.35 def |
BC1Se0 | 10.8 ± 0.49 g | 10.3 ± 0.49 cd | 8.9 ± 0.46 cd | 0.043 ± 0.02 f | 0.041 ± 0.02 g | 0.047 ± 0.03 f | 2.25 ± 0.01 abc | 2.12 ± 0.01 abcde | 1.65 ± 0.02 abcde | 4.82 ± 0.12 e | 4.84 ± 0.22 de | 5.37 ± 0.25 def |
BC1Se5 | 12.33 ± 0.48 cdefg | 10.93 ± 0.48 cd | 9.42 ± 0.43 cd | 0.046 ± 0.01 cdef | 0.045 ± 0.01 f | 0.051 ± 0.01 e | 2.16 ± 0.03 bc | 2.03 ± 0.03 de | 1.56 ± 0.04 de | 5.46 ± 0.12 bcd | 5.46 ± 0.32 cd | 6.23 ± 0.43 bcd |
BC1Se10 | 15.06 ± 0.74 a | 13.56 ± 0.74 a | 11.61 ± 0.54 a | 0.051 ± 0.01 b | 0.049 ± 0.01 bcd | 0.056 ± 0.01 bcd | 2.2 ± 0.07 abc | 2.07 ± 0.07 cde | 1.59 ± 0.08 bcde | 6.45 ± 0.06 a | 6.49 ± 0.14 a | 7.32 ± 0.16 a |
BC1Se20 | 11.92 ± 0.18 cdefg | 10.52 ± 0.18 cd | 9.06 ± 0.16 cd | 0.048 ± 0.01 bcde | 0.046 ± 0.01 def | 0.053 ± 0.05 de | 2.4 ± 0.04 a | 2.27 ± 0.04 a | 1.8 ± 0.03 a | 4.96 ± 0.05 de | 4.63 ± 0.05 e | 5.05 ± 0.1 ef |
BC5Se0 | 13.06 ± 0.14 bcde | 11.06 ± 0.14 cd | 9.53 ± 0.15 cd | 0.046 ± 0.04 def | 0.047 ± 0.04 def | 0.054 ± 0.07 de | 2.36 ± 0.04 ab | 2.23 ± 0.04 ab | 1.76 ± 0.05 ab | 5.14 ± 0.31 cde | 4.98 ± 0.1 cde | 5.51 ± 0.19 def |
BC5Se5 | 13.46 ± 0.4 bc | 11.76 ± 0.4 bc | 10.22 ± 0.49 bc | 0.047 ± 0.01 cdef | 0.048 ± 0.01 cdef | 0.055 ± 0.01 cde | 2.22 ± 0.03 abc | 2.09 ± 0.03 bcde | 1.57 ± 0.02 cde | 5.56 ± 0.1 bc | 5.61 ± 0.13 bc | 6.48 ± 0.25 bc |
BC5Se10 | 14.54 ± 0.38 ab | 12.94 ± 0.38 ab | 11.13 ± 0.31 ab | 0.055 ± 0.04 a | 0.056 ± 0.04 a | 0.065 ± 0.01 a | 2.25 ± 0.04 abc | 2.12 ± 0.04 abcde | 1.64 ± 0.05 abcde | 6.79 ± 0.12 a | 6.09 ± 0.07 ab | 6.8 ± 0.12 ab |
BC5Se20 | 12.68 ± 0.24 cdef | 11.18 ± 0.24 cd | 9.63 ± 0.23 cd | 0.05 ± 0.07 bc | 0.051 ± 0.01 bc | 0.059 ± 0.02 bc | 2.27 ± 0.05 abc | 2.14 ± 0.05 abcde | 1.66 ± 0.06 abcde | 5.66 ± 0.2 bc | 5.3 ± 0.21 cd | 5.97 ± 0.31 cd |
BC10Se0 | 12.66 ± 0.84 cdef | 11.46 ± 0.84 bcd | 10 ± 0.79 bcd | 0.043 ± 0.02 f | 0.045 ± 0.02 ef | 0.052 ± 0.02 e | 2.35 ± 0.09 abc | 2.22 ± 0.09 abc | 1.75 ± 0.09 ab | 5.31 ± 0.23 bcde | 5.07 ± 0.25 cde | 5.63 ± 0.29 cdef |
BC10Se5 | 11.73 ± 0.46 defg | 10.13 ± 0.46 d | 8.82 ± 0.51 cd | 0.044 ± 0.02 f | 0.046 ± 0.01 def | 0.053 ± 0.01 de | 2.13 ± 0.04 c | 2 ± 0.04 e | 1.53 ± 0.05 e | 5.47 ± 0.13 bcd | 5.03 ± 0.14 cde | 5.71 ± 0.19 cdef |
BC10Se10 | 13.27 ± 0.35 bcd | 11.77 ± 0.35 bc | 10.23 ± 0.44 bc | 0.049 ± 0.01 bcd | 0.051 ± 0.01 bc | 0.058 ± 0.04 bc | 2.36 ± 0.03 abc | 2.23 ± 0.03 abc | 1.75 ± 0.02 ab | 5.67 ± 0.21 bc | 5.33 ± 0.21 cd | 5.91 ± 0.32 cde |
BC10Se20 | 12.77 ± 0.51 cdef | 11.17 ± 0.51 cd | 9.56 ± 0.36 cd | 0.047 ± 0.02 cdef | 0.049 ± 0.02 bcde | 0.056 ± 0.02 bcde | 2.22 ± 0.07 abc | 2.09 ± 0.07 bcde | 1.62 ± 0.06 bcde | 5.73 ± 0.1 b | 5.32 ± 0.11 cd | 5.94 ± 0.13 cd |
Treatment | Selenium Content of Grains (mg/kg) | Cadmium Content of Grains (mg/kg) | Yield (g/pot) | ||
---|---|---|---|---|---|
Filling Stage | Mature Stage | Filling Stage | Mature Stage | ||
BC0Se0 | 0.10 ± 0.01 ef | 0.14 ± 0.02 c | 0.22 ± 0.04 a | 0.26 ± 0.04 a | 72.96 ± 0.68 b |
BC0Se5 | 0.12 ± 0.04 def | 0.19 ± 0.01 c | 0.18 ± 0.03 abc | 0.22 ± 0.02 ab | 76.18 ± 4.28 b |
BC0Se10 | 0.15 ± 0.01 bcde | 0.19 ± 0.01 c | 0.14 ± 0.03 abcd | 0.18 ± 0.02 abcd | 81.37 ± 2.66 ab |
BC0Se20 | 0.22 ± 0.02 b | 0.22 ± 0.04 bc | 0.13 ± 0.01 bcd | 0.11 ± 0.02 de | 80.06 ± 8.07 ab |
BC1Se0 | 0.07 ± 0.01 f | 0.14 ± 0.01 c | 0.21 ± 0.01 ab | 0.23 ± 0.02 ab | 74.42 ± 0.46 b |
BC1Se5 | 0.14 ± 0.01 cde | 0.21 ± 0.01 bc | 0.17 ± 0.02 abc | 0.16 ± 0.02 bcd | 77.35 ± 10.16 b |
BC1Se10 | 0.18 ± 0.01 bcd | 0.22 ± 0.01 bc | 0.13 ± 0.03 bcd | 0.10 ± 0.03 de | 73.87 ± 6.30 b |
BC1Se20 | 0.21 ± 0.02 bc | 0.15 ± 0.01 c | 0.08 ± 0.03 d | 0.12 ± 0.03 cde | 74.69 ± 3.05 b |
BC5Se0 | 0.07 ± 0.003 f | 0.27 ± 0.01 abc | 0.18 ± 0.03 abc | 0.20 ± 0.02 abc | 84.11 ± 6.49 ab |
BC5Se5 | 0.14 ± 0.04 cde | 0.31 ± 0.13 abc | 0.16 ± 0.04 abcd | 0.15 ± 0.03 bcd | 76.93 ± 2.74 b |
BC5Se10 | 0.15 ± 0.002 bcde | 0.31 ± 0.12 abc | 0.12 ± 0.02 cd | 0.16 ± 0.04 bcd | 85.47 ± 7.10 ab |
BC5Se20 | 0.21 ± 0.04 b | 0.4 ± 0.08 ab | 0.11 ± 0.03 cd | 0.06 ± 0.01 e | 79.77 ± 6.67 ab |
BC10Se0 | 0.07 ± 0.01 f | 0.15 ± 0.02 c | 0.17 ± 0.03 abc | 0.20 ± 0.01 abc | 84.86 ± 5.32 ab |
BC10Se5 | 0.15 ± 0.02 bcde | 0.23 ± 0.04 bc | 0.17 ± 0.02 abcd | 0.16 ± 0.03 bcd | 83.23 ± 2.75 ab |
BC10Se10 | 0.21 ± 0.02 b | 0.27 ± 0.09 abc | 0.15 ± 0.02 abcd | 0.18 ± 0.02 abcd | 85.91 ± 2.04 ab |
BC10Se20 | 0.49 ± 0.03 a | 0.45 ± 0.09 a | 0.08 ± 0.01 d | 0.13 ± 0.04 cde | 91.75 ± 6.90 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, T.; He, J.; Li, C.; Jiang, D. The Combined Application of Biological Nanoselenium and Biochar Promotes Selenium Enrichment and Cadmium Content Reduction in Rice. Agronomy 2025, 15, 1398. https://doi.org/10.3390/agronomy15061398
Mo T, He J, Li C, Jiang D. The Combined Application of Biological Nanoselenium and Biochar Promotes Selenium Enrichment and Cadmium Content Reduction in Rice. Agronomy. 2025; 15(6):1398. https://doi.org/10.3390/agronomy15061398
Chicago/Turabian StyleMo, Tongdong, Jianyong He, Chunxiu Li, and Daihua Jiang. 2025. "The Combined Application of Biological Nanoselenium and Biochar Promotes Selenium Enrichment and Cadmium Content Reduction in Rice" Agronomy 15, no. 6: 1398. https://doi.org/10.3390/agronomy15061398
APA StyleMo, T., He, J., Li, C., & Jiang, D. (2025). The Combined Application of Biological Nanoselenium and Biochar Promotes Selenium Enrichment and Cadmium Content Reduction in Rice. Agronomy, 15(6), 1398. https://doi.org/10.3390/agronomy15061398