Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection and Analysis
2.2.1. Sample Collection
2.2.2. Test Indicators and Methods
2.3. Soil Quality Evaluation
2.3.1. Determination of Membership Function
2.3.2. Establishment of the Minimum Data Set and Determination of Weights
2.3.3. Comprehensive Evaluation of Soil Quality
3. Results
3.1. Physical Properties of Reconstructed Soils in Slag Mountain
3.2. Chemical Properties of Reconstructed Soils in Slag Mountain
3.3. Carbon Characteristics of Reconstructed Soils in Slag Mountain
3.4. Heavy Metal Characteristics of Reconstructed Soils in Slag Mountain
3.5. Soil Quality Comprehensive Evaluation
3.5.1. Determination of the Minimum Data Set for Soil Quality Comprehensive Evaluation
3.5.2. Determination of Weights for Soil Environmental Quality Comprehensive Indicators
3.5.3. Soil Environmental Quality Comprehensive Evaluation
4. Discussion
4.1. Impact of Soil Physical Properties on Soil Quality
4.2. Impact of Soil Chemical Properties on Soil Quality
4.3. Impact of Soil Nutrients Characteristics on Soil Quality
4.4. Impact of Soil Carbon Processes on Soil Quality
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Sample No. | pH | Bulk Density (Mg/cm3) | Water Content (%) | Sand (%) | Silt (%) | Clay (%) | Total N (g/kg) | Total P (g/kg) | Total K (g/kg) | NH4+-N (mg/kg) | NO3−-N (mg/kg) | Available P (mg/kg) | Available K (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
24ML-01-01 | 7.61 | 1.64 | 14.79 | 41.10 | 24.00 | 34.90 | 3.64 | 0.56 | 23.94 | 99.00 | 0.71 | 42.31 | 176 |
24ML-02-01 | 7.96 | 1.10 | 21.57 | 29.10 | 28.00 | 42.90 | 2.75 | 0.62 | 23.28 | 16.57 | 0.75 | 13.18 | 164 |
24ML-03-01 | 8.03 | 1.43 | 15.40 | 37.10 | 24.00 | 38.90 | 1.69 | 0.53 | 24.76 | 3.73 | 0.72 | 10.27 | 162 |
24ML-04-01 | 7.76 | 1.76 | 48.72 | 57.10 | 24.00 | 18.90 | 9.39 | 1.13 | 20.08 | 50.92 | 8.12 | 6.52 | 335 |
24ML-05-01 | 7.89 | 1.70 | 16.20 | 61.10 | 20.00 | 18.90 | 4.13 | 0.62 | 22.15 | 7.32 | 0.51 | 120.84 | 205 |
24ML-06-01 | 7.71 | 1.60 | 25.01 | 57.10 | 24.00 | 18.90 | 4.12 | 0.72 | 26.37 | 17.84 | 14.61 | 32.33 | 283 |
24ML-07-01 | 7.96 | 1.52 | 13.57 | 29.10 | 32.00 | 38.90 | 2.23 | 0.67 | 22.79 | 10.10 | 0.52 | 35.65 | 170 |
24ML-08-01 | 7.81 | 1.19 | 9.47 | 53.10 | 20.00 | 26.90 | 2.29 | 0.49 | 26.44 | 3.63 | 0.73 | 17.48 | 190 |
24ML-09-01 | 8.02 | 1.68 | 11.01 | 37.10 | 28.00 | 34.90 | 1.02 | 0.55 | 21.88 | 10.43 | 2.50 | 24.00 | 113 |
24ML-10-01 | 8.10 | 0.55 | 60.37 | 41.10 | 44.00 | 14.90 | 13.49 | 0.79 | 19.72 | 26.68 | 34.50 | 23.17 | 62 |
Sample No. | Organic Matter (g/kg) | Organic Carbon (g/kg) | Microbial Biomass Carbon (mg C/kg) | Readily Oxidizable Carbon (g C/kg) | Cr (mg/kg) | Cu (mg/kg) | Cd (mg/kg) | Pb (mg/kg) | Hg (mg/kg) | As (mg/kg) |
---|---|---|---|---|---|---|---|---|---|---|
24ML-01 | 114.13 | 65.90 | 970.79 | 14.50 | 520 | 28.3 | 0.63 | 28 | 0.093 | 6.3 |
24ML-02 | 93.36 | 53.91 | 625.34 | 12.02 | 73.9 | 26.5 | 0.18 | 27.4 | 0.039 | 9.8 |
24ML-03 | 58.11 | 33.55 | 481.05 | 7.20 | 78 | 21.1 | 0.31 | 23.7 | 0.053 | 6.6 |
24ML-04 | 203.71 | 117.61 | 1166.01 | 31.36 | 54.6 | 19.1 | 0.16 | 16.2 | 0.036 | 9.2 |
24ML-05 | 96.76 | 55.87 | 701.30 | 16.51 | 75.2 | 26.1 | 0.23 | 23.1 | 0.041 | 5.4 |
24ML-06 | 160.42 | 92.62 | 1389.01 | 15.72 | 82 | 22.2 | 0.19 | 25 | 0.042 | 6.3 |
24ML-07 | 55.80 | 32.22 | 522.50 | 8.04 | 70.5 | 23.4 | 0.16 | 22.7 | 0.02 | 7.8 |
24ML-08 | 110.85 | 64.00 | 830.39 | 11.80 | 86.8 | 24.1 | 0.23 | 27 | 0.033 | 5.5 |
24ML-09 | 56.53 | 32.64 | 386.00 | 5.49 | 62.4 | 17.6 | 0.18 | 19.4 | 0.027 | 6.4 |
24ML-10 | 247.86 | 143.11 | 1611.62 | 41.20 | 53.2 | 18.9 | 0.10 | 13.8 | 0.042 | 8.9 |
References
- Chen, F.; Li, Y.; Feng, H.; Zhou, J.; Xiong, R.; Zhu, Y. Ecosystem stability of alpine grasslands in the southern Qilian Mountains: A case study of the Muli-Juhugeng mining area. J. Saf. Environ. Eng. 2024, 31, 291–300. [Google Scholar] [CrossRef]
- Hou, X.; Liu, S.; Zhao, S.; Dong, S.; Sun, Y.; Beazley, R. The alpine meadow around the mining areas on the Qinghai-Tibetan Plateau will degenerate as a result of the change of dominant species under the disturbance of open-pit mining. Environ. Pollut. 2019, 254, 113111. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Dong, C. Fine evaluation of ecological service functions in alpine and deep valley regions: A case study of the southeast Tibetan Plateau. Ecol. Indic. 2024, 163, 112047. [Google Scholar] [CrossRef]
- Hugelius, G.; Strauss, J.; Zubrzycki, S.; Harden, J.W.; Schuur, E.A.G.; Ping, C.-L.; Schirrmeister, L.; Grosse, G.; Michaelson, G.J.; Koven, C.D.; et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 2014, 11, 6573–6593. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, J.; Tang, Y.; Ji, C.; Zheng, C.; He, J.; Zhu, B. Storage, Patterns and Controls of Soil Organic Carbon in the Tibetan Grasslands. Glob. Change Biol. 2008, 14, 1592–1599. [Google Scholar] [CrossRef]
- Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Yue, L.; Wan, Y.; Qin, X.; Xin, M.; Liu, S. Climate change and its impacts on vegetation distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554–555, 34–41. [Google Scholar] [CrossRef]
- Wang, T.; Du, B.; Li, C.; Wang, H.; Zhou, W.; Wang, H.; Lin, Z.; Zhao, X.; Xiong, T. Ecological restoration and key technologies for high-altitude and cold mining areas. J. China Coal Soc. 2021, 46, 230–244. [Google Scholar] [CrossRef]
- Luo, H.; Zhou, W.; Jiskani, I.M.; Wang, Z. Analyzing characteristics of particulate matter pollution in open-pit coal mines: Implications for green mining. Energies 2021, 14, 2680. [Google Scholar] [CrossRef]
- Li, F.; Bai, G.; Han, K. Characteristics and restoration methods for ecological damage in the Muli mining area. Coal Eng. 2021, 53, 116–121. [Google Scholar]
- Tian, H.; Zhang, J.; Zheng, Y.; Shi, J.; Qin, J.; Ren, X.; Bi, R. Prediction of Soil Organic Carbon in Mining Areas. Catena 2022, 215, 106311. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and Vulnerability of the World’s Water Towers. Nature 2019, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, K.; Hartemink, A.E. Linking soils to ecosystem services—A global review. Geoderma 2016, 262, 101–111. [Google Scholar] [CrossRef]
- Lal, R. Soil health and carbon management. Food Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Anaya-Romero, M.; Muñoz-Rojas, M.; Ibáñez, B.; Maraón, T. Evaluation of forest ecosystem services in mediterranean areas. a regional case study in south spain. Ecosyst. Serv. 2016, 20, 82–90. [Google Scholar] [CrossRef]
- Pereira, P.; Bogunovic, I.; Munoz-Rojas, M.; Brevik, E.C. Soil ecosystem services, sustainability, valuation and management. Curr. Opin. Environ. Sci. Health 2018, 5, 7–13. [Google Scholar] [CrossRef]
- Costantini, E.A.C.; Branquinho, C.; Nunes, A.; Schwilch, G.; Stavi, I.; Valdecantos, A.; Zucca, C. Soil indicators to assess the effectiveness of restoration strategies in dryland ecosystems. Solid Earth 2016, 7, 397–414. [Google Scholar] [CrossRef]
- Du, S.; Gao, X. The Technical Specification of Soil Analysis; China Agriculture Press: Beijing, China, 2006. [Google Scholar]
- Lou, Y.; Shi, D.; Jiang, G.; Jin, H.; Chen, Z.; Lin, Z. Soil quality evaluation of purple hilly regions based on a minimum data set. Chin. J. Soil. Water Conserv. 2019, 17, 75–85. [Google Scholar] [CrossRef]
- National Soil Survey Office. Soils of China; China Agricultural Press: Beijing, China, 1998. [Google Scholar]
- Bastida, F.; Moreno, J.L.; Hernández, T.; García, C. Microbiological degradation index of soils in a semiarid climate. Soil Biol. Biochem. 2006, 38, 3463–3473. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining soil quality indicators by factor analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Juhos, K.; Czigány, S.; Madarász, B.; Ladányi, M. Interpretation of soil quality indicators for land suitability assessment: A multivariate approach for Central European arable soils. Ecol. Indic. 2019, 99, 261–272. [Google Scholar] [CrossRef]
- Wander, M.M.; Bollero, G.A. Soil quality assessment of tillage impacts on Illinois. Soil Sci. Soc. Am. J. 1999, 63, 961–971. [Google Scholar] [CrossRef]
- Li, G.; Chen, J.; Tan, M.; Sun, Z. Establishment of a minimum dataset for soil quality assessment based on land use change. Acta Pedol. Sin. 2008, 45, 16–25. [Google Scholar]
- Mi, W.; Hong, Y.; Gao, F.; Ying, Y.; Sun, T.; Wu, L.; Wang, G.; Chen, S. Effect of Different Form of N Fertilization on Yield Sustainability and Soil Quality in Double Cropped Rice System in a Long-Term Experiment. J. Soil Sci. Plant Nutr. 2024, 24, 2815–2824. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Li, C.; Chen, Z.; Ying, D.; Tian, S.; Zhao, G.; Ye, D.; Cheng, C.; Wu, C.; et al. Assessing the Alteration of Soil Quality under Long-Term Fertilization Management in Farmland Soil: Integrating a Minimum Data Set and Developing New Biological Indicators. Agronomy 2024, 14, 1552. [Google Scholar] [CrossRef]
- Suding, K.; Higgs, E.; Palmer, M.; Callicott, J.B.; Anderson, C.B.; Baker, M.; Gutrich, J.J.; Hondula, K.L.; LaFevor, M.C.; Larson, B.M.H.; et al. Committing to ecological restoration. Science 2015, 348, 638–640. [Google Scholar] [CrossRef]
- Ruiz-Jaén, M.C.; Aide, T.M. Vegetation structure, species diversity, and ecosystem processes as measures of restoration success. For. Ecol. Manag. 2005, 218, 159–173. [Google Scholar] [CrossRef]
- An, N.; Tang, C.; Xu, S.; Gong, X.; Shi, B.; Inyang, H.I. Effects of soil characteristics on moisture evaporation. Eng. Geol. 2018, 239, 126–135. [Google Scholar] [CrossRef]
- Colombi, T.; Torres, L.C.; Walter, A.; Keller, T. Feedbacks between soil penetration resistance, root architecture and water uptake limit water accessibility and crop growth: A vicious circle. Sci. Total Environ. 2018, 626, 1026–1035. [Google Scholar] [CrossRef]
- Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–137. [Google Scholar] [CrossRef]
- Gillman, G.P. An analytical tool for understanding the properties and behaviour of variable charge soils. Soil Res. 2007, 45, 83–90. [Google Scholar] [CrossRef]
- Curtin, D.; Campbell, C.A.; Jalil, A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biol. Biochem. 1998, 30, 57–64. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, Y.; Ma, Z.; Guo, T.; Che, Z.; Huang, G.; Nan, L. Influence of vegetation type on the migration and accumulation of salts in soil profiles. Sci. Agric. Sin. 2011, 44, 2711–2720. [Google Scholar]
- Zhang, Z.; Song, X.; Lu, X.; Xue, Z. Ecological stoichiometry of carbon, nitrogen, and phosphorus in estuarine wetland soils: Influences of vegetation coverage, plant communities, geomorphology, and seawalls. J. Soils Sediments 2013, 13, 1043–1051. [Google Scholar] [CrossRef]
- Rath, K.M.; Murphy, D.N.; Rousk, J. The microbial community size, structure, and process rates along natural gradients of soil salinity. Soil Biol. Biochem. 2019, 138, 107607. [Google Scholar] [CrossRef]
- Yuan, B.C.; Li, Z.Z.; Liu, H.; Gao, M.; Zhang, H.H. Microbial biomass and activity in salt affected soils under arid conditions. Appl. Soil Ecol. 2007, 35, 319–328. [Google Scholar] [CrossRef]
- Rath, K.M.; Maheshwari, A.; Bengtson, P.; Rouska, J. Comparative toxicities of salts on microbial processes in soil. Appl. Environ. Microbiol. 2016, 82, 2012–2020. [Google Scholar] [CrossRef]
- Yang, J.; Zhan, C.; Li, Y.; Zhou, D.; Yu, Y.; Yu, J. Effect of salinity on soil respiration in relation to dissolved organic carbon and microbial characteristics of a wetland in the Liaohe River Estuary, Northeast China. Sci. Total Environ. 2018, 642, 946–953. [Google Scholar] [CrossRef]
- Yan, N.; Marschner, P.; Cao, W.; Zuo, C.; Qin, W. Influence of salinity and water content on soil microorganisms. Int. Soil Water Conserv. Res. 2015, 3, 316–323. [Google Scholar] [CrossRef]
- Yu, Y.; Li, X.; Zhao, C.; Zheng, N.; Jia, H.; Yao, H. Soil salinity changes the temperature sensitivity of soil carbon dioxide and nitrous oxide emissions. Catena 2020, 195, 104912. [Google Scholar] [CrossRef]
- Shahariar, S.; Farrell, R.; Soolanayakanahally, R.; Bedard-Haughn, A. Elevated salinity and water table drawdown significantly affect greenhouse gas emissions in soils from contrasting land-use practices in the prairie pothole region. Biogeochemistry 2021, 155, 127–146. [Google Scholar] [CrossRef]
- She, R.; Yu, Y.; Ge, C.; Yao, H. Soil texture alters the impact of salinity on carbon mineralization. Agronomy 2021, 11, 128. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Mishra, V.K.; Singh, A.K.; Arora, S.; Srivastava, S.; Singh, Y.P.; Sharma, D.K. Soil salinity and land use land cover interactions with soil carbon in a salt-affected irrigation canal command of Indo-Gangetic Plain. Catena 2019, 180, 392–400. [Google Scholar] [CrossRef]
- Sun, X.; Chang, S.; Song, C.; Zhang, Y. Age-related N, P, and K stoichiometry in different organs of Picea schrenkiana. Chin. J. Ecol. 2018, 37, 1291–1298. [Google Scholar] [CrossRef]
- Koerselman, W.; Meuleman, A. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. J. Appl. Ecol. 1996, 33, 1441–1450. [Google Scholar] [CrossRef]
- Zhong, G.; Tian, F.; Wang, M.; Zhang, H.; Liu, C.; Ci, B. Soil fertility of croplands in major agricultural areas in tibet. Acta Pedol. Sin. 2005, 42, 1030–1034. [Google Scholar]
- Li, Y.; Yu, Y.; Zhang, X.; Yang, Q.; Zeng, Y.; Han, X.; Yang, J. Effects of continuous application of biochar-based fertilizer and biochar on organic nitrogen fractions in brown soil. Chin. J. Ecol. 2017, 36, 2903–2909. [Google Scholar] [CrossRef]
- Huang, Y.; Du, Y.; Chen, Y.; Guan, Y.; Deng, T.; Li, L.; Wu, Z.; Liu, Y. Effects of biochar-based molybdenum fertilizer on the transformation of inorganic nitrogen forms in soil. J. Environ. Sci. 2018, 27, 40–46. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Xu, X. Competition between roots and microorganisms for nitrogen: Mechanisms and ecological relevance. New Phytol. 2013, 198, 656–669. [Google Scholar] [CrossRef]
- Wen, X.; Zheng, B.; Chen, C.; Gong, L.; Zhan, H.; Yu, D.; Zhu, Z.; Shen, R. Effects of vegetation succession on soil microbial biomass at the lakeshore wetlands of Lake Poyang, China. J. Lake Sci. 2024, 36, 881–889. [Google Scholar] [CrossRef]
- Shen, F.; Wu, J.; Fan, H.; Liu, W.; Guo, X.; Duan, H.; Hu, L.; Lei, X.; Wei, X. Soil N/P and C/P ratio regulate the responses of soil microbial community composition and enzyme activities in a long-term nitrogen loaded Chinese fir forest. Plant Soil 2019, 436, 91–107. [Google Scholar] [CrossRef]
- Liu, H.; Pausch, J.; Wu, Y.; Xu, H.; Liu, G.; Ma, L.; Xue, S. Implications of plant N/P stoichiometry influenced by arbuscular mycorrhizal fungi for stability of plant species and community in response to nutrient limitation. Oikos 2023, 2023, e09649. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Hall, C.A.S.; Zhang, C.; Melillo, J.M. Pattern and variation of C: N: P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Zhang, W.; Kolbe, H.; Zhang, R. Advances in research on soil organic carbon dynamics and storage mechanisms. Chin. Agric. Sci. Bull. 2020, 53, 317–331. [Google Scholar] [CrossRef]
- Torn, M.; Trumbore, S.; Chadwick, O.; Vitousek, P.; Hendricks, D. Mineral control of soil organic carbon storage and turnover. Nature 1997, 389, 170–173. [Google Scholar] [CrossRef]
- Shan, W.; Xing, Y.; Yan, G.; Han, S.; Zhang, J.; Wang, Q. Effects of nitrogen deposition on soil microbial biomass carbon/nitrogen and dissolved organic carbon/nitrogen in natural secondary forests of Betula platyphylla and Populus davidiana in Changbai Mountains. Ecol. Environ. Sci. 2019, 28, 1522–1530. [Google Scholar] [CrossRef]
- Feketeová, Z.; Hrabovský, A.; Šimkovic, I. Microbial Features Indicating the Recovery of Soil Ecosystem Strongly Affected by Mining and Ore Processing. Int. J. Environ. Res. Public Health 2021, 18, 3240. [Google Scholar] [CrossRef]
- Wu, M.; Qu, D.; Li, T.; Liu, F.; Gao, Y.; Chen, S.; Chen, T. Effects of permafrost degradation on soil microbial biomass carbon and nitrogen in the Shule River headwaters, the Qilian Mountains. Sci. Geogr. Sin. 2021, 41, 177–186. [Google Scholar] [CrossRef]
- Zou, H.; Song, Y. Influence of forest vegetation restoration on carbon increment after mining. Sci. Rep. 2023, 13, 19565. [Google Scholar] [CrossRef]
- Yang, X.; Feng, Q.; Zhu, M. Vegetation characteristics and soil properties of artificially remediated grasslands: The case study of the Shimenhe mining area in Qilian Mountains, northwest China. Res. Cold Arid. Reg. 2024, 16, 190–200. [Google Scholar] [CrossRef]
- Cui, J.; Holden, N.M. The relationship between soil microbial activity and microbial biomass, soil structure and grassland management. Soil. Tillage Res. 2015, 146, 32–38. [Google Scholar] [CrossRef]
- Bartuška, M.; Pawlett, M.; Frouz, J. Particulate organic carbon at reclaimed and unreclaimed post-mining soils and its microbial community composition. Catena 2015, 131, 92–98. [Google Scholar] [CrossRef]
Serial No. | Sample No. | Sampling Location | Ecological Restoration Time |
---|---|---|---|
1 | 24ML-01 | South slope of Slag Heap at No. 5, Jiangcang Mining Area | 2020 |
2 | 24ML-02 | South platform of Slag Heap at No. 5, Jiangcang Mining Area | 2020 |
3 | 24ML-03 | North platform of Slag Heap at No. 5, Jiangcang Mining Area | 2020 |
4 | 24ML-04 | North slope of Slag Heap at No. 5, Jiangcang Mining Area | 2020 |
5 | 24ML-05 | North platform of Slag Heap at No. 4, Jiangcang Mining Area | 2020 |
6 | 24ML-06 | North slope of Slag Heap at No. 4, Jiangcang Mining Area | 2020 |
7 | 24ML-07 | South slope of Slag Heap at No. 4, Jiangcang Mining Area | 2020 |
8 | 24ML-08 | Platform of No. 2, Jiangcang Mining Area | 2015 |
9 | 24ML-09 | Slope of Waste Dump at No. 2, Jiangcang Mining Area | 2015 |
10 | 24ML-10 | Natural Grassland, Jiangcang Mining Area | Natural Grassland |
Index Types | Measurement Indicator | Measurement Method |
---|---|---|
Physical index | Bulk Density | Cutting-ring method |
Soil Texture | Stokes’ law—pipette method | |
Chemical index | pH | Titration method (water-to-soil ratio 5:1) |
Moisture Content | Oven drying method | |
Electrical Conductivity | ||
Total Nitrogen | Kjeldahl digestion, AA3 type continuous flow analyzer measurement | |
Total Phosphorus | NaOH fusion, molybdenum–antimony anti-colorimetry | |
Total Potassium | NaOH fusion, flame photometry method | |
Ammonium Nitrogen | KCl extraction, AA3 type continuous flow analyzer measurement | |
Nitrate Nitrogen | KCl extraction, AA3 type continuous flow analyzer measurement | |
Available Phosphorus | NaHCO3 extraction, molybdenum–antimony anti-colorimetry | |
Available Potassium | NH4OAc extraction, flame photometry method | |
Carbon characteristic index | Organic Matter | Potassium dichromate volumetric method (with heating) |
Organic Carbon | Potassium dichromate volumetric method (with heating) | |
Microbial Carbon | Chloroform fumigation extraction method | |
Easily Oxidizable Organic Carbon | Potassium permanganate oxidation—colorimetric method | |
Heavy metal index | Cd, Pb, Cu, Cr, Hg, As | Inductively coupled plasma mass spectrometry (ICP-MS) |
Turning Point | Function Type | x1 | x2 | x3 | x4 |
---|---|---|---|---|---|
pH | Parabolic | 4.5 | 6 | 7.5 | 8.5 |
Bulk Density (Mg/cm3) | 1 | 1.1 | 1.2 | 1.4 | |
Organic Matter (g/kg) | S-shaped | 6 | 40 | ||
Total Nitrogen (g/kg) | 0.5 | 2 | |||
Ammonium Nitrogen (mg/kg) | 10 | 100 | |||
Nitrate Nitrogen (mg/kg) | 3.5 | 35 | |||
Total Phosphorus (g/kg) | 0.2 | 1 | |||
Available Phosphorus (mg/kg) | 3 | 40 | |||
Total Potassium (g/kg) | 6 | 30 | |||
Available Potassium (mg/kg) | 30 | 200 | |||
Microbial Biomass Carbon (mg C/kg) | 386 | 1611.6 | |||
Easily Oxidizable Organic Carbon (g C/kg) | 5.5 | 41.2 | |||
Total Cr (mg/kg) | Descending S-shaped | 53.2 | 520 | ||
Total Cu (mg/kg) | 17.6 | 28.3 | |||
Total Cd (mg/kg) | 0.1 | 0.6 | |||
Total Pb (mg/kg) | 13.8 | 28 | |||
Total Hg (mg/kg) | 0 | 0.1 | |||
Total As (mg/kg) | 5.4 | 9.8 |
Sample | Cr | Cu | As | Cd | Pb | Hg | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Measured Value /Screening Value | Measured Value /Control Value | Measured Value /Screening Value | Measured Value /Screening Value | Measured Value /Control Value | Measured Value /Screening Value | Measured Value /Control Value | Measured Value /Screening Value | Measured Value /Control Value | Measured Value /Screening Value | Measured Value /Control Value | |
24ML-01 | 2.08 | 0.40 | 0.28 | 0.25 | 0.06 | 1.05 | 0.16 | 0.16 | 0.03 | 0.03 | 0.02 |
24ML-02 | 0.30 | 0.06 | 0.27 | 0.39 | 0.10 | 0.30 | 0.05 | 0.16 | 0.03 | 0.01 | 0.01 |
24ML-03 | 0.31 | 0.06 | 0.21 | 0.26 | 0.07 | 0.52 | 0.08 | 0.14 | 0.02 | 0.02 | 0.01 |
24ML-04 | 0.22 | 0.04 | 0.19 | 0.37 | 0.09 | 0.27 | 0.04 | 0.10 | 0.02 | 0.01 | 0.01 |
24ML-05 | 0.30 | 0.06 | 0.26 | 0.22 | 0.05 | 0.38 | 0.06 | 0.14 | 0.02 | 0.01 | 0.01 |
24ML-06 | 0.33 | 0.06 | 0.22 | 0.25 | 0.06 | 0.32 | 0.05 | 0.15 | 0.03 | 0.01 | 0.01 |
24ML-07 | 0.28 | 0.05 | 0.23 | 0.31 | 0.08 | 0.27 | 0.04 | 0.13 | 0.02 | 0.01 | 0.00 |
24ML-08 | 0.35 | 0.07 | 0.24 | 0.22 | 0.06 | 0.38 | 0.06 | 0.16 | 0.03 | 0.01 | 0.01 |
24ML-09 | 0.25 | 0.05 | 0.18 | 0.26 | 0.06 | 0.30 | 0.05 | 0.11 | 0.02 | 0.01 | 0.00 |
24ML-10 | 0.21 | 0.04 | 0.19 | 0.36 | 0.09 | 0.17 | 0.03 | 0.08 | 0.01 | 0.01 | 0.01 |
Index | Principal Component | Norm Value | ||||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | ||
Microbial Biomass Carbon | 0.974 | 0.110 | −0.039 | 0.134 | −0.050 | 2.65 |
Organic Matter | 0.959 | 0.022 | 0.194 | 0.126 | −0.131 | 2.62 |
Easily Oxidizable Organic Carbon | 0.898 | 0.012 | 0.403 | 0.005 | −0.058 | 2.50 |
N-NO3− | 0.886 | −0.165 | 0.179 | −0.277 | −0.091 | 2.46 |
Total Nitrogen | 0.883 | −0.009 | 0.444 | −0.044 | −0.080 | 2.48 |
Total Cr | −0.063 | 0.977 | −0.107 | 0.012 | 0.068 | 2.08 |
Total Hg | 0.114 | 0.933 | −0.129 | −0.040 | 0.063 | 2.01 |
Total Cd | −0.237 | 0.922 | −0.196 | 0.036 | 0.118 | 2.08 |
N-NH4+ | 0.223 | 0.897 | 0.228 | 0.238 | −0.134 | 2.04 |
Total Cu | −0.208 | 0.568 | −0.436 | 0.025 | 0.276 | 1.51 |
Total Potassium | −0.262 | 0.069 | −0.942 | 0.123 | 0.003 | 1.59 |
Total Pb | −0.469 | 0.377 | −0.743 | 0.074 | 0.057 | 1.87 |
Available Potassium | 0.071 | −0.025 | −0.111 | 0.977 | −0.030 | 1.19 |
Bulk Density | −0.533 | 0.154 | 0.120 | 0.733 | 0.280 | 1.75 |
pH | −0.105 | −0.581 | 0.339 | −0.702 | −0.088 | 1.60 |
Total Phosphorus | 0.524 | −0.144 | 0.556 | 0.559 | −0.255 | 1.82 |
Available Phosphorus | −0.051 | 0.079 | 0.069 | 0.036 | 0.956 | 1.13 |
Total As | 0.273 | −0.099 | 0.464 | −0.055 | −0.673 | 1.30 |
Eigenvalue | 7.305 | 4.462 | 2.245 | 1.410 | 1.332 | |
Principal Component Contribution (%) | 29.71 | 24.38 | 15.82 | 13.86 | 9.31 | |
Cumulative Contribution (%) | 29.71 | 54.08 | 69.91 | 83.77 | 93.08 |
Index | Total Data Set (TDS) | Minimum Data Set (MDS) |
---|---|---|
Weights | Weights | |
pH | 0.05 | |
Bulk Density | 0.06 | 0.07 |
Organic Matter | 0.06 | |
Total Nitrogen | 0.06 | |
N-NH4+ | 0.05 | |
N-NO3− | 0.06 | |
Total Phosphorus | 0.06 | 0.08 |
Available Phosphorus | 0.04 | |
Total Potassium | 0.05 | |
Available Potassium | 0.04 | |
Microbial Biomass Carbon | 0.06 | 0.32 |
Easily Oxidizable Organic Carbon | 0.06 | |
Total Cr | 0.06 | 0.26 |
Total Cu | 0.05 | |
Total Cd | 0.06 | |
Total Pb | 0.06 | 0.17 |
Total Hg | 0.06 | |
Total As | 0.05 | 0.10 |
Sampling Point | TDSSQI | MDSSQI | Q |
---|---|---|---|
South Slag Mountain Slope at No. 5 | 0.52 | 0.34 | 64.20 |
South Slag Mountain Platform at No. 5 | 0.56 | 0.49 | 69.14 |
North Slag Mountain Platform at No. 5 | 0.52 | 0.49 | 64.20 |
North Slag Mountain Slope at No. 5 | 0.71 | 0.73 | 87.65 |
North Slag Mountain Platform at No. 4 | 0.63 | 0.58 | 77.78 |
North Slag Mountain Slope at No. 4 | 0.70 | 0.71 | 86.42 |
South Slag Mountain Slope at No. 4 | 0.60 | 0.50 | 74.07 |
Platform at No. 2 | 0.64 | 0.61 | 79.01 |
Waste Dump Slope at No. 2 | 0.56 | 0.52 | 69.14 |
Natural Grassland | 0.81 | 0.91 | 100.00 |
Comprehensive Index | Min | Max | Mean | SD | CV(%) | R² |
---|---|---|---|---|---|---|
SQI (TDS) | 0.52 | 0.81 | 0.62 | 0.09 | 14.51 | 0.92 * |
SQI (MDS) | 0.34 | 0.91 | 0.59 | 0.16 | 27.11 | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Feng, S.; Shao, X.; Zhang, J.; Wang, T.; Xiong, S. Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau. Agronomy 2025, 15, 1390. https://doi.org/10.3390/agronomy15061390
Yang L, Feng S, Shao X, Zhang J, Wang T, Xiong S. Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau. Agronomy. 2025; 15(6):1390. https://doi.org/10.3390/agronomy15061390
Chicago/Turabian StyleYang, Liya, Shaohua Feng, Xusheng Shao, Jinde Zhang, Tianxiang Wang, and Shuisheng Xiong. 2025. "Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau" Agronomy 15, no. 6: 1390. https://doi.org/10.3390/agronomy15061390
APA StyleYang, L., Feng, S., Shao, X., Zhang, J., Wang, T., & Xiong, S. (2025). Comprehensive Evaluation of Soil Quality Reconstruction in Agroforestry Ecosystems of High-Altitude Areas: A Case Study of the Jiangcang Mining Area, Qinghai–Tibet Plateau. Agronomy, 15(6), 1390. https://doi.org/10.3390/agronomy15061390