Threshold Effects of Nitrogen Fertilization Rates on Growth and Essential Oil Yield with Component Regulation in Cinnamomum camphora var. linaloolifera
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Conditions
2.2. Experimental Materials
2.3. Experimental Design
2.4. Sample Measurements
2.4.1. Plant Height, Basal Diameter, and Leaf Area Measurement
2.4.2. Biomass and Nutrient Content Measurement
2.4.3. Essential Oil Extraction and Component Analysis
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Effects of Nitrogen Fertilization on Plant Height, Basal Diameter, SLA, and Biomass
3.2. Nitrogen Accumulation in C. camphora var. linaloolifera
3.3. Effects of Nitrogen Fertilization on Essential Oil Yield and Yield Rate
3.4. Influence of Growth Parameters on Essential Oil Yield and Yield Rate
3.5. Volatile Components of Essential Oil
3.6. Effects of Growth Parameters on Essential Oil Composition
4. Discussion
4.1. Effects of Nitrogen Fertilization on Growth and Physiological Traits of C. camphora var. linaloolifera
4.2. Effects of Nitrogen Fertilization on Essential Oil Yield and Quality of C. camphora var. linaloolifera
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Chemical Compound | Chemical Formula | Relative Abundance (%) | ||||
---|---|---|---|---|---|---|
N0 | N45 | N90 | N135 | N180 | ||
Linalool | C10H18O | 89.839 ± 1.004 b | 91.277 ± 1.361 b | 91.809 ± 0.534 a | 91.130 ± 1.607 b | 91.183 ± 0.738 b |
α-Citraldehyde | C10H16O | 1.286 ± 0.458 a | 0.141 ± 0.000 b | - | - | - |
α-Guaiacene | C15H24 | 1.229 ± 0.623 b | 1.665 ± 0.369 ab | 1.704 ± 0.182 ab | 2.143 ± 0.645 a | 2.118 ± 0.285 a |
Eucalyptol | C15H26O | 0.694 ± 0.200 a | 0.626 ± 0.055 ab | 0.528 ± 0.084 bc | 0.453 ± 0.124 c | 0.445 ± 0.083 c |
Camphor | C10H16O | 0.622 ± 0.011 b | 0.660 ± 0.043 ab | 0.632 ± 0.035 b | 0.675 ± 0.037 a | 0.690 ± 0.026 a |
β-Citraldehyde | C10H16O | 0.600 ± 0.393 | - | - | - | - |
α-Sandalene | C15H24 | 0.597 ± 0.184 a | 0.522 ± 0.155 a | 0.490 ± 0.041 a | 0.562 ± 0.178 a | 0.540 ± 0.080 a |
Citronellal | C10H18O | 0.566 ± 0.174 a | 0.372 ± 0.017 b | 0.355 ± 0.025 b | 0.338 ± 0.027 b | 0.321 ± 0.037 b |
Eucalyptol | C15H24O | 0.458 ± 0.374 a | 0.174 ± 0.022 b | 0.146 ± 0.021 b | 0.132 ± 0.034 b | 0.132 ± 0.019 b |
Humulene | C15H24 | 0.407 ± 0.101 a | 0.461 ± 0.114 a | 0.466 ± 0.041 a | 0.526 ± 0.171 a | 0.514 ± 0.073 a |
δ-Elemene | C15H24 | 0.285 ± 0.114 b | 0.351 ± 0.075 ab | 0.360 ± 0.038 ab | 0.450 ± 0.134 a | 0.445 ± 0.059 a |
3-Siderophthalene | C10H16 | 0.280 ± 0.040 a | 0.264 ± 0.016 a | 0.277 ± 0.017 a | 0.264 ± 0.028 a | 0.261 ± 0.024 a |
cis-Geraniol | C10H18O | 0.275 ± 0.000 a | 0.167 ± 0.000 b | - | - | - |
D-Limonene | C10H16 | 0.244 ± 0.043 b | 0.273 ± 0.014 a | 0.283 ± 0.020 a | 0.279 ± 0.014 a | 0.286 ± 0.015 a |
α-Terpineol | C10H18O | 0.229 ± 0.045 a | 0.211 ± 0.011 a | 0.210 ± 0.008 a | 0.214 ± 0.011 a | 0.203 ± 0.011 a |
6-Celesten-4-ol | C15H26O | 0.146 ± 0.008 a | 0.131 ± 0.000 b | - | 0.113 ± 0.000 c | - |
Carvone | C10H14O | 0.143 ± 0.030 a | 0.102 ± 0.001 b | - | - | - |
β-Pinene | C10H16 | 0.141 ± 0.023 a | 0.147 ± 0.010 a | 0.152 ± 0.008 a | 0.146 ± 0.008 a | 0.151 ± 0.009 a |
β-Ocimene | C10H16 | 0.137 ± 0.035 b | 0.157 ± 0.009 ab | 0.174 ± 0.021 a | 0.179 ± 0.008 a | 0.181 ± 0.015 a |
(−)-Eudesmus spatulifolius enol | C15H24O | 0.136 ± 0.007 a | 0.138 ± 0.010 a | 0.124 ± 0.014 a | 0.138 ± 0.014 a | 0.123 ± 0.017 a |
cis-Linalool oxide | C10H18O2 | 0.132 ± 0.017 a | 0.118 ± 0.006 a | 0.124 ± 0.008 a | 0.117 ± 0.012 a | 0.119 ± 0.013 a |
4-Terpineol | C10H18O | 0.132 ± 0.005 a | 0.126 ± 0.008 b | 0.123 ± 0.005 b | 0.126 ± 0.002 b | 0.121 ± 0.002 b |
trans-Linalool oxide | C10H18O2 | 0.130 ± 0.005 a | 0.120 ± 0.007 b | 0.115 ± 0.006 b | 0.119 ± 0.006 b | 0.120 ± 0.008 b |
β-Elemene | C15H24 | 0.123 ± 0.006 a | 0.128 ± 0.020 a | 0.125 ± 0.011 a | 0.141 ± 0.038 a | 0.142 ± 0.016 a |
α-Mullein | C15H24 | 0.119 ± 0.005 a | 0.121 ± 0.024 a | 0.113 ± 0.009 a | 0.135 ± 0.038 a | 0.129 ± 0.018 a |
Lobelia | C10H18O | 0.116 ± 0.008 a | 0.113 ± 0.003 a | 0.107 ± 0.003 ab | 0.103 ± 0.001 ab | 0.086 ± 0.042 b |
Laurylene | C15H26O | - | - | 0.185 ± 0.000 | - | - |
Octadecane | C18H38 | - | 0.694 ± 0.000 | - | - | - |
Elemol | C10H16 | - | - | - | 0.129 ± 0.000 a | 0.108 ± 0.000 b |
Total | 99.198 ± 0.723 a | 98.81 ± 0.851 a | 98.907 ± 0.537 a | 98.060 ± 1.013 a | 97.937 ± 0.529 a |
References
- Zhou, Y.; Yan, W. Conservation and applications of camphor tree (Cinnamomum camphora) in China: Ethnobotany and genetic resources. Genet. Resour. Crop Evol. 2016, 63, 1049–1061. [Google Scholar] [CrossRef]
- Li, Z.; Yang, M.; Luan, X.; Zhong, Y.; Xu, M. Genetic diversity and geographic distribution patterns of Cinnamomum camphora under climate change in China. Glob. Ecol. Conserv. 2023, 46, e02619. [Google Scholar] [CrossRef]
- Xiang, Z.; Zhao, M.; Ogbodo, U.S. Accumulation of urban insect pests in China: 50 years’ observations on camphor tree (Cinnamomum camphora). Sustainability 2020, 12, 1582. [Google Scholar] [CrossRef]
- Frizzo, C.D.; Santos, A.C.; Paroul, N.; Serafini, L.A.; Dellacassa, E.; Lorenzo, D.; Moyna, P. Essential oils of camphor tree (Cinnamomum camphora Nees & Eberm) cultivated in Southern Brazil. Braz. Arch. Biol. Technol. 2000, 43, 313–316. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, D.S.; Park, S.H.; Park, H. Phytochemistry and applications of Cinnamomum camphora essential oils. Molecules 2022, 27, 2695. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, J.; Zhao, J.; Lu, X.; Xiao, C.; Xiao, Z.; Zhang, T.; Gu, Y.; Sun, H.; Liu, H.; et al. Effects of Cinnamomum camphora coppice planting on soil fertility, microbial community structure and enzyme activity in subtropical China. Front. Microbiol. 2023, 14, 1104077. [Google Scholar] [CrossRef]
- Santangelo, E.; Scarfone, A.; Del Giudice, A.; Acampora, A.; Alfano, V.; Suardi, A.; Pari, L. Harvesting systems for poplar short rotation coppice. Ind. Crops Prod. 2015, 75, 85–92. [Google Scholar] [CrossRef]
- Hauk, S.; Knoke, T.; Wittkopf, S. Economic evaluation of short rotation coppice systems for energy from biomass—A review. Renew. Sustain. Energy Rev. 2014, 29, 435–448. [Google Scholar] [CrossRef]
- Milošević, T.; Milošević, N.; Mladenović, J. The influence of organic, organo-mineral and mineral fertilizers on tree growth, yielding, fruit quality and leaf nutrient composition of apple cv. ‘Golden Delicious Reinders’. Sci. Hortic. 2022, 297, 110978. [Google Scholar] [CrossRef]
- Chu, H.; Su, W.; Zhou, Y.; Wang, Z.; Long, Y.; Sun, Y.; Fan, S. Enzyme activity stoichiometry suggests that fertilization, especially nitrogen fertilization, alleviates nutrient limitation of soil microorganisms in moso bamboo forests. Forests 2024, 15, 1040. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, T.; Ma, L.; Chen, C.; Miao, Y.; Guo, L.; Liu, D. Mechanisms governing the impact of nitrogen stress on the formation of secondary metabolites in Artemisia argyi leaves. Sci. Rep. 2023, 13, 12866. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, X.; Song, X.; Liu, X.; Gao, H.; Liang, G.; Zhang, M.; Zheng, F.; Yang, P. Long-term nitrogen fertilization enhances crop yield potential in no-tillage systems through enhancing soil fertility. Resour. Conserv. Recycl. 2024, 206, 107622. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, W.; Zhu, K.; Fu, J.; Wang, W.; Wang, Z.; Gu, J.; Yang, J. Substituting readily available nitrogen fertilizer with controlled-release nitrogen fertilizer improves crop yield and nitrogen uptake while mitigating environmental risks: A global meta-analysis. Field Crops Res. 2024, 306, 109221. [Google Scholar] [CrossRef]
- Hu, Y.; Zeeshan, M.; Wang, G.; Pan, Y.; Liu, Y.; Zhou, X. Supplementary irrigation and varying nitrogen fertilizer rate mediate grain yield, soil-maize nitrogen accumulation and metabolism. Agric. Water Manag. 2023, 276, 108066. [Google Scholar] [CrossRef]
- Liu, P.; Guo, X.; Zhou, D.; Zhang, Q.; Ren, X.; Wang, R.; Wang, X.; Chen, X.; Li, J. Quantify the effect of manure fertilizer addition and optimal nitrogen input on rainfed wheat yield and nitrogen requirement using nitrogen nutrition index. Agric. Ecosyst. Environ. 2023, 345, 108319. [Google Scholar] [CrossRef]
- Salachna, P.; Wesołowska, A.; Zawadzińska, A.; Kańczurzewska, M.; Sawikowska, A.; Darras, A.; Neugebauerová, J.; Meller, E.; Pietrak, A.; Piechocki, R. Flaxseed oil cake improves basil (Ocimum basilicum L.) yield under drought stress by increasing herb biomass and quality of essential oil. Ind. Crops Prod. 2024, 220, 119295. [Google Scholar] [CrossRef]
- Meawad, A.A.; Awad, A.E.; Afify, A. The combined effect of N-fertilization and some growth regulators on chamomile plants. In Proceedings of the IV International Symposium on Spice and Medicinal Plants, Angers, France, 27 May 1983; Volume 144, pp. 123–134. [Google Scholar] [CrossRef]
- Alizadeh, A.; Khoshkhui, M.; Javidnia, K.; Firuzi, O.; Tafazoli, E.; Khalighi, A. Effects of fertilizer on yield, essential oil composition, total phenolic content and antioxidant activity in Satureja hortensis L. (Lamiaceae) cultivated in Iran. J. Med. Plants Res. 2010, 4, 33–40. [Google Scholar] [CrossRef]
- Sifola, M.I.; Barbieri, G. Growth, yield and essential oil content of three cultivars of basil grown under different levels of nitrogen in the field. Sci. Hortic. 2006, 108, 408–413. [Google Scholar] [CrossRef]
- Ehsanipour, A.; Razmjoo, J.; Zeinali, H. Effect of nitrogen rates on yield and quality of fennel (Foeniculum vulgare Mill.) accessions. Ind. Crops Prod. 2012, 35, 121–125. [Google Scholar] [CrossRef]
- Chen, L.; Li, K.K.; Shi, W.J.; Wang, X.L.; Wang, E.T.; Liu, J.F.; Sui, X.H.; Mi, G.H.; Tian, C.F.; Chen, W.X. Negative impacts of excessive nitrogen fertilization on the abundance and diversity of diazotrophs in black soil under maize monocrop. Geoderma 2021, 393, 114999. [Google Scholar] [CrossRef]
- Li, P.; Wu, M.; Kang, G.; Zhu, B.; Li, H.; Hu, F.; Jiao, J. Soil quality response to organic amendments on dryland red soil in subtropical China. Geoderma 2020, 373, 114416. [Google Scholar] [CrossRef]
- Jing, Z.; YangLiu, P.; Juan, L.; Lu, Z.; DongNan, H. Effects of phosphorus and potassium fertilizer on growth and oil-production of Cinnamomum camphora. For. Res. 2019, 32, 152–157. [Google Scholar]
- Zhang, H.; Liu, C.; Lu, X.; Liang, G. Evaluation of growth adaptation of Cinnamomum camphora seedlings in ionic rare earth tailings environment. Sci. Rep. 2023, 13, 16910. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Cheng, Y.; Sun, L.; Gu, X.; Sun, Y. Reassessing Woody-to-Total Area Ratio in Leaf Area Index Measurement: Refinement and Novel Methodology. SSRN 2024, 4744739. [Google Scholar] [CrossRef]
- Yuen, S.H.; Pollard, A.G. Determination of nitrogen in soil and plant materials: Use of boric acid in the micro-Kjeldahl method. J. Sci. Food Agric. 1953, 4, 490–496. [Google Scholar] [CrossRef]
- Ostadi, A.; Javanmard, A.; Machiani, M.A.; Morshedloo, M.R.; Nouraein, M.; Rasouli, F.; Maggi, F. Effect of different fertilizer sources and harvesting time on the growth characteristics, nutrient uptakes, essential oil productivity and composition of Mentha x piperita L. Ind. Crops Prod. 2020, 148, 112290. [Google Scholar] [CrossRef]
- Peçanha, D.A.; Freitas, M.S.M.; Vieira, M.E.; Cunha, J.M.; de Jesus, A.C. Phosphorus fertilization affects growth, essential oil yield and quality of true lavender in Brazil. Ind. Crops Prod. 2021, 170, 113803. [Google Scholar] [CrossRef]
- Kurniawan, H.H.; Rachmawati, A.; Andriza, Y.; Diastuti, H.; Agustian, E.; Sulaswatty, A.; Prasetia, H. Qualitative analysis of Amomum cardamomum essential oil by using gas chromatography-mass spectrometry (GC-MS) through its fragmentation and retention indices calculation. AIP Conf. Proc. 2022, 2493, 030009. [Google Scholar] [CrossRef]
- Arias, D.; Calvo-Alvarado, J.; Richter, D.D.B.; Dohrenbusch, A. Productivity, aboveground biomass, nutrient uptake and carbon content in fast-growing tree plantations of native and introduced species in the Southern Region of Costa Rica. Biomass Bioenergy 2011, 35, 1779–1788. [Google Scholar] [CrossRef]
- Chu, X.; Wang, X.; Zhang, D.; Wu, X.; Zhou, Z. Effects of fertilization and container-type on nutrient uptake and utilization by four subtropical tree seedlings. J. For. Res. 2020, 31, 1201–1213. [Google Scholar] [CrossRef]
- Dong, L.; Zhu, X.; Lin, X.; Xu, Z. Effects of fertilization on the growth of three Lauraceae seedlings in containers. North. Hortic. 2011, 13, 73–77. [Google Scholar]
- Ding, L.; Lu, Z.; Gao, L.; Guo, S.; Shen, Q. Is nitrogen a key determinant of water transport and photosynthesis in higher plants upon drought stress? Front. Plant Sci. 2018, 9, 1143. [Google Scholar] [CrossRef] [PubMed]
- Köhler, J. The Phosphorus and Nitrogen Nutrition of European Beech Under a Future Warmer and Drier Climate: Climate Chamber Experiments and Transect Studies; Georg-August-Universität Göttingen: Göttingen, Germany, 2023. [Google Scholar] [CrossRef]
- Ibrahim, M.H.; Jaafar, H.Z.; Rahmat, A.; Rahman, Z.A. Effects of nitrogen fertilization on synthesis of primary and secondary metabolites in three varieties of kacip fatimah (Labisia pumila Blume). Int. J. Mol. Sci. 2011, 12, 5238–5254. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, K.J.; Dubis, B. Jerusalem Artichoke: Nitrogen Fertilization Strategy and Energy Balance in the Production Technology of Aerial Biomass. Energies 2024, 17, 5202. [Google Scholar] [CrossRef]
- Barłóg, P.; Grzebisz, W.; Łukowiak, R. Fertilizers and fertilization strategies mitigating soil factors constraining efficiency of nitrogen in plant production. Plants 2022, 11, 1855. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Y.; Du, S.; Qiao, Y.; Cao, C.; Chen, H. Optimized N application improves N absorption, population dynamics, and ear fruiting traits of wheat. Front. Plant Sci. 2023, 14, 1199168. [Google Scholar] [CrossRef]
- Jarrell, W.M.; Beverly, R.B. The dilution effect in plant nutrition studies. Adv. Agron. 1981, 34, 197–224. [Google Scholar] [CrossRef]
- Mahajan, M.; Kuiry, R.; Pal, P.K. Understanding the consequence of environmental stress for accumulation of secondary metabolites in medicinal and aromatic plants. J. Appl. Res. Med. Aromat. Plants 2020, 18, 100255. [Google Scholar] [CrossRef]
- Figueiredo, A.C.; Barroso, J.G.; Pedro, L.G.; Scheffer, J.J. Factors affecting secondary metabolite production in plants: Volatile components and essential oils. Flavour Fragr. J. 2008, 23, 213–226. [Google Scholar] [CrossRef]
- Bhandari, D.P.; Chaudhary, P.; Upadhyaya, S.R.; Ranjitkar, R.; Satyal, R.; Adhikari, A.; Satyal, P.; Parajuli, N. Chemical variability, antioxidant and larvicidal efficacy of EOs from Citrus sinensis (L.) Osbeck peel, leaf, and flower. Horticulturae 2024, 10, 566. [Google Scholar] [CrossRef]
- Allam, O.; Hassan, S.; Kandil, A.; Abdel Hamid, A.; Korayem, A. Impact of bio-and chemical fertilization on growth, yield, essential oil and chemical composition of fennel (Foeniculum vulgare Mill.) Plant. Arab. Univ. J. Agric. Sci. 2021, 29, 887–900. [Google Scholar] [CrossRef]
Treatment | N/kg·hm−2 | P2O5/kg·hm−2 | K2O/kg·hm−2 |
---|---|---|---|
N0 | 0 | 90 | 90 |
N45 | 45 | 90 | 90 |
N90 | 90 | 90 | 90 |
N135 | 135 | 90 | 90 |
N180 | 180 | 90 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Chen, X.; Zhao, J.; Sun, L.; Guo, J.; Shao, Y.; Liu, J.; Zhong, L.; Zhang, H.; Wang, Y.; et al. Threshold Effects of Nitrogen Fertilization Rates on Growth and Essential Oil Yield with Component Regulation in Cinnamomum camphora var. linaloolifera. Agronomy 2025, 15, 1387. https://doi.org/10.3390/agronomy15061387
Liu Z, Chen X, Zhao J, Sun L, Guo J, Shao Y, Liu J, Zhong L, Zhang H, Wang Y, et al. Threshold Effects of Nitrogen Fertilization Rates on Growth and Essential Oil Yield with Component Regulation in Cinnamomum camphora var. linaloolifera. Agronomy. 2025; 15(6):1387. https://doi.org/10.3390/agronomy15061387
Chicago/Turabian StyleLiu, Zhirong, Xinyi Chen, Jiao Zhao, Luyuan Sun, Jian Guo, Yangyang Shao, Jia Liu, Lei Zhong, Haiyan Zhang, Yanbo Wang, and et al. 2025. "Threshold Effects of Nitrogen Fertilization Rates on Growth and Essential Oil Yield with Component Regulation in Cinnamomum camphora var. linaloolifera" Agronomy 15, no. 6: 1387. https://doi.org/10.3390/agronomy15061387
APA StyleLiu, Z., Chen, X., Zhao, J., Sun, L., Guo, J., Shao, Y., Liu, J., Zhong, L., Zhang, H., Wang, Y., & Zhang, J. (2025). Threshold Effects of Nitrogen Fertilization Rates on Growth and Essential Oil Yield with Component Regulation in Cinnamomum camphora var. linaloolifera. Agronomy, 15(6), 1387. https://doi.org/10.3390/agronomy15061387