Economic and Environmental Assessment of Organic Lemon Cultivation: The Case of Southeastern Spain
Abstract
1. Introduction
2. Materials and Methods
2.1. Primary Information
2.2. Establishment of Production Models
- Organic Fino
- Organic Verna
2.3. Economic Evaluation: Life Cycle Cost Analysis
2.3.1. Fixed Costs
2.3.2. Variable Costs
- Production insurance
- Pruning
- Machinery
- Fertilizers
- Phytosanitary treatments
- Clearing
- Maintenance
- Permanent staff
- Water
- Electrical energy (irrigation)
2.4. Environmental Assessment: Life Cycle Analysis (LCA)
2.4.1. Objective and Scope
- Infrastructure: this corresponds to the investment and fixed assets of the LCC. It involves the fuel and lubricants consumed by machinery during land preparation and planting, and their emissions into the atmosphere; the production process of young plants in the nursery (taken from Ecoinvent); the irrigation equipment, irrigation network, and weed control mat, accounting for their raw materials, manufacture, and transportation; the reservoir, taking into account the fuel and lubricant consumed in its construction and their emissions, as well as the necessary raw materials, their manufacture, and their transportation.
- Machinery: the fuel and lubricant consumed by machinery during agricultural work in the production cycle and their emissions into the atmosphere.
- Fertilizers: the production of organic fertilizers and their transportation, packaging, and atmospheric emissions (derived from the application of nitrogen fertilizers in the field). Manure and the emissions following its application in the field were also considered.
- Pesticides: the production of pesticides, their packaging, and their transport, as well as their emissions into soil, air, and water, applying the fixed emission factors established by the EU [58]. The electrical energy consumed in the production of insects used in biological control was also taken into account. For pheromone diffusers, the plastic and its transport were also included.
- Electrical energy: the electrical energy consumed during fertigation.
- Waste treatment: the treatment of infrastructure and packaging (metals and plastics) that have reached the end of their useful life. It was considered that 80% of these materials are recycled and the remaining 20% end up in landfills. Prunings were not considered waste since they are shredded and used as a mulch.
2.4.2. Life Cycle Inventory Analysis
2.4.3. Life Cycle Impact: Assessment and Interpretation
2.5. Sensitivity Analysis
2.5.1. Economic
2.5.2. Environmental
3. Results and Discussion
3.1. Economic Analysis: Life Cycle Cost
3.2. Environmental Analysis: Life Cycle Assessment
3.2.1. Contribution Analysis
3.2.2. Conventional vs. Organic
3.2.3. Global Warming
3.3. Sensitivity Analysis
3.3.1. Economic
3.3.2. Environmental
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Initial Investment for the Farm (€) | Initial Investment (€·ha−1) | Useful Life (Years) | Residual Value (€·ha−1) | Amortization (€·ha−1·Year−1) | Fixed Costs * (€·ha−1·Year−1) | |
---|---|---|---|---|---|---|
Shed for equipment | 16,000.0 | 1600.0 | 30.0 | 400.0 | 40.0 | 41 |
Preparation and planting | 35,500.7 | 3550.1 | 25.0 | 0.0 | 142.0 | 144 |
Irrigation reservoir | 31,744.2 | 3174.4 | 30.0 | 794.0 | 79.0 | 81 |
Irrigation equipment | 13,125.0 | 1312.5 | 15.0 | 0.0 | 88.0 | 89 |
Irrigation network | 18,972.9 | 1897.3 | 10.0 | 0.0 | 190.0 | 193 |
Weed control mat | 17,290.0 | 1728.0 | 25.0 | 0.0 | 69.0 | 70 |
Various | 1250.0 | 125.0 | 5.0 | 0.0 | 25.0 | 25 |
133,882.8 | 13,388.3 | 643 |
Initial Investment for the Farm (€) | Initial Investment (€·ha−1) | Useful Life (Years) | Residual Value (€·ha−1) | Amortization (€·ha−1·Year−1) | Fixed Costs * (€·ha−1·Year−1) | |
---|---|---|---|---|---|---|
Shed for equipment | 16,000.0 | 1600.0 | 30.0 | 400.0 | 40.0 | 41 |
Preparation and planting | 37,215.0 | 3721.5 | 30.0 | 0.0 | 124.0 | 126 |
Irrigation reservoir | 28,344.0 | 2834.4 | 30.0 | 709.0 | 71.0 | 72 |
Irrigation equipment | 13,125.0 | 1312.5 | 15.0 | 0.0 | 88.0 | 89 |
Irrigation network | 18,972.9 | 1897.3 | 10.0 | 0.0 | 190.0 | 193 |
Weed control mat | 17,290.0 | 1729.0 | 30.0 | 0.0 | 58 | 59 |
Various | 1250.0 | 125.0 | 5.0 | 0.0 | 25.0 | 25 |
132,196.9 | 13,219.7 | 604 |
References
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Energy and Environmental Issues in Organic and Conventional Agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- Benedetto, G. The Environmental Impact of a Sardinian Wine by Partial Life Cycle Assessment. Wine Econ. Policy 2013, 2, 33–41. [Google Scholar] [CrossRef]
- Tribunal de cuentas europeo. Informe Especial 19/2024. Agricultura Ecológica En La UE. Las Lagunas e Incoherencias Restan Eficacia a La Política; European Court of Auditors: Luxemburgo, 2024.
- Goh, K.M. Greater Mitigation of Climate Change by Organic than Conventional Agriculture: A Review. Biol. Agric. Hortic. 2011, 27, 205–229. [Google Scholar] [CrossRef]
- Rapa, M.; Ciano, S. A Review on Life Cycle Assessment of the Olive Oil Production. Sustainability 2022, 14, 654. [Google Scholar] [CrossRef]
- Meisterling, K.; Samaras, C.; Schweizer, V. Decisions to Reduce Greenhouse Gases from Agriculture and Product Transport: LCA Case Study of Organic and Conventional Wheat. J. Clean. Prod. 2009, 17, 222–230. [Google Scholar] [CrossRef]
- Bai, Z.; Caspari, T.; Ruiperez Gonzalez, M.; Batjes, N.H.; Mäder, P.; Bünemann, E.K.; de Goede, R.; Brussaard, L.; Xu, M.; Santos Ferreira, C.S.; et al. Effects of Agricultural Management Practices on Soil Quality: A Review of Long-Term Experiments for Europe and China. Agric. Ecosyst. Environ. 2018, 265, 1–7. [Google Scholar] [CrossRef]
- Cirigliano, P.; Chiriacò, M.V.; Nuñez, A.; Dal Monte, G.; Labagnara, T. Combined Effect of Irrigation and Compost Application on Montepulciano Berry Composition in a Volcanic Environment of Latium Region (Central Italy). Cien. Investig. Agrar. 2017, 44, 195–206. [Google Scholar] [CrossRef]
- Marín-Martínez, A.; Sanz-Cobeña, A.; Bustamante, M.A.; Agullo, E.; Paredes, C. Effect of Organic Amendment Addition on Soil Properties, Greenhouse Gas Emissions and Grape Yield in Semi-Arid Vineyard Agroecosystems. Agronomy 2021, 11, 1477. [Google Scholar] [CrossRef]
- Pinto-Morales, F.; Retamal-Salgado, J.; López, M.D.; Zapata, N.; Vergara-Retamales, R.; Pinto-Poblete, A. The Use of Compost Increases Bioactive Compounds and Fruit Yield in Calafate Grown in the Central South of Chile. Agriculture 2022, 12, 98. [Google Scholar] [CrossRef]
- Burton, C.H.; Turner, C.; Arkhipchenko, I.A.; Beck, J.; Bernal, M.; Bicudo, J.; Böhm, R.; Bogun, G.; Carton, O.; Dohanyos, M.; et al. Manure Management: Treatment Strategies for Sustainable Agriculture, 2nd ed.; Burton, C.H., Turner, C., Eds.; Silsoe Research Institute Publication: Hertfordshire, UK, 2003; p. 451. ISBN 0-9531282-6-1. [Google Scholar]
- Calabro, G.; Vieri, S. Limits and Potential of Organic Farming towards a More Sustainable European Agri-Food System. Br. Food J. 2024, 126, 223–236. [Google Scholar] [CrossRef]
- Benoit, M.; Garnier, J.; Billen, G.; Tournebize, J.; Gréhan, E.; Mary, B. Nitrous Oxide Emissions and Nitrate Leaching in an Organic and a Conventional Cropping System (Seine Basin, France). Agric. Ecosyst. Environ. 2015, 213, 131–141. [Google Scholar] [CrossRef]
- Bocean, C.G. The Role of Organic Farming in Reducing Greenhouse Gas Emissions from Agriculture in the European Union. Agronomy 2025, 15, 198. [Google Scholar] [CrossRef]
- Bengtsson, J.; Ahnström, J.; Weibull, A. The Effects of Organic Agriculture on Biodiversity and Abundance: A Meta-analysis. J. Appl. Ecol. 2005, 42, 261–269. [Google Scholar] [CrossRef]
- Haas, G.; Wetterich, F.; Köpke, U. Comparing Intensive, Extensified and Organic Grassland Farming in Southern Germany by Process Life Cycle Assessment. Agric. Ecosyst. Environ. 2001, 83, 43–53. [Google Scholar] [CrossRef]
- Beecher, N.; Johnson, R.; Brandle, J.; Case, R.; Young, L. Agroecology of Birds in Organic and Nonorganic Farmland. Conserv. Biol. 2002, 16, 1620–1631. [Google Scholar] [CrossRef]
- Andersson, G.K.S.; Rundlöf, M.; Smith, H.G. Organic Farming Improves Pollination Success in Strawberries. PLoS ONE 2012, 7, e31599. [Google Scholar] [CrossRef]
- Pfiffner, L.; Balmer, O. Organic Agriculture and Biodiversity; Weidmann, G., Ed.; Research Institute for Organic Agriculture (FiBL): Frick, Switzerland, 2011; ISBN 978-3-03736-195-5. [Google Scholar]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental Impacts of Organic and Conventional Agricultural Products—Are the Differences Captured by Life Cycle Assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef]
- Ben Abdallah, S.; Gallego-Elvira, B.; Imbernón-Mulero, A.; Martínez-Alvarez, V.; Maestre-Valero, J. Environmental Footprint of Organic and Conventional Grapefruit Production Irrigated with Desalinated Seawater in Spain. Sustain. Prod. Consum. 2023, 39, 326–335. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; Hodge, I.D.; Riordan, P.; Macdonald, D.W. Does Organic Farming Reduce Environmental Impacts?-A Meta-Analysis of European Research. J. Environ. Manag. 2012, 112, 309–320. [Google Scholar] [CrossRef]
- Sgroi, F.; Candela, M.; Di Trapani, A.M.; Foderà, M.; Squatrito, R.; Testa, R.; Tudisca, S. Economic and Financial Comparison between Organic and Conventional Farming in Sicilian Lemon Orchards. Sustainability 2015, 7, 947–961. [Google Scholar] [CrossRef]
- Torres, J.; Valera, D.; Belmonte, L.; Herrero-Sánchez, C. Economic and Social Sustainability through Organic Agriculture: Study of the Restructuring of the Citrus Sector in the “Bajo Andarax” District (Spain). Sustainability 2016, 8, 918. [Google Scholar] [CrossRef]
- Knudsen, M.T.; de Almeida, G.F.; Langer, V.; de Abreu, L.S.; Halberg, N. Environmental Assessment of Organic Juice Imported to Denmark: A Case Study on Oranges (Citrus Sinensis) from Brazil. Org. Agric. 2011, 1, 167–185. [Google Scholar] [CrossRef]
- Fusi, A.; Guidetti, R.; Benedetto, G. Delving into the Environmental Aspect of a Sardinian White Wine: From Partial to Total Life Cycle Assessment. Sci. Total Environ. 2014, 472, 989–1000. [Google Scholar] [CrossRef]
- Ecovalia. Informe Anual 2024: Consumo y Producción Ecológicos; Asociación Valor Ecológico CAAE (Ecovalia): Sevilla, Spain, 2024; Available online: https://www.ecovalia.org/informe-anual/ (accessed on 24 April 2025).
- Ministerio de Agricultura, Pesca y Alimentación (MAPA). Estadísticas de Producción Ecológica en España; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 2023; ISBN 003-25-039-1.
- García Castellanos, B.; García García, B.; García García, J. Economic and Environmental Assessment of Conventional Lemon Cultivation: The Case of Southeastern Spain. Agronomy 2024, 14, 1842. [Google Scholar] [CrossRef]
- García Castellanos, B.; García Garcia, B.; García García, J. Evaluation of the Sustainability of Vineyards in Semi-Arid Climates: The Case of Southeastern Spain. Agronomy 2022, 12, 3213. [Google Scholar] [CrossRef]
- Gobierno de España. Ley 16/2021, de 14 de Diciembre, Por La Que se Modifica La Ley 12/2013, de 2 de Agosto, de Medidas Para Mejorar El Funcionamiento de La Cadena Alimentaria; Boletín Oficial del Estado (BOE): Madrid, Spain, 2021.
- European Commission. A Farm to Fork Strategy; Communication from the Commission to the European Parliament, the Council, the European Eco-nomic and Social Committee and the Committee of the Regions; European Commission: Brussels, Belgium, 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020DC0381 (accessed on 24 April 2025).
- The European Parliament and the Council of the European Union. Regulation (EU) 2018/848 of 30 May 2018 on Organic Production and Labelling of Organic Products; European Commission: Brussels, Belgium, 2018. Available online: https://eur-lex.europa.eu/eli/reg/2018/848/oj/eng (accessed on 24 April 2025).
- Gobierno de España. Ley 12/2013, de 2 de Agosto, de Medidas Para Mejorar El Funcionamiento de La Cadena Alimentaria; Boletín Oficial del Estado (BOE): Madrid, Spain, 2013.
- ISO 14040; Environmental Management–Life Cycle Assessment: Principles and Framework. International Organization for Standards (ISO): Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management–Life Cycle Assessment: Requirements and Guidelines. International Organization for Standards (ISO): Geneva, Switzerland, 2006.
- Falcone, G.; De Luca, A.; Stillitano, T.; Strano, A.; Romeo, G.; Gulisano, G. Assessment of Environmental and Economic Impacts of Vine-Growing Combining Life Cycle Assessment, Life Cycle Costing and Multicriterial Analysis. Sustainability 2016, 8, 793. [Google Scholar] [CrossRef]
- Clift, R.; Druckman, A. Taking Stock of Industrial Ecology; Springer Open: Cham, Switzerland, 2016; ISBN 978-3-319-20571-7. [Google Scholar]
- Rivela, B.; Kuczenski, B.; Sucozhañay, D. Chapter 6. Life Cycle Sustainability Assessment-Based Tools. In Assessing Progress Towards Sustainability; Teodosiu, C., Fiore, S., Hospido, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 93–118. ISBN 978-0-323-85851-9. [Google Scholar]
- Nemecek, T.; Dubois, D.; Huguenin-Elie, O.; Gaillard, G. Life Cycle Assessment of Swiss Farming Systems: I. Integrated and Organic Farming. Agric. Syst. 2011, 104, 217–232. [Google Scholar] [CrossRef]
- Tamburini, E.; Pedrini, P.; Marchetti, M.G.; Fano, E.A.; Castaldelli, G. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area. Sustainability 2015, 7, 2915–2935. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, T.; Feng, H.; Chen, S. Greenhouse Gas Emissions from Landfills: A Review and Bibliometric Analysis. Sustainability 2019, 11, 2282. [Google Scholar] [CrossRef]
- Sottile, F.; Massaglia, S.; Peano, C. Ecological and Economic Indicators for the Evaluation of Almond (Prunus dulcis L.) Orchard Renewal in Sicily. Agriculture 2020, 10, 301. [Google Scholar] [CrossRef]
- García Castellanos, B.; García García, B.; García García, J. Economic and Environmental Effects of Replacing Inorganic Fertilizers with Organic Fertilizers in Three Rainfed Crops in a Semi-Arid Area. Sustainability 2023, 15, 16897. [Google Scholar] [CrossRef]
- Ribal, J.; Sanjuan, N.; Clemente, G.; Fenollosa, M.L. Medición de La Ecoeficiencia En Procesos Productivos En El Sector Agrario. Caso de Estudio Sobre Producción de Cítricos. Econ. Agrar. Y Recur. Nat. 2009, 9, 125–148. [Google Scholar] [CrossRef]
- Pergola, M.; D’Amico, M.; Celano, G.; Palese, A.M.; Scuderi, A.; Di Vita, G.; Pappalardo, G.; Inglese, P. Sustainability Evaluation of Sicily’s Lemon and Orange Production: An Energy, Economic and Environmental Analysis. J. Environ. Manag. 2013, 128, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Falcone, G.; Fazari, A.; Vono, G.; Gulisano, G.; Strano, A. Application of the LCA Approach to the Citrus Production Chain–A Systematic Review. Clean. Environ. Syst. 2024, 12, 100156. [Google Scholar] [CrossRef]
- Ballestero, E. Economía de La Empresa Agraria y Alimentaria; Mundi-Prensa Libros: Madrid, Spain, 2000; ISBN 978-84-7114-863-6. [Google Scholar]
- Mitrović, I.; Todorović, M.; Marković, M.; Mehmeti, A. Eco-Efficiency Analysis of Rainfed and Irrigated Maize Systems in Bosnia and Herzegovina. J. Water Clim. Change 2023, 14, 4489–4505. [Google Scholar] [CrossRef]
- Samuelson, P.A.; Nordhaus, W.D. Economía; McGraw-Hill Interamericana: Madrid, Spain, 2006; ISBN 978-84-481-5154-6. [Google Scholar]
- Ministerio de Medio Ambiente y Medio Rural y Marino (MAGRAMA). Guía Práctica de La Fertilización Racional de Los Cultivos en España; Ministerio de Medio Ambiente y Medio Rural y Marino (MAGRAMA): Madrid, Spain, 2010; ISBN 978-84-491-0997-3.
- García García, J. Análisis Del Sector Del Limonero y Evaluación Económica de Su Cultivo; Consejería de Agricultura y Agua de la Región de Murcia: Murcia, Spain, 2014; ISBN 978-84-697-0909-2. [Google Scholar]
- Soria Alfonso, A. La Fertirrigación del Limonero; Formación Agroalimentaria: Aranda de Duero, Spain; Comunidad Autónoma de la Región de Murcia Consejería de Agricultura y Agua: Murcia, Spain, 2008; ISBN MU-1.004-2008. [Google Scholar]
- Cabot, M.I.; Lado, J.; Clemente, G.; Sanjuán, N. Towards Harmonised and Regionalised Life Cycle Assessment of Fruits: A Review on Citrus Fruit. Sustain. Prod. Consum. 2022, 33, 567–585. [Google Scholar] [CrossRef]
- Cabot, M.I.; Lado, J.; Sanjuán, N. Multi-Season Environmental Life Cycle Assessment of Lemons: A Case Study in South Uruguay. J. Environ. Manag. 2023, 326, 116719. [Google Scholar] [CrossRef]
- Ribal, J.; Ramírez-Sanz, C.; Estruch, V.; Clemente, G.; Sanjuán, N. Organic versus Conventional Citrus. Impact Assessment and Variability Analysis in the Comunitat Valenciana (Spain). Int. J. Life Cycle Assess. 2016, 22, 571–586. [Google Scholar] [CrossRef]
- Yan, M.; Cheng, K.; Yue, Q.; Yan, Y.; Rees, R.M.; Pan, G. Farm and Product Carbon Footprints of China’s Fruit Production—Life Cycle Inventory of Representative Orchards of Five Major Fruits. Environ. Sci. Pollut. Res. 2016, 23, 4681–4691. [Google Scholar] [CrossRef]
- European Commission. Commission Recommendation (EU) 2021/2279 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations; European Commission: Brussels, Belgium, 2021.
- Ingrao, C.; Matarazzo, A.; Tricase, C.; Clasadonte, M.T.; Huisingh, D. Life Cycle Assessment for Highlighting Environmental Hotspots in Sicilian Peach Production Systems. J. Clean. Prod. 2015, 92, 109–120. [Google Scholar] [CrossRef]
- Bartzas, G.; Vamvuka, D.; Komnitsas, K. Comparative Life Cycle Assessment of Pistachio, Almond and Apple Production. Inf. Process. Agric. 2017, 4, 188–198. [Google Scholar] [CrossRef]
- Montemayor, E.; Andrade, E.P.; Bonmatí, A.; Antón, A. Critical Analysis of Life Cycle Inventory Datasets for Organic Crop Production Systems. Int. J. Life Cycle Assess. 2022, 27, 543–563. [Google Scholar] [CrossRef]
- European Environment Agency (EEA). Air Pollution Emission Inventory Guidebook 2019. Technical Guidance to Prepare National Emission Inventories; EEA Report; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-9213-806-6.
- The Intergovernmental Panel on Climate Change. Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Calvo Buendia, E., Tanabe, K., Kranjc, A., Baasansuren, J., Fukuda, M., Ngarize, S., Osako, A., Pyrozhenko, Y., Shermanau, P., Federici, S., Eds.; IPCC: Geneva, Switzerland, 2019; ISBN 978-4-88788-232-4. [Google Scholar]
- Beccali, M.; Cellura, M.; Iudicello, M.; Mistretta, M. Resource Consumption and Environmental Impacts of the Agrofood Sector: Life Cycle Assessment of Italian Citrus-Based Produdts. Environ. Manag. 2009, 43, 707–724. [Google Scholar] [CrossRef] [PubMed]
- Gazulla, C.; Raugei, M.; Fullana-i-Palmer, P. Taking a Life Cycle Look at Crianza Wine Production in Spain: Where Are the Bottlenecks? Int. J. Life Cycle Assess. 2010, 15, 330–337. [Google Scholar] [CrossRef]
- Bosco, S.; Di Bene, C.; Galli, M.; Remorini, D.; Massai, R.; Bonari, E. Greenhouse Gas Emissions in the Agricultural Phase of Wine Production in the Maremma Rural District in Tuscany, Italy. Ital. J. Agron. 2011, 6, 93–100. [Google Scholar] [CrossRef]
- Villanueva-Rey, P.; Vázquez-Rowe, I.; Moreira, M.T.; Feijoo, G. Comparative Life Cycle Assessment in the Wine Sector: Biodynamic vs. Conventional Viticulture Activities in NW Spain. J. Clean. Prod. 2014, 65, 330–341. [Google Scholar] [CrossRef]
- Ferrara, C.; De Feo, G. Life Cycle Assessment Application to the Wine Sector: A Critical Review. Sustainability 2018, 10, 395. [Google Scholar] [CrossRef]
- De Luca, A.I.; Iofrida, N.; Strano, A.; Falcone, G.; Gulisano, G. Social Life Cycle Assessment and Participatory Approaches: A Methodological Proposal Applied to Citrus Farming in Southern Italy. Integr. Envir. Assess. Amp. Manag. 2015, 11, 383–396. [Google Scholar] [CrossRef]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental Impact of Food Waste Bioconversion by Insects: Application of Life Cycle Assessment to Process Using Hermetia Illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- García García, J. Estructura de Costes de las Orientaciones Productivas Agrícolas de la Región de Murcia: Frutales de Hueso y Cítricos; Técnica; Consejería de Agua, Agricultura, Ganadería y Pesca de la Región de Murcia: Murcia, Spain, 2018; ISBN MU-198-2018. [Google Scholar]
- Fernández Zamudio, M.Á. Metodología-IVIA: Determinación Costes de Cultivo. Resultados Preliminares de Costes de Mandarino, Naranjo y Caqui; IVIA: Valencia, Spain, 2022; Available online: https://redivia.gva.es/handle/20.500.11939/8391 (accessed on 24 April 2025).
- Falcone, G.; Stillitano, T.; De Luca, A.I.; Di Vita, G.; Iofrida, N.; Strano, A.; Gulisano, G.; Pecorino, B.; D’Amico, M. Energetic and Economic Analyses for Agricultural Management Models: The Calabria PGI Clementine Case Study. Energies 2020, 13, 1289. [Google Scholar] [CrossRef]
- García García, J. Estructura de Costes de las Orientaciones Productivas Agrícolas de la Región de Murcia: Frutos Secos, Frutales de Pepita, Vid y Olivo; Técnica; Consejería de Agua, Agricultura, Ganadería y Pesca de la Región de Murcia: Murcia, Spain, 2019; ISBN MU 422-2019. [Google Scholar]
- Comunidad Autónoma de la Región de Murcia (CARM). Estadística Agraria de Murcia 2020/21; Comunidad Autónoma de la Región de Murcia. Consejería de Agua, Agricultura, Ganadería, Pesca, Medio Ambiente y Emergencias: Murcia, Spain, 2022; Available online: https://www.carm.es/web/pagina?IDCONTENIDO=2589&IDTIPO=100&RASTRO=c80$m22721,22746,1174 (accessed on 24 April 2025).
- Keyes, S.; Tyedmers, P.; Beazley, K. Evaluating the Environmental Impacts of Conventional and Organic Apple Production in Nova Scotia, Canada, through Life Cycle Assessment. J. Clean. Prod. 2015, 104, 40–51. [Google Scholar] [CrossRef]
- Ribal, J.; Estruch, V.; Clemente, G.; Fenollosa, M.L.; Sanjuán, N. Assessing Variability in Carbon Footprint throughout the Food Supply Chain: A Case Study of Valencian Oranges. Int. J. Life Cycle Assess. 2019, 24, 1515–1532. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Beccaro, G.L.; Bruun, S.; Bosco, S.; Donno, D.; Notarnicola, B.; Bounous, G. Life Cycle Assessment Application in the Fruit Sector: State of the Art and Recommendations for Environmental Declarations of Fruit Products. J. Clean. Prod. 2014, 73, 125–135. [Google Scholar] [CrossRef]
- Aguilera, E.; Guzmán, G.; Alonso, A. Greenhouse Gas Emissions from Conventional and Organic Cropping Systems in Spain. I. Herbaceous Crops. Agron. Sustain. Dev. 2015, 35, 713–724. [Google Scholar] [CrossRef]
- Climent, M.; Sanjuán, N.; Domínguez, A.; Girona, F. Estudio del impacto mediambiental de la producción integrada y ecológica de cítricos en el País Valencià. Perspectiva del ciclo de vida. In Proceedings of the Actas IV Congrès Valencià d’Agricultura Ecològica, Gandia, España, 2005; Available online: https://1library.co/document/zwo7kgvy-m-climent-n-sanjuan-a-dominguez-f-girona-y-a-mulet.html (accessed on 24 April 2025).
- Soto García, M.; Martínez Álvarez, V.; Martín Górriz, B. El regadío en la Región de Murcia. Caracterización y Análisis Mediante Indicadores de Gestión; Sindicato Central de Regantes del Acueducto Tajo-Segura: Murcia, Spain, 2014; ISBN 978-84-697-0372-4. [Google Scholar]
- Grindlay Moreno, A.L.G.; Lizágarra Mollinedo, C.L. Regadío y territorio en la Región de Murcia: Evolución y perspectivas de futuro. Estud. Territ. 2012, 44, 281–298. [Google Scholar]
Fino Organic | Verna Organic | |
---|---|---|
CHARACTERISTICS | ||
Useful life (years) | 25 | 30 |
Planting scheme (m × m) | 7 × 5 | 7 × 5 |
Yield during productive years (kg∙ha−1) | 40,000 | 29,000 |
Non-fresh marketable yield (industry) (%) | 14 | 12 |
Non-productive years | 1 | 1 |
Partially productive years | 4 | 5 |
INPUTS IN PRODUCTIVE YEARS | ||
Machinery hours (h∙ha−1) | 11.00 | 10.00 |
Diesel (machinery) (L∙ha−1) | 122.54 | 116.50 |
Fertilizers (N-P2O5-K2O-CaO-MgO) | (120-35-105-15-5) | (100-30-85-15-5) |
Organic liquid fertilizer (2-4-6) (L∙ha−1) | 50.00 | 0.00 |
Organic liquid fertilizer (7% MgO) (L∙ha−1) | 64.29 | 64.29 |
Organic liquid fertilizer (8-0-0) (L∙ha−1) | 687.00 | 573.00 |
Organic liquid fertilizer (6% CaO) (L∙ha−1) | 250.00 | 250.00 |
Organic liquid fertilizer (0.8-10-0) (L∙ha−1) | 106.00 | 114.00 |
Organic liquid fertilizer (2-0-4) (L∙ha−1) | 200.00 | 200.00 |
Manure (sheep/goat) (1.48-0.56-2.35) (kg∙ha−1) | 4000.00 | 3330.00 |
Phytosanitary treatments | ||
Bacillus thuringiensis (kg∙ha−1) | 1.50 | 1.50 |
Neoseiulus californicus (n° insects∙ha−1) | 200,000 | 200,000 |
Anagyrus vladimiri (n° insects∙ha−1) | 1000 | 0 |
Aphytis melinus (n° insects∙ha−1) | 60,000 | 60,000 |
Confusion pheromone Prays citri (diffusers∙ha−1) | 0 | 300 |
Confusion pheromone Aonidiella aurantii (diffusers∙ha−1) | 400 | 400 |
Paraffin oil (83%) (L∙ha−1) | 60.00 | 60.00 |
Irrigation | ||
Water (m3∙ha−1) | 5600 | 5000 |
Fertigation electricity (kWh∙ha−1) | 714.70 | 640.13 |
Gross Production | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 |
---|---|---|---|---|---|---|
Coefficients Fino (%) | 0 | 8 | 25 | 50 | 80 | Adult |
Coefficients Verna (%) | 0 | 8 | 20 | 40 | 60 | 80 |
Variable Costs | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 |
---|---|---|---|---|---|---|
Coefficients Fino (%) | 20 | 35 | 60 | 75 | 85 | Adult |
Coefficients Verna (%) | 20 | 30 | 45 | 65 | 80 | 90 |
Fino Organic | Verna Organic | |
---|---|---|
INFRASTRUCTURE | ||
Preparation and Planting | ||
Diesel (g∙kg−1) | 0.2382 | 0.2725 |
Lubricant oil (g∙kg−1) | 0.0003 | 0.0003 |
Manure (kg∙kg−1) | 0.1338 | 0.1321 |
Local transportation (kg∙km∙kg−1) | 0.0067 | 6.6043 |
Irrigation reservoir | ||
Diesel (g∙kg−1) | 0.3906 | 0.5361 |
Lubricant oil (g∙kg−1) | 0.0004 | 0.0006 |
HDPE sheet (g∙kg−1) | 0.1338 | 0.1837 |
Local transportation (kg∙km∙kg−1) | 0.0067 | 0.0092 |
Irrigation equipment | ||
Iron (mg∙kg−1) | 9.6317 | 13.2219 |
Steel (mg∙kg−1) | 0.9632 | 1.3222 |
Copper (mg∙kg−1) | 2.8895 | 3.9666 |
Brass (mg∙kg−1) | 0.1926 | 0.2644 |
PVC pipe (mg∙kg−1) | 7.7053 | 10.5775 |
LDPE pipe (mg∙kg−1) | 0.3853 | 0.5289 |
Polyamide (mg∙kg−1) | 0.5779 | 0.7933 |
HDPE tanks (mg∙kg−1) | 8.6685 | 11.8997 |
Local transportation (kg∙km∙kg−1) | 0.0016 | 0.0021 |
Irrigation network | ||
LDPE (g∙kg−1) | 0.4986 | 0.6845 |
Local transportation (kg∙km∙kg−1) | 0.0249 | 0.0342 |
Weed control mat | ||
Polypropylene (g∙kg−1) | 0.4883 | 0.5586 |
Local transportation (kg∙km∙kg−1) | 0.0244 | 0.0279 |
SUPPLIES | ||
Agricultural machinery | ||
Diesel (g∙kg−1) | 2.6809 | 3.4988 |
Lubricant oil (g∙kg−1) | 0.0029 | 0.0038 |
Fertilizers | ||
Organic liquid fertilizer (2-4-6) (g K2O∙kg−1) | 0.0789 | 0.0000 |
Organic liquid fertilizer (7% MgO) (g∙kg−1) | 1.8932 | 2.5989 |
Organic liquid fertilizer (8-0-0) (g N∙kg−1) | 1.2053 | 1.6365 |
Organic liquid fertilizer (6% CaO) (g∙kg−1) | 6.5736 | 9.0240 |
Organic liquid fertilizer (0.8-10-0) (g P2O5∙kg−1) | 0.2998 | 0.4115 |
Organic liquid fertilizer (2-0-4) (g∙kg−1) | 0.2104 | 0.2888 |
Local transportation (kg∙km∙kg−1) | 1.6552 | 2.1820 |
Manure (1.48-0.56-2.35) (g N∙kg−1) | 1.7106 | 1.9549 |
Local transportation (kg∙km∙kg−1) | 5.7790 | 6.6043 |
Phytosanitary products | ||
Insects production (kWh∙kg−1) | 0.0038 | 0.0035 |
LDPE Diffusers (g∙kg−1) | 0.0207 | 0.0388 |
Local transportation (kg∙km∙kg−1) | 0.0010 | 0.0019 |
Paraffin oil (83%) (g·kg−1) | 1.3095 | 1.7976 |
Local transportation (kg∙km∙kg−1) | 0.0920 | 0.1263 |
Irrigation | ||
Electricity (kWh∙kg−1) | 0.2047 | 0.2537 |
Fino Organic | Verna Organic | |||
---|---|---|---|---|
Absolute Annual Costs (€∙ha−1) | Relative Costs (%) | Absolute Annual Costs (€∙ha−1) | Relative Costs (%) | |
Fixed costs (FC) | ||||
Shed for equipment | 41 | 0.36% | 41 | 0.38% |
Preparation and planting | 144 | 1.25% | 126 | 1.17% |
Irrigation reservoir | 81 | 0.70% | 72 | 0.67% |
Irrigation equipment | 89 | 0.77% | 89 | 0.83% |
Irrigation network | 193 | 1.68% | 193 | 1.80% |
Weed control mat | 70 | 0.61% | 58 | 0.54% |
Various materials | 25 | 0.22% | 25 | 0.23% |
Total fixed costs | 643 | 5.59% | 604 | 5.62% |
Variable costs (VC) | ||||
Insurance | 698 | 6.07% | 518 | 4.82% |
Pruning | 1131 | 9.83% | 1028 | 9.57% |
Machinery | 421 | 3.66% | 400 | 3.72% |
Fertilizers | 2289 | 19.89% | 2063 | 19.20% |
Phytosanitary products | 265 | 2.30% | 265 | 2.47% |
Biotechnological products | 1250 | 10.86% | 1297 | 12.07% |
Clearing | 238 | 2.07% | 238 | 2.21% |
Maintenance of infrastructure | 122 | 1.06% | 116 | 1.08% |
Irrigation energy | 185 | 1.61% | 165 | 1.54% |
Irrigation water | 1989 | 17.29% | 1776 | 16.53% |
Permanent staff | 2276 | 19.82% | 2276 | 21.18% |
Total variable costs | 10,864 | 94.41% | 10,142 | 94.38% |
Total costs (TC) | 11,507 | 100.00% | 10,746 | 100.00% |
Gross lemon cost * (€∙kg−1) | 0.288 | 0.371 | ||
Fresh lemon cost ** (€∙kg−1) | 0.335 | 0.421 | ||
Compensated gross lemon cost *** (€∙kg−1) | 0.307 | 0.392 | ||
Compensated fresh lemon cost **** (€∙kg−1) | 0.357 | 0.446 |
Fino | Verna | |||
---|---|---|---|---|
Conventional (€∙kg−1) | Organic (€∙kg−1) | Conventional (€∙kg−1) | Organic (€∙kg−1) | |
Fertilizers | 0.023 | 0.060 | 0.029 | 0.074 |
Irrigation (water + energy) | 0.052 | 0.057 | 0.068 | 0.070 |
Impact Category | Absolute Values | Infrastructure | Machinery | Energy | Fertilizers Production | Fertilizers Emissions | Pesticides | Waste Treatment |
---|---|---|---|---|---|---|---|---|
Fino Organic | Contributions (%) | |||||||
AD (kg Sb-eq) | 2.49 ∙ 10−7 | 28.14 | 0.62 | 26.78 | 48.11 | 0.00 | 11.06 | −14.72 |
ADFF (MJ) | 5.00 ∙ 10−1 | 26.62 | 29.56 | 10.02 | 41.85 | 0.00 | 16.19 | −24.24 |
GW (kg CO2-eq) | 5.33 ∙ 10−2 | 14.56 | 21.05 | 7.03 | 45.54 | 14.42 | 3.46 | −6.06 |
OLD (kg CFC−11-eq) | 6.41 ∙ 10−10 | 36.98 | 28.08 | 8.84 | 56.32 | 0.00 | 3.97 | −24.19 |
HT (kg 1,4-DB-eq) | 1.08 ∙ 10−1 | 19.54 | 6.20 | 12.82 | 69.56 | 0.19 | 5.23 | −13.54 |
FWAE (kg 1,4-DB-eq) | 5.34 ∙ 10−2 | 8.99 | 1.47 | 5.34 | 85.13 | 0.00 | 2.48 | −3.41 |
MAE (kg 1,4-DB-eq) | 4.98 ∙ 101 | 18.85 | 5.49 | 13.16 | 67.13 | 0.00 | 5.60 | −10.23 |
TE (kg 1,4-DB-eq) | 1.54 ∙ 10−2 | 1.13 | 0.36 | 0.60 | 98.31 | 0.00 | 0.27 | −0.67 |
PO (kg C2H4-eq) | 1.48 ∙ 10−5 | 14.90 | 9.52 | 4.39 | 54.42 | 23.03 | 2.72 | −8.98 |
A (kg SO2-eq) | 1.24 ∙ 10−3 | 8.54 | 0.93 | 1.12 | 13.81 | 75.50 | 0.74 | −0.63 |
E (kg PO4-eq) | 3.89 ∙ 10−4 | 7.13 | 0.47 | 0.99 | 34.80 | 55.18 | 0.56 | −0.88 |
Overall contribution (%) | 15.94 | 9.43 | 8.28 | 55.91 | 15.30 | 4.75 | −9.62 | |
Verna organic | ||||||||
AD (kg Sb-eq) | 3.16 ∙ 10−7 | 28.76 | 0.64 | 22.71 | 53.45 | 0.00 | 9.98 | −15.53 |
ADFF (MJ) | 6.94 ∙ 10−1 | 24.30 | 27.83 | 7.79 | 48.08 | 0.00 | 15.45 | −23.44 |
GW (kg CO2-eq) | 6.78 ∙ 10−2 | 14.40 | 21.61 | 5.96 | 47.18 | 14.00 | 3.24 | −6.39 |
OLD (kg CFC−11-eq) | 8.49 ∙ 10−10 | 25.60 | 27.67 | 7.19 | 60.42 | 0.00 | 3.60 | −24.48 |
HT (kg 1,4-DB-eq) | 1.35 ∙ 10−1 | 19.50 | 6.43 | 10.97 | 72.65 | 0.12 | 4.80 | −14.47 |
FWAE (kg 1,4-DB-eq) | 7.02 ∙ 10−2 | 8.54 | 1.46 | 4.38 | 86.88 | 0.00 | 2.22 | −3.48 |
MAE (kg 1,4-DB-eq) | 6.21 ∙ 101 | 18.96 | 5.75 | 11.36 | 69.73 | 0.00 | 5.23 | −11.02 |
TE (kg 1,4-DB-eq) | 2.10 ∙ 10−2 | 1.02 | 0.34 | 0.48 | 98.59 | 0.00 | 0.23 | −0.66 |
PO (kg C2H4-eq) | 1.71 ∙ 10−5 | 16.60 | 10.76 | 4.09 | 62.04 | 13.97 | 2.97 | −10.43 |
A (kg SO2-eq) | 1.47 ∙ 10−3 | 9.32 | 1.01 | 1.01 | 15.10 | 73.49 | 0.77 | −0.70 |
E (kg PO4-eq) | 4.68 ∙ 10−4 | 7.64 | 0.51 | 0.88 | 36.29 | 53.14 | 0.56 | 0.98 |
Overall contribution (%) | 15.88 | 9.46 | 6.98 | 59.13 | 14.07 | 4.46 | −9.97 |
Impact Category | Fino Organic | Fino Conventional | Verna Organic | Verna Conventional | RD Fino Organic vs. Conventional | RD Verna Organic vs. Conventional |
---|---|---|---|---|---|---|
FU:1 kg | ||||||
AD (kg Sb-eq) | 2.49 ∙ 10−7 | 5.54 · 10−7 | 3.16 · 10−7 | 6.91 · 10−7 | −122.52 | −118.54 |
ADFF (MJ) | 5.00 ∙ 10−1 | 7.64 · 10−1 | 6.94 · 10−1 | 9.68 · 10−1 | −52.73 | −39.59 |
GW (kg CO2-eq) | 5.33 ∙ 10−2 | 6.47 · 10−2 | 6.78 · 10−2 | 8.25 · 10−2 | −21.41 | −21.67 |
OLD (kg CFC−11-eq) | 6.41 ∙ 10−10 | 1.95 · 10−9 | 8.49 · 10−10 | 2.44 · 10−9 | −204.75 | −187.42 |
HT (kg 1.4-DB-eq) | 1.08 ∙ 10−1 | 1.37 · 10−1 | 1.35 · 10−1 | 1.71 · 10−1 | −27.32 | −26.33 |
FWAE (kg 1.4-DB-eq) | 5.34 ∙ 10−2 | 3.06 · 10−2 | 7.02 · 10−2 | 3.79 · 10−2 | 42.68 | 45.95 |
MAE (kg 1.4-DB-eq) | 4.98 ∙ 101 | 1.05 · 102 | 6.21 · 101 | 1.31 · 102 | −110.23 | −111.68 |
TE (kg 1.4-DB-eq) | 1.54 ∙ 10−2 | 1.00 · 10−3 | 2.10 · 10−2 | 1.24 · 10−3 | 93.47 | 94.08 |
PO (kg C2H4-eq) | 1.48 ∙ 10−5 | 2.16 · 10−5 | 1.71 · 10−5 | 2.72 · 10−5 | −45.55 | −58.98 |
A (kg SO2-eq) | 1.24 ∙ 10−3 | 9.96 · 10−4 | 1.47 · 10−3 | 1.24 · 10−3 | 19.48 | 15.77 |
E (kg PO4-eq) | 3.89 ∙ 10−4 | 2.16 · 10−4 | 4.68 · 10−4 | 2.68 · 10−4 | 44.38 | 42.70 |
FU: 1 ha | ||||||
AD (kg Sb-eq) | 8.62 · 10−3 | 2.20 · 10−2 | 7.97 · 10−3 | 1.86 · 10−2 | −155.90 | −133.61 |
ADFF (MJ) | 1.73 · 104 | 3.04 · 104 | 1.75 · 104 | 2.61 · 104 | −75.64 | −49.21 |
GW (kg CO2-eq) | 1.85 · 103 | 2.58 · 103 | 1.71 · 103 | 2.22 · 103 | −39.62 | −30.05 |
OLD (kg CFC−11-eq) | 2.22 · 10−5 | 7.77 · 10−5 | 2.14 · 10−5 | 6.58 · 10−5 | −250.46 | −207.24 |
HT (kg 1.4-DB-eq) | 3.72 · 103 | 5.45 · 103 | 3.41 · 103 | 4.61 · 103 | −46.42 | −35.04 |
FWAE (kg 1.4-DB-eq) | 1.85 · 103 | 1.22 · 103 | 1.77 · 103 | 1.02 · 103 | 34.09 | 42.23 |
MAE (kg 1.4-DB-eq) | 1.72 · 106 | 4.17 · 106 | 1.57 · 106 | 3.54 · 106 | −141.76 | −126.27 |
TE (kg 1.4-DB-eq) | 5.32 · 102 | 3.99 · 101 | 5.29 · 102 | 3.35 · 101 | 92.50 | 93.67 |
PO (kg C2H4-eq) | 5.13 · 10−1 | 8.59 · 10−1 | 4.32 · 10−1 | 7.34 · 10−1 | −67.39 | −69.93 |
A (kg SO2-eq) | 4.28 · 101 | 3.96 · 101 | 3.72 · 101 | 3.35 · 101 | 7.41 | 9.96 |
E (kg PO4-eq) | 1.35 · 101 | 8.61 · 100 | 1.18 · 101 | 7.22 · 100 | 36.04 | 38.75 |
Fino Conventional | Verna Conventional | Fino Organic | Verna Organic | |||||
---|---|---|---|---|---|---|---|---|
Variation of Discards | €∙kg−1 | Variation of Costs | €∙kg−1 | Variation of Costs | €∙kg−1 | Variation of Costs | €∙kg−1 | Variation of Costs |
−50% | 0.249 | −11% | 0.338 | −9% | 0.332 | −7% | 0.419 | −9% |
−25% | 0.263 | −6% | 0.353 | −5% | 0.344 | −4% | 0.432 | −5% |
0% | 0.280 | 0% | 0.370 | 0% | 0.357 | 0% | 0.445 | 0% |
25% | 0.295 | 5% | 0.389 | 5% | 0.372 | 4% | 0.461 | 6% |
50% | 0.315 | 12% | 0.410 | 11% | 0.387 | 8% | 0.477 | 11% |
Impact Category | Fino Organic | Fino S1 | Verna Organic | Verna S1 | RD Fino Organic vs. S1 | RD Verna Organic vs. S1 |
---|---|---|---|---|---|---|
AD (kg Sb-eq) | 2.49 ∙ 10−7 | −1.01 · 10−7 | 3.16 · 10−7 | −7.97 · 10−8 | 140.73 | 125.22 |
ADFF (MJ) | 5.00 ∙ 10−1 | 1.00 · 10−1 | 6.94 · 10−1 | 2.41 · 10−1 | 79.96 | 65.27 |
GW (kg CO2-eq) | 5.33 ∙ 10−2 | 2.53 · 10−2 | 6.78 · 10−2 | 3.61 · 10−2 | 52.54 | 46.73 |
OLD (kg CFC-11-eq) | 6.41 ∙ 10−10 | 3.71 · 10−11 | 8.49 · 10−10 | 1.66 · 10−10 | 94.20 | 80.47 |
HT (kg 1.4-DB-eq) | 1.08 ∙ 10−1 | 1.06 · 10−2 | 1.35 · 10−1 | 2.58 · 10−2 | 90.15 | 80.92 |
FWAE (kg 1.4-DB-eq) | 5.34 ∙ 10−2 | 3.22 · 10−2 | 7.02 · 10−2 | 4.63 · 10−2 | 39.62 | 34.05 |
MAE (kg 1.4-DB-eq) | 4.98 ∙ 101 | 4.88 · 100 | 6.21 · 101 | 1.13 · 101 | 90.20 | 81.75 |
TE (kg 1.4-DB-eq) | 1.54 ∙ 10−2 | 1.46 · 10−2 | 2.10 · 10−2 | 2.01 · 10−2 | 4.72 | 3.91 |
PO (kg C2H4-eq) | 1.48 ∙ 10−5 | 1.02 · 10−5 | 1.71 · 10−5 | 1.19 · 10−5 | 31.21 | 30.59 |
A (kg SO2-eq) | 1.24 ∙ 10−3 | 1.11 · 10−3 | 1.47 · 10−3 | 1.33 · 10−3 | 10.14 | 9.62 |
E (kg PO4-eq) | 3.89 ∙ 10−4 | 3.51 · 10−4 | 4.68 · 10−4 | 4.24 · 10−4 | 9.89 | 9.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García Castellanos, B.; García García, B.; García García, J. Economic and Environmental Assessment of Organic Lemon Cultivation: The Case of Southeastern Spain. Agronomy 2025, 15, 1372. https://doi.org/10.3390/agronomy15061372
García Castellanos B, García García B, García García J. Economic and Environmental Assessment of Organic Lemon Cultivation: The Case of Southeastern Spain. Agronomy. 2025; 15(6):1372. https://doi.org/10.3390/agronomy15061372
Chicago/Turabian StyleGarcía Castellanos, Begoña, Benjamín García García, and José García García. 2025. "Economic and Environmental Assessment of Organic Lemon Cultivation: The Case of Southeastern Spain" Agronomy 15, no. 6: 1372. https://doi.org/10.3390/agronomy15061372
APA StyleGarcía Castellanos, B., García García, B., & García García, J. (2025). Economic and Environmental Assessment of Organic Lemon Cultivation: The Case of Southeastern Spain. Agronomy, 15(6), 1372. https://doi.org/10.3390/agronomy15061372