Effect of Postharvest Ripening on the Phytochemical Composition and Antioxidant Properties of Fruits from Ten Plum (Prunus domestica L.) Cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Fruit Material
2.2. Chemicals
2.3. Measurements
2.3.1. Fruit Ripeness Determination
2.3.2. Extraction and HPLC Analyses of Phenolic Compounds
2.3.3. Extraction and HPLC Analyses of Proanthocyanidins
2.3.4. Antioxidant Activity Measurement
2.4. Statistical Analysis
3. Results and Discussion
3.1. Fruit Ripeness
3.2. Proanthocyanidins
3.3. Phenolic Acids and Flavonols
3.4. Anthocyanins
3.5. Antioxidant Activities
3.6. Total Bioactive Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO 2025. FAOSTAT. Food and Agricultural Organization of the United Nations. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 February 2025).
- Walkowiak-Tomczak, D. Characteristics of plums as a raw material with valuable nutritive and dietary properties—A review. Pol. J. Food Nutr. Sci. 2008, 58, 401–405. [Google Scholar]
- Li, J.; Liu, H.; Mazhar, M.S.; Quddus, S.; Agar, O.T.; Suleria, H.A.R. Australian Native Plum: A Review of the Phytochemical and Health Effects. Food Rev. Int. 2023, 40, 504–532. [Google Scholar] [CrossRef]
- Stacewicz-Sapuntzakis, M. Dried Plums and Their Products: Composition and Health Effects—An Updated Review. Crit. Rev. Food Sci. Nutr. 2013, 53, 1277–1302. [Google Scholar] [CrossRef]
- Nisar, H.; Ahmed, M.; Akbar Anjum, M.; Hussain, D.S. Genetic diversity in fruit nutritional Composition, anthocyanins, phenolics and antioxidant capacity of plum (Prunus domestica) genotypes. Acta Sci. Pol. Hortorum Cultus. 2015, 4, 45–61. [Google Scholar]
- Wolf, J.; Göttingerová, M.; Kaplan, J.; Kiss, T.; Venuta, R.; Nečas, T. Determination of the pomological and nutritional properties of selected plum cultivars and minor fruit species. Hort. Sci. (Prague) 2020, 47, 181–193. [Google Scholar] [CrossRef]
- Johnson, J.B.; Collins, T.; Mani, J.S.; Naiker, M. Nutritional Quality and Bioactive Constituents of Six Australian Plum Varieties. Int. J. Fruit Sci. 2021, 21, 115–132. [Google Scholar] [CrossRef]
- Trendafilova, A.; Ivanova, V.; Trusheva, B.; Kamenova-Nacheva, M.; Tabakov, S.; Simova, S. Chemical composition and antioxidant capacity of the fruits of European plum cultivar “Čačanska Lepotica” influenced by different rootstocks. Foods 2022, 11, 2844. [Google Scholar] [CrossRef]
- Xu, M.-Q.; Ariyo Okaiyeto, S.; Niu, X.X.; Wang, Q.H.; Vidyarthi, S.K.; Wang, H.; Deng, L.Z.; Sutar, P.P.; Xiao, H.W. Bioactive compounds and health functions of plums: Current status and future opportunities. Food Rev. Int. 2024, 1–30. [Google Scholar] [CrossRef]
- Arion, C.M.; Tabart, J.; Kevers, C.; Niculaua, M.; Filimon, R.; Beceanu, D.; Dommes, J. Antioxidant potential of different plum cultivars during storage. Food Chem. 2014, 146, 485–491. [Google Scholar] [CrossRef]
- Hooshmand, S.; Gaffen, D.; Eisner, A.; Fajardo, J.; Payton, M.; Kern, M. Effects of 12 months consumption of 100 g dried plum (Prunes) on bone biomarkers, density, and strength in men. J. Med. Food 2022, 25, 40–47. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, L.; Deng, W.; Yi, K.; Li, Y. Polyphenol Composition, Antioxidant Capacity and Xanthine Oxidase Inhibition Mechanism of Furong Plum Fruits at Different Maturity Stages. Foods 2023, 12, 4253. [Google Scholar] [CrossRef] [PubMed]
- Gundogdu, M.; Güler, E.; Ağlar, E.; Arslan, T.; Kan, T.; Çelik, K. Use of spermidine to preserve organic acids, polyphenols, and quality of cold stored plum fruits. J. Food Compost. Anal. 2023, 121, 105411. [Google Scholar] [CrossRef]
- Reddy, V.P. Oxidative Stress in Health and Disease. Biomedicines 2023, 11, 2925. [Google Scholar] [CrossRef]
- Chen, S.; Jia, Y.; Wu, Y.; Ren, F. Anthocyanin and its Bioavailability, Health Benefits, and Applications: A Comprehensive Review. Food Rev. Int. 2024, 40, 3666–3689. [Google Scholar] [CrossRef]
- Singh, R.; Manna, P.P. Reactive oxygen species in cancer progression and its role in therapeutics. Explor Med. 2022, 3, 43–57. [Google Scholar] [CrossRef]
- Liu, J.; Han, X.; Zhang, T.; Tian, K.; Li, Z.; Luo, F. Reactive oxygen species (ROS) scavenging biomaterials for anti-inflammatory diseases: From mechanism to therapy. J. Hematol. Oncol. 2023, 16, 116. [Google Scholar] [CrossRef]
- Briyal, S.; Ranjan, A.K.; Gulati, A. Oxidative stress: A target to treat Alzheimer’s disease and stroke. Neurochem. Int. 2023, 165, 105509. [Google Scholar] [CrossRef]
- Camargo, L.L.; Rios, F.J.; Montezano, A.C.; Touyz, R.M. Reactive oxygen species in hypertension. Nat. Rev. Cardiol. 2025, 22, 20–37. [Google Scholar] [CrossRef]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Houldsworth, A. Role of oxidative stress in neurodegenerative disorders: A review of reactive oxygen species and prevention by antioxidants. Brain Commun. 2024, 6, fcad356. [Google Scholar] [CrossRef]
- Pooja, G.; Shweta, S.; Patel, P. Oxidative stress and free radicals in disease pathogenesis: A review. Discov. Med. 2025, 2, 104. [Google Scholar] [CrossRef]
- Commission Regulation (EU) 536/2013 of 11/06/2013 Amending Regulation (EU) No 432/2012 Establishing a List of Permitted Health Claims Made on Foods Other Than Those Referring to the Reduction of Disease Risk and to Children’s Development and Health. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32013R0536 (accessed on 27 March 2025).
- Askarpour, M.; Ghalandari, H.; Setayesh, L.; Ghaedi, E. Plum supplementation and lipid profile: A systematic review and meta-analysis of randomised controlled trials. J. Nutr. Sci. 2023, 12, 6. [Google Scholar] [CrossRef]
- Heydarian, A.; Tahvilian, N.; Asbaghi, O.; Cheshmeh, S.; Nadery, M.; Aryaeian, N. The effects of plum products consumption on lipid profile in adults: A systematic review and dose–response meta-analysis. Food Sci. Nutr. 2024, 12, 3080–3096. [Google Scholar] [CrossRef]
- Beals, K.A.; Fulgoni, R.D.; Fulgoni, V.L. Consumption of peaches, plums and nectarines is associated with better nutrient intakes, improved anthropometric measurements and reduced risk of hypertension in NHANES 1999–2002. J. Am. Diet. Assoc. 2005, 105, 61. [Google Scholar] [CrossRef]
- Prior, R.L.; Gu, L. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 2005, 66, 2264–2280. [Google Scholar] [CrossRef]
- Bladé, C.; Aragonès, G.; Arola-Arnal, A.; Muguerza, B.; Bravo, F.I.; Salvadó, M.J.; Arola, L.; Suárez, M. Proanthocyanidins in health and disease. Biofactors 2016, 42, 5–12. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Abu-Izneid, T.; Ul-Haq, I.; Patel, S.; Pan, X.; Naz, S.; Sanches Silva, A.; Saeed, F.; Ansar Rasul Suleria, H. Proanthocyanidins: A comprehensive review. Biomed. Pharmacother. 2019, 116, 108999. [Google Scholar] [CrossRef]
- Zhang, X.; Song, X.; Hu, X.; Chen, F.; Ma, C. Health benefits of proanthocyanidins linking with gastrointestinal modulation: An updated review. Food Chem. 2023, 404 Part A, 134596. [Google Scholar] [CrossRef]
- Tomás-Barberán, F.A.; Gil, M.I.; Cremin, P.; Waterhouse, A.L.; Hess-Pierce, B.; Kader, A.A. HPLC-DAD-ESIMS analysis of phenolic compounds in nectarines, peaches and plums. J. Agric. Food Chem. 2001, 49, 4748–4760. [Google Scholar] [CrossRef]
- Alén-Ruiz, F.; García-Falcón, M.S.; Pérez-Lamela, M.C.; Martínez-Carballo, E.; Simal-Gándara, J. Influence of major polyphenols on antioxidant activity in Mencía and Brancellao red wines. Food Chem. 2009, 113, 53–60. [Google Scholar] [CrossRef]
- Coman, M.M.; Oancea, A.M.; Verdenelli, M.C.; Cecchini, C.; Bahrim, G.E.; Orpianesi, C.; Cresci, A.; Silvi, S. Polyphenol content and in vitro evaluation of antioxidant, antimicrobial and prebiotic properties of red fruit extracts. Eur. Food Res. Technol. 2018, 244, 735–745. [Google Scholar] [CrossRef]
- Gil, M.I.; Tomás-Barberán, F.A.; Hess-Pierce, B.; Kader, A.A. Antioxidant capacities, phenolic compounds, carotenoids and vitamin C contents of nectarine, peach and plum cultivars from California. J. Agric. Food Chem. 2002, 50, 4976–4982. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plum. Food Chem. 2003, 81, 321–326. [Google Scholar] [CrossRef]
- Cevallos-Casals, B.A.; Byrne, D.; Okie, W.R.; Cisneros-Zevallos, L. Selecting new peach and plum genotypes rich in phenolic compounds and enhanced functional properties. Food Chem. 2006, 96, 273–280. [Google Scholar] [CrossRef]
- Jawad, M.; Ali, M.; Qasim, S.; Akbar, A.; Khan, N.A.; Sadiq, M.B. Determination of phenolic compounds and bioactive potential of plum (Prunus salicina) peel extract obtained by ultrasound-assisted extraction. BioMed Res. Inter. 2022, 2022, 7787958. [Google Scholar] [CrossRef]
- Magiera, A.; Czerwińska, M.E.; Owczarek, A.; Marchelak, A.; Granica, S.; Olszewska, M.A. Polyphenol-Enriched Extracts of Prunus spinosa Fruits: Anti-Inflammatory and Antioxidant Effects in Human Immune Cells Ex Vivo in Relation to Phytochemical Profile. Molecules 2022, 27, 1691. [Google Scholar] [CrossRef]
- Noratto, G.; Martino, H.S.; Simbo, S.; Byrne, D.; Mertens-Talcott, S.U. Consumption of polyphenol-rich peach and plum juice prevents risk factors for obesity-related metabolic disorders and cardiovascular disease in Zucker rats. J. Nutr. Biochem. 2015, 26, 633–641. [Google Scholar] [CrossRef]
- Liu, W.; Nan, G.; Nisar, M.F.; Wan, C. Chemical Constituents and Health Benefits of Four Chinese Plum Species. J. Food Qual. 2020, 2020, 8842506. [Google Scholar] [CrossRef]
- Jaiswal, R.; Karaköse, H.; Rühmann, S.; Goldner, K.; Neumüller, M.; Treutter, D.; Kuhnert, N. Identification of phenolic compounds in plum fruits (Prunus salicina L. and Prunus domestica L.) by high-performance liquid chromatography/tandem mass spectrometry and characterization of varieties by quantitative phenolic fingerprints. J. Agric. Food Chem. 2013, 61, 12020–12031. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Okulevičiūtė, R.; Lanauskas, J.; Kviklys, D.; Zymonė, K.; Rendyuk, T.; Žvikas, T.; Uselis, N.; Janulis, V. Variability in the Content of Phenolic Compounds in Plum Fruit. Plants 2020, 9, 1611. [Google Scholar] [CrossRef]
- Nunes, C.; Guyot, S.; Marnet, N.; Barros, A.S.; Saraiva, J.A.; Renard, C.M.G.C.; Coimbra, M.A. Characterization of plum procyanidins by thiolytic depolymerization. J. Agric. Food Chem. 2008, 56, 5188–5196. [Google Scholar] [CrossRef] [PubMed]
- Osorio Pérez, V.; Matallana Pérez, L.G.; Fernandez-Alduenda, M.R.; Alvarez Barreto, C.I.; Gallego Agudelo, C.P.; Montoya Re-strepo, E.C. Chemical Composition and Sensory Quality of Coffee Fruits at Different Stages of Maturity. Agronomy 2023, 13, 341. [Google Scholar] [CrossRef]
- Petruccelli, R.; Bonetti, A.; Ciaccheri, L.; Ieri, F.; Ganino, T.; Faraloni, C. Evaluation of the Fruit Quality and Phytochemical Com-pounds in Peach and Nectarine Cultivars. Plants 2023, 12, 1618. [Google Scholar] [CrossRef] [PubMed]
- Papagrigoriou, T.; Iliadi, P.; Mitić, M.N.; Mrmošanin, J.M.; Papanastasi, K.; Karapatzak, E.; Maloupa, E.; Gkourogianni, A.V.; Badeka, A.V.; Krigas, N.; et al. Wild-Growing and Conventionally or Organically Cultivated Sambucus nigra Germplasm: Fruit Phytochemical Profile, Total Phenolic Content, Antioxidant Activity, and Leaf Elements. Plants 2023, 12, 1701. [Google Scholar] [CrossRef]
- Ghasemi-Soloklui, A.A.; Kordrostami, M.; Gharaghani, A. Environmental and geographical conditions influence color, physical properties, and physiochemical composition of pomegranate fruits. Sci. Rep. 2023, 13, 15447. [Google Scholar] [CrossRef]
- Xue, L.; Otieno, M.; Colson, K.; Neto, C. Influence of the Growing Region on the Phytochemical Composition and Antioxidant Properties of North American Cranberry Fruit (Vaccinium macrocarpon Aiton). Plants 2023, 12, 3595. [Google Scholar] [CrossRef]
- Feng, J.; Nieuwenhuizen, N.; Atkinson, R.; Wang, W.; Zeng, J.; Zheng, H.; Tao, J. Comparative study of phenolic compounds reveals a positive relationship between astringency and the phenolic composition in table grape varieties. J. Food Sci. 2023, 88, 447–461. [Google Scholar] [CrossRef]
- Xiao, X.; Shiyuan, Y.; Hao, W.; Shanshan, X.; Wenli, Z.; Haonan, Z.; Jiawei, Z.; Changbing, P.; Dongqi, Z.; Qiong, Z.; et al. Soluble sugar, organic acid and phenolic composition and flavor evaluation of plum fruits. Food Chem. 2024, 24, 101790. [Google Scholar] [CrossRef]
- Konopacka, D.; Płocharski, W.; Morgaś, H. Measurement of fruit firmness as an index of crop quality and agricultural treatments on plum production. Folia Hortic. 2003, (Suppl. S2), 198–201. (In Polish) [Google Scholar]
- Candan, A.P.; Graell, J.; Larrigaudière, C. Postharvest quality and chilling injury of plums: Benefits of 1-methylcyclopropene. Span. J. Agric. Res. 2011, 9, 554–564. [Google Scholar] [CrossRef]
- Crisosto, C.H. Establishing a Consumer Quality Index for Fresh Plums (Prunus salicina Lindell). Horticulturae 2023, 9, 682. [Google Scholar] [CrossRef]
- Thakur, K.S.; Sharma, S. Fruit maturity and ripening. In Fruit Science: Culture and Technology; New India Publishing Agency: Delhi, India, 2019; pp. 358–373. [Google Scholar]
- Palumbo, M.; Cozzolino, R.; Laurino, C.; Malorni, L.; Picariello, G.; Siano, F.; Stocchero, M.; Cefola, M.; Corvino, A.; Romaniello, R.; et al. Rapid and Non-Destructive Techniques for the Discrimination of Ripening Stages in Candonga Strawberries. Foods 2022, 11, 1534. [Google Scholar] [CrossRef]
- Teerachaichayut, S.; Ho, H.T. Non-destructive prediction of total soluble solids, titratable acidity and maturity index of limes by near infrared hyperspectral imaging. Postharvest Biol. Technol. 2017, 133, 20–25. [Google Scholar] [CrossRef]
- Usenik, V.; Stampar, F.; Kastelec, D. Indicators of plum maturity: When do plums become tasty? Sci. Hortic. 2014, 167, 127–134. [Google Scholar] [CrossRef]
- Usenik, V.; Kastelec, D.; Veberič, R.; Štampar, F. Quality changes during ripening of plums (Prunus domestica L.). Food Chem. 2008, 111, 830–836. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Kader, A.A. Plum and Fresh Prune. Postharvest Quality Maintenance Guidelines. 2000. Available online: http://kare.ucanr.edu/files/123829.pdf (accessed on 3 March 2025).
- Crisosto, C.H.; Kader, A.A. Plum and Fresh Prune. In The Commercial Storage of Fruits, Vegetables, and Florist and Nursery Stocks; Gross, K.C., Wang, C.Y., Saltveit, M., Eds.; US Department of Agriculture: Washington, DC, USA, 2016; Agriculture Handbook Number 66; p. 499. Available online: https://www.ars.usda.gov/arsuserfiles/oc/np/commercialstorage/commercialstorage.pdf (accessed on 16 April 2025).
- Guerra, M.; Casquero, P.A. Effect of harvest date on cold storage and postharvest quality of plum cv. Green Gage. Postharv. Biol. Technol. 2008, 47, 325–332. [Google Scholar] [CrossRef]
- Carreño, J.; Martínez, A.; Almela, L.; Fernández-López, J.A. Proposal of an index for the objective evaluation of the colour of red table grapes. Food Res. Int. 1995, 28, 373–377. [Google Scholar] [CrossRef]
- Nielsen, I.L.; Haren, G.R.; Magnussen, E.L.; Dragsted, L.O.; Rasmussen, S.E. Quantification of anthocyanins in commercial black currant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. J. Agric. Food Chem. 2003, 51, 5861–5866. [Google Scholar] [CrossRef]
- Kennedy, J.A.; Jones, G.P. Analysis of proanthocyanidin cleavage products following acid-catalysis in the presence of excess phloroglucinol. J. Agric. Food Chem. 2001, 49, 1740–1746. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Oszmiański, J.; Wojdyło, A. Effects of various clarification treatments on phenolic compounds and color of apple juice. Eur. Food Res. Technol. 2007, 224, 755–762. [Google Scholar] [CrossRef]
- Usenik, V.; Štampar, F.; Veberič, R. Anthocyanins and fruit colour in plums (Prunus domestica L.) during ripening. Food Chem. 2009, 114, 529–534. [Google Scholar] [CrossRef]
- Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Martínez-Romero, D.; Castillo, S.; Serrano, M.; Valero, D. Changes in hydrophilic and lipophilic antioxidant activity and related bioactive compounds during postharvest storage of yellow and purple plum cultivars. Postharv. Biol. Technol. 2009, 21, 354–363. [Google Scholar] [CrossRef]
- Crisosto, C.H.; Crisosto, G.M.; Echeverria, G.; Puy, J. Segregation of plum and pluot cultivars according to their organoleptic characteristics. Postharv. Biol. Technol. 2007, 44, 271–276. [Google Scholar] [CrossRef]
- Valero, C.; Crisosto, C.H.; Slaughter, D. Relationship between nondestructive firmness measurements and commercially important ripening fruit stages for peaches, nectarines and plum. Postharvest Biol. Tech. 2007, 44, 248–253. [Google Scholar] [CrossRef]
- Guyot, S.; Le Bourvellec, C.; Marnet, N.; Drilleau, J.F. Procyanidins are the most abundant polyphenols in dessert apples at maturity. LWT—Food Sci. Technol. 2002, 35, 289–291. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.O.; Lee, C.Y. Superoxide radical scavenging activity of the major polyphenols in fresh plum. J. Agric. Food Chem. 2003, 51, 8067–8072. [Google Scholar] [CrossRef]
- Slimestad, R.; Vangdal, E.; Brede, C. Analysis of phenolic compounds in six Norwegian plum cultivars (Prunus domestica L.). J. Agric. Food Chem. 2009, 57, 11370–11375. [Google Scholar] [CrossRef]
- Chun, O.K.; Kim, D.O.; Moon, H.Y.; Kang, H.G.; Lee, C.Y. Contribution of individual polyphenolics to total antioxidant capacity of plums. J. Agric. Food Chem. 2003, 51, 7240–7245. [Google Scholar] [CrossRef]
- Miletić, N.; Popović, B.; Mitrović, O.; Kandić, M. Phenolic content and antioxidant capacity of fruits of plum cv. ‘Stanley’ (Prunus domestics L.) as influenced by maturity stage and on-tree ripening. Aust. J. Crop Sci. 2012, 6, 681–687. [Google Scholar]
- Walkowiak-Tomczak, D.; Biegańska-Marecik, R.; Reguła, J. Antioxidant activity of some selected plum cultivars (Prunus domestica) grown in Poland. Food. Sci. Technol. Qual. 2007, 6, 109–115. (In Polish) [Google Scholar]
- Díaz-Mula, H.M.; Zapata, P.J.; Guillén, F.; Castillo, S.; Martínez-Romero, D.; Valero, D.; Serrano, M. Changes in physicochemical and nutritive parameters and bioactive compounds during development and on-tree ripening of eight plum cultivars: A comparative study. J. Sci. Food Agric. 2008, 88, 2499–2507. [Google Scholar] [CrossRef]
Cultivar | CIRG | SSC (%) | F (N) | ||||||
---|---|---|---|---|---|---|---|---|---|
Storage Period | Storage Period | Storage Period | |||||||
0 Days | 3 Days | 6 Days | 0 Days | 3 Days | 6 Days | 0 Days | 3 Days | 6 Days | |
‘Diana’ | 5.27 a | 6.42 b | 6.97 c | 13.0 a | 13.9 b | 13.9 b | 4.47 c | 3.74 b | 2.56 a |
‘Węgierka Dąbrowicka’ | 5.67 a | 6.99 b | 7.84 c | 13.8 a | 16.4 b | 18.0 c | 11.78 c | 5.49 b | 3.09 a |
‘Čačanska Lepotica’ | 6.08 a | 7.26 b | 8.72 c | 12.9 a | 13.8 ab | 13.9 b | 7.62 c | 3.77 b | 1.70 a |
‘Haganta’ | 5.95 a | 6.09 a | 6.41 a | 19.9 a | 20.3 b | 22.5 b | 10.44 c | 9.11 ab | 8.02 a |
‘Valjevka’ | 6.89 a | 7.48 ab | 7.72 b | 20.1 a | 21.9 b | 22.5 b | 13.64 c | 11.20 b | 8.51 a |
‘Węgierka Zwykła’ | 6.52 a | 6.88 a | 6.91 a | 20.7 a | 21.4 a | 21.7 a | 7.37 a | 8.79 a | 7.62 a |
‘Jojo’ | 7.12 a | 7.51 ab | 7.94 b | 16.2 a | 16.9 ab | 18.1 b | 11.02 b | 10.08 b | 7.96 a |
‘Amers’ | 3.68 a | 4.44 a | 6.03 b | 13.0 a | 13.5 a | 15.2 b | 8.59 b | 7.78 b | 4.62 a |
‘Čačanska Najbolja’ | 8.77 a | 9.18 a | 10.04 b | 15.1 a | 16.6 b | 18.9 c | 10.85 c | 7.95 b | 3.26 a |
‘Żółta Afaska’ | 1.05 a | 1.11 ab | 1.15 b | 14.9 a | 14.9 a | 15.7 a | 12.16 b | 10.69 b | 7.45 a |
Cultivar | Days of Storage | Flavan-3-ols | Phenolic Acids | Quercetin Glycoside | Anthocyanins | Total Phenolics | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cat | Dim | PAnt | NeoCh | Chlo | Other | C-gl | C-r | P-gl | P-r | ||||
‘Diana’ | 0 | 0.51 def | n.d | 73.8 efg | 4.31 a | 3.32 de | 3.75 d | 6.09 fg | 2.61 de | 7.06 bc | 0.30 cd | 1.58 cdef | 103.3 ± 4.3 de |
3 | 0.54 def | n.d | 91.7 ij | 6.63 ab | 5.21 g | 5.19 ghi | 6.31 ghi | 6.28 hi | 13.0 efgh | 0.49 eh | 2.23 fghi | 137.6 ± 2.3 hi | |
6 | 0.45 de | n.d | 91.3 ij | 6.44 ab | 4.84 fg | 5.39 hij | 6.09 fgh | 6.89 i | 14.1 fgh | 0.56 ijk | 2.50 ghij | 138.5 ± 3.4 hij | |
‘Węgierka Dabrowicka’ | 0 | 0.34 bcd | 1.39 bc | 81.5 ghi | 20.4 i | 3.00 d | 4.00 de | 5.27 def | 4.88 gh | 11.9 efg | 0.27 bc | 0.56 ab | 133.5 ± 7.1 gh |
3 | 0.32 bcd | 2.03 de | 101.8 j | 23.5 j | 3.26 de | 4.47 ef | 5.76 efh | 8.93 j | 18.7 i | 0.33 d | 0.75 b | 169.8 ± 5.1 m | |
6 | 0.14 abc | 1.73 cd | 85.7 ghi | 20.5 i | 3.14 d | 3.56 cd | 7.78 jk | 12.8 l | 26.8 kl | 0.43 efh | 1.06 bcd | 163.7 ± 0.2 lm | |
‘Čačanska Lepotica’ | 0 | 0.35 bce | 2.67 f | 233.3 k | 30.6 mn | 4.63 fg | 5.54 hij | 3.95 bc | 4.88 gh | 8.5 cd | 0.61 kl | 2.00 efg | 296.9 ± 0.5 n |
3 | 0.32 bcd | 2.29 ef | 256.5 l | 31.4 n | 5.22 g | 5.92 j | 4.92 de | 10.9 k | 12.7 efgh | 1.00 o | 2.50 ghj | 333.7 ± 6.4 o | |
6 | 0.11 abc | 1.17 b | 258.6 l | 26.0 jk | 4.07 ef | 5.70 ij | 6.24 fghi | 16.9 n | 14.5 fgh | 1.64 p | 3.17 k | 338.2 ± 5.3 o | |
‘Haganta’ | 0 | 0.12 abc | n.d | 83.7 ghi | 27.6 kl | 2.97 d | 8.10 l | 7.88 jk | 2.57 de | 8.4 cd | 0.34 d | 0.96 bc | 142.6 ± 5.3 hijk |
3 | 0.12 abc | n.d | 90.7 ij | 29.1 lmn | 3.34 de | 8.41 lm | 8.34 k | 3.51 efg | 10.5 de | 0.34 d | 1.07 bcd | 155.4 ± 2.7 jklm | |
6 | 0.10 ab | n.d | 88.0 hi | 28.6 klm | 3.21 d | 8.15 l | 8.01 k | 3.57 efg | 10.7 de | 0.33 d | 1.19 bcd | 152.0 ± 2.7 ijl | |
‘Valjevka’ | 0 | n.d | n.d | 53.6 bc | 9.88 cde | n.d | 3.50 cd | 5.93 fg | 3.23 def | 24.7 jk | 0.53 hij | 7.18 m | 108.6 ± 4.2 e |
3 | n.d | n.d | 49.4 b | 7.90 bcd | n.d | 3.43 bcd | 6.61 hi | 4.42 fg | 28.5 l | 0.65 lm | 8.01 n | 108.9 ± 6.0 e | |
6 | n.d | n.d | 57.8 b-d | 11.5 e | n.d | 3.66 d | 7.08 ij | 4.69 g | 35.6 n | 0.68 m | 9.87 o | 130.9 ± 5.2 fgh | |
‘Węgierka Zwykła’ | 0 | n.d | n.d | 58.2 bcd | 10.4 de | 1.55 bc | 2.61 a | 5.86 efgh | 0.84 ab | 4.08 b | 0.46 ef | 2.68 hijk | 86.7 ± 5.0 bcd |
3 | n.d | n.d | 77.9 fgh | 12.2 ef | 1.57 bc | 2.71 a | 5.95 fgh | 1.04 abc | 4.90 b | 0.50 fghi | 3.13 jk | 109.9 ± 2.7 e | |
6 | n.d | n.d | 65.1 cde | 7.49 bc | 1.61 bc | 2.83 ab | 5.89 efgh | 0.81 ab | 4.00 b | 0.48 efh | 2.78 ijk | 91.0 ± 2.0 cd | |
‘Jojo’ | 0 | 0.62 ef | 1.80 cd | 51.9 b | 55.4 r | 3.66 de | 8.45 lm | 5.61 efg | 2.32 cde | 12.4 efh | 0.46 efg | 4.64 l | 147.2 ± 4.4 hijkl |
3 | 0.58 def | 1.90 de | 60.6 bcd | 53.2 r | 3.61 de | 9.18 n | 6.64 hi | 2.48 de | 15.0 h | 0.48 efgh | 5.21 l | 158.9 ± 6.2 klm | |
6 | 0.34 bcde | 1.96 de | 53.2 bc | 50.3 p | 3.44 d | 8.74 lmn | 6.22 fghi | 1.99 bcd | 11.9 ef | 0.52 ghi | 6.68 m | 145.2 ± 3.5 hijk | |
‘Amers’ | 0 | 0.30 bcd | n.d | 29.7 a | 19.0 hi | 1.80 bc | 4.67 fg | 4.52 cd | 0.71 ab | 5.65 bc | 0.21 b | 1.20 bcd | 67.7 ± 3.4 a |
3 | 0.38 cde | n.d | 36.7 a | 16.5 gh | 1.53 bc | 4.88 fgh | 3.88 bc | 0.56 a | 6.64 bc | 0.22 b | 1.67 def | 73.0 ± 0.9 ab | |
6 | 0.73 f | n.d | 52.4 b | 28.4 klm | 2.05 c | 5.90 j | 5.75 efgh | 3.04 def | 15.0 gh | 0.43 e | 3.00 jk | 116.6 ± 1.6 efg | |
‘Čačanska Najbolja’ | 0 | 1.99 g | 6.22 g | 327.8 m | 39.8 o | 10.1 h | 7.18 k | 6.50 ghi | 12.2 kl | 23.5 j | 0.54 hij | 1.55 cde | 437.3 ± 7.1 p |
3 | 2.84 h | 7.42 i | 452.8 o | 55.5 r | 15.0 i | 8.56 lmn | 7.81 jk | 14.8 m | 31.9 m | 0.59 jkl | 2.08 efgh | 599.4 ± 1.6 r | |
6 | 3.12 i | 6.91 h | 432.0 n | 54.1 r | 15.1 i | 8.83 mn | 10.2 l | 23.9 o | 41.9 o | 0.83 n | 2.78 ijk | 599.8 ± 6.7 r | |
‘Żółta Afaska’ | 0 | n.d | n.d | 68.3 def | 6.80 ab | 1.28 bc | 2.56 a | 2.25 a | n.d | n.d | n.d | n.d | 81.2 ± 1.8 abc |
3 | n.d | n.d | 56.9 bcd | 6.31 ab | 1.13 b | 2.56 a | 2.27 a | n.d | n.d | n.d | n.d | 69.1 ± 0.4 a | |
6 | n.d | n.d | 93.5 ij | 14.6 fg | 2.02 c | 2.97 abc | 3.12 ab | n.d | n.d | n.d | n.d | 116.2 ± 1.0 ef | |
p-value | Cv. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
St. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Cv. × St. | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Cultivar | Storage Period | ||
---|---|---|---|
0 Days | 3 Days | 6 Days | |
‘Diana’ | 7.5 a | 7.2 a | 7.5 a |
‘Węgierka Dąbrowicka’ | 9.9 b | 10.0 b | 10.0 b |
‘Čačanska Lepotica’ | 19.6 i | 19.7 i | 20.8 i |
‘Haganta’ | 12.0 cde | 12.1 cdef | 10.9 bcd |
‘Valjevka’ | 13.8 gh | 12.4 cdefg | 14.4 h |
‘Węgierka Zwykła’ | 13.0 efh | 13.8 gh | 13.8 fgh |
‘Jojo’ | 7.0 a | 7.1 a | 8.1 a |
‘Amers’ | 6.6 a | 6.9 a | 7.3 a |
‘Čačanska Najbolja’ | 10.8 bc | 10.8 bc | 10.0 b |
‘Żółta Afaska’ | 12.3 cdefg | 12.5 defg | 9.9 b |
Cultivars | Period of Storage | ||
---|---|---|---|
0 Days | 3 Days | 6 Days | |
‘Diana’ | 0.72 ab | 1.01 cd | 1.45 fg |
‘Węgierka Dąbrowicka’ | 0.86 bc | 1.00 cd | 1.14 de |
‘Čačanska Lepotica’ | 2.58 k | 2.09 j | 2.20 j |
‘Haganta’ | 1.46 fg | 1.60 gh | 1.70 hi |
‘Valjevka’ | 1.30 ef | 1.42 fg | 1.48 fg |
‘Węgierka Zwykła’ | 1.18 de | 1.29 ef | 1.17 de |
‘Jojo’ | 1.43 fg | 1.77 hi | 1.83 i |
‘Amers’ | 0.88 bc | 0.87 bc | 1.08 d |
‘Čačanska Najbolja’ | 4.27 l | 4.74 m | 5.87 n |
‘Żółta Afaska’ | 0.58 a | 0.53 a | 0.61 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mieszczakowska-Frąc, M.; Dickinson, N.J.; Konopacka, D. Effect of Postharvest Ripening on the Phytochemical Composition and Antioxidant Properties of Fruits from Ten Plum (Prunus domestica L.) Cultivars. Agronomy 2025, 15, 1351. https://doi.org/10.3390/agronomy15061351
Mieszczakowska-Frąc M, Dickinson NJ, Konopacka D. Effect of Postharvest Ripening on the Phytochemical Composition and Antioxidant Properties of Fruits from Ten Plum (Prunus domestica L.) Cultivars. Agronomy. 2025; 15(6):1351. https://doi.org/10.3390/agronomy15061351
Chicago/Turabian StyleMieszczakowska-Frąc, Monika, Niall John Dickinson, and Dorota Konopacka. 2025. "Effect of Postharvest Ripening on the Phytochemical Composition and Antioxidant Properties of Fruits from Ten Plum (Prunus domestica L.) Cultivars" Agronomy 15, no. 6: 1351. https://doi.org/10.3390/agronomy15061351
APA StyleMieszczakowska-Frąc, M., Dickinson, N. J., & Konopacka, D. (2025). Effect of Postharvest Ripening on the Phytochemical Composition and Antioxidant Properties of Fruits from Ten Plum (Prunus domestica L.) Cultivars. Agronomy, 15(6), 1351. https://doi.org/10.3390/agronomy15061351