Yield, Protein, and Starch Equilibrium of Indigenous Varieties: An Open Door for Computational Breeding in Enhancing Selection Strategies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm
2.2. Field Experimental Design and Technology Used
2.3. Method for Determining Wheat Starch and Protein Content
2.4. Temperature and Precipitation Measurement Methods
2.5. Statistical Analysis
3. Results
3.1. Correlation Between Yield, Stretch, and Protein
3.2. Analysis of the Influence of Precipitation and Temperature on Wheat Yield
3.3. Coefficients of Variation Analysis of Wheat Varieties of the Period 2019–2023
3.4. Clustering Analyses Among Varieties Regarding Yield, Protein, and Starch
3.5. PCA of Wheat Varieties Regarding Yield, Starch, and Protein
3.6. Clustering of Wheat Varieties Regarding Yield, Starch, and Protein
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitura, K.; Cacak-Pietrzak, G.; Feledyn-Szewczyk, B.; Szablewski, T.; Studnicki, M. Yield and Grain Quality of Common Wheat (Triticum aestivum L.) Depending on the Different Farming Systems (Organic vs. Integrated vs. Conventional). Plants 2023, 12, 1022. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 10 November 2024).
- Tudor, V.C.; Stoicea, P.; Chiurciu, I.-A.; Soare, E.; Iorga, A.M.; Dinu, T.A.; David, L.; Micu, M.M.; Smedescu, D.I.; Dumitru, E.A. The Use of Fertilizers and Pesticides in Wheat Production in the Main European Countries. Sustainability 2023, 15, 3038. [Google Scholar] [CrossRef]
- Southworth, J.; Pfeifer, R.A.; Habeck, M.; Randolph, J.C.; Doering, O.C.; Rao, D.G. Sensitivity of winter wheat yields in the Midwestern United States to future changes in climate, climate variability, and CO2 fertilization. Clim. Res. 2002, 22, 73–86. [Google Scholar] [CrossRef]
- AGERPRES. Recolta de Grâu Din Acest an ‘“Sare”’ de 11 Milioane de Tone, Cea Mai Mare Producţie După. Available online: http://www.agerpres.ro/economic-intern/2021/08/18/recolta-de-grau-din-acest-an-sare-de-11-milioane-de-tone-cea-mai-mare-productie-dupa-aderarea-romaniei-la-ue--765533 (accessed on 11 November 2024).
- “ANALIZĂ ZF. Datele oficiale de la Ministerul Agriculturii: Producţia de Grâu a Fost de 9,17 mil. tone în 2022, cu 23% Mai Mică Decât în Anul Agricol Trecut. La Rapiţă Producţia este cu 22% mai Mică. Porumbul şi Floarea-Soarelui Sunt în Curs de Recoltare, Astfel că nu Există încă Date,” ZF.ro. Available online: https://www.zf.ro/analiza/analiza-zf-datele-oficiale-ministerul-agriculturii-productia-grau-9-21227168 (accessed on 11 November 2024).
- “Ministrul Agriculturii: Ce Producție de Grâu Are România în 2023,” Agroinfo. Available online: https://www.agroinfo.ro/vegetal/ministrul-agriculturii-ce-productie-de-grau-are-romania-in-2023 (accessed on 11 November 2024).
- Rezaei, E.E.; Webber, H.; Asseng, S.; Boote, K.; Durand, J.L.; Ewert, F.; Martre, P.; MacCarthy, D.S. Climate change impacts on crop yields. Nat. Rev. Earth Environ. 2023, 4, 831–846. [Google Scholar] [CrossRef]
- Ioan, S.; Irina, P.; Emilian, O.; Sorina, P.; Cerasela, P.; Adriana, C.; Dorin, C.; Alina-Maria, T.-C.; Dacian, L.; Ciprian, S.; et al. Application of the Drosophila melanogaster Research Model to Evaluate the Toxicity Levels between Lead and Copper. Appl. Sci. 2024, 14, 4190. [Google Scholar] [CrossRef]
- Martre, P.; Dueri, S.; Guarin, J.R.; Ewert, F.; Webber, H.; Calderini, D.; Molero, G.; Reynolds, M.; Miralles, D.; Garcia, G.; et al. Global needs for nitrogen fertilizer to improve wheat yield under climate change. Nat. Plants 2024, 10, 1081–1090. [Google Scholar] [CrossRef]
- Fradgley, N.S.; Gardner, K.A.; Kerton, M.; Swarbreck, S.M.; Bentley, A.R. Balancing quality with quantity: A case study of UK bread wheat. Plants People Planet 2024, 6, 1000–1013. [Google Scholar] [CrossRef]
- Arkhipov, A.; Shao, Z.; Muirhead, S.R.; Harry, M.S.; Batool, M.; Mirzaee, H.; Carvalhais, L.C.; Schenk, P.M. Microbe-Friendly Plants Enable Beneficial Interactions with Soil Rhizosphere Bacteria by Lowering Their Defense Responses. Plants 2024, 13, 3065. [Google Scholar] [CrossRef]
- Hristov, N.; Mladenov, N.; Djuric, V.; Kondic-Spika, A.; Marjanovic-Jeromela, A.; Simic, D. Genotype by environment interactions in wheat quality breeding programs in southeast Europe. Euphytica 2010, 174, 315–324. [Google Scholar] [CrossRef]
- Moroșan, E.; Secareanu, A.A.; Musuc, A.M.; Mititelu, M.; Ioniță, A.C.; Ozon, E.A.; Raducan, I.D.; Rusu, A.I.; Dărăban, A.M.; Karampelas, O. Comparative quality assessment of five bread wheat and five barley cultivars grown in Romania. Int. J. Environ. Res. Public Health 2022, 19, 11114. [Google Scholar] [CrossRef]
- Hakim, M.A.; Hossain, A.; da Silva, J.A.T.; Zvolinsky, V.P.; Khan, M.M. Protein and Starch Content of 20 Wheat (Triticum aestivum L.) Genotypes Exposed to High Temperature Under Late Sowing Conditions. J. Sci. Res. 2012, 4, 477. [Google Scholar] [CrossRef]
- Muqaddasi, Q.H.; Brassac, J.; Ebmeyer, E.; Kollers, S.; Korzun, V.; Argillier, O.; Stiewe, G.; Plieske, J.; Ganal, M.W.; Röder, M.S. Prospects of GWAS and predictive breeding for European winter wheat’s grain protein content, grain starch content, and grain hardness. Sci. Rep. 2020, 10, 12541. [Google Scholar] [CrossRef] [PubMed]
- Kindred, D.R.; Verhoeven, T.M.; Weightman, R.M.; Swanston, J.S.; Agu, R.C.; Brosnan, J.M.; Sylvester-Bradley, R. Effects of variety and fertiliser nitrogen on alcohol yield, grain yield, starch and protein content, and protein composition of winter wheat. J. Cereal Sci. 2008, 48, 46–57. [Google Scholar] [CrossRef]
- Viswanathan, C.; Khanna-Chopra, R. Effect of Heat Stress on Grain Growth, Starch Synthesis and Protein Synthesis in Grains of Wheat (Triticum aestivum L.) Varieties Differing in Grain Weight Stability. J. Agron. Crop Sci. 2001, 186, 1–7. [Google Scholar] [CrossRef]
- Xie, Z.; Jiang, D.; Cao, W.; Dai, T.; Jing, Q. Relationships of endogenous plant hormones to accumulation of grain protein and starch in winter wheat under different post-anthesis soil water statusses. Plant Growth Regul. 2003, 41, 117–127. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, J.; Zhang, Z.; Wu, W.; Lin, X.; Gao, M.; Yang, Y.; Zhao, P.; Xu, S.; Yang, C.; et al. Deciphering the Transcriptional Regulatory Network Governing Starch and Storage Protein Biosynthesis in Wheat for Breeding Improvement. Adv. Sci. 2024, 11, 2401383. [Google Scholar] [CrossRef]
- Fuertes-Aguilar, J.; Matilla, A.J. Transcriptional Control of Seed Life: New Insights into the Role of the NAC Family. Int. J. Mol. Sci. 2024, 25, 5369. [Google Scholar] [CrossRef]
- Jenner, C.F.; Ugalde, T.D.; Aspinall, D. The Physiology of Starch and Protein Deposition in the Endosperm of Wheat. Funct. Plant Biol. 1991, 18, 211–226. [Google Scholar] [CrossRef]
- Nadolska-Orczyk, A.; Rajchel, I.K.; Orczyk, W.; Gasparis, S. Major genes determining yield-related traits in wheat and barley. Theor. Appl. Genet. 2017, 130, 1081–1098. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Schulin, R.; Chaney, R.L.; Daneshbakhsh, B.; Afyuni, M. Micronutrient-efficient genotypes for crop yield and nutritional quality in sustainable agriculture. A review. Agron. Sustain. Dev. 2010, 30, 83–107. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, J.; Furbank, R.; Griffiths, S.; King, J.; Murchie, E.; Parry, M.; Slafer, G. Achieving yield gains in wheat. Plant Cell Environ. 2012, 35, 1799–1823. [Google Scholar] [CrossRef]
- Ișlicaru, I.; Roșculete, E.; Bonciu, E.; Petrescu, E. Research on the identification of high productivity winter wheat varieties and lines, tested on luvisol from Șimnic in the period 2004–2018. Sci. Pap. Ser. A Agron. 2021, LXIV, 388–396. [Google Scholar]
- Mu, H.; Wang, B.; Yuan, F. Bioinformatics in Plant Breeding and Research on Disease Resistance. Plants 2022, 11, 3118. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, M.; Wei, X.; Xia, R.; Pei, D.; Huang, X.; Han, B. Computational tools for plant genomics and breeding. Sci. China Life Sci. 2024, 67, 1579–1590. [Google Scholar] [CrossRef] [PubMed]
- Makino, A. Photosynthesis, Grain Yield, and Nitrogen Utilization in Rice and Wheat. Plant Physiol. 2011, 155, 125–129. [Google Scholar] [CrossRef]
- Mahboob, W.; Yang, G.; Irfan, M. Crop nitrogen (N) utilization mechanism and strategies to improve N use efficiency. Acta Physiol. Plant. 2023, 45, 52. [Google Scholar] [CrossRef]
- Wen, S.; Liu, B.; Long, S.; Gao, S.; Liu, Q.; Liu, T.; Xu, Y. Low nitrogen level improves low-light tolerance in tall fescue by regulating carbon and nitrogen metabolism. Environ. Exp. Bot. 2022, 194, 104749. [Google Scholar] [CrossRef]
- Lawlor, D.W. Carbon and nitrogen assimilation in relation to yield: Mechanisms are the key to understanding production systems. J. Exp. Bot. 2002, 53, 773–787. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat starch production, structure, functionality and applications—A review. Int. J. Food Sci. Technol. 2017, 52, 38–58. [Google Scholar] [CrossRef]
- Zi, Y.; Ding, J.; Song, J.; Humphreys, G.; Peng, Y.; Li, C.; Zhu, X.; Guo, W. Grain Yield, Starch Content and Activities of Key Enzymes of Waxy and Non-waxy Wheat (Triticum aestivum L.). Sci. Rep. 2018, 8, 4548. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Iwańska, M.; Wnuk, A.; Oleksiak, T. The Analysis of Wheat Yield Variability Based on Experimental Data from 2008–2018 to Understand the Yield Gap. Agriculture 2022, 12, 32. [Google Scholar] [CrossRef]
- Paunescu, R.A.; Bonciu, E.; Rosculete, E.; Paunescu, G.; Rosculete, C.A. The Effect of Different Cropping Systems on Yield, Quality, Productivity Elements, and Morphological Characters in Wheat (Triticum aestivum). Plants 2023, 12, 2802. [Google Scholar] [CrossRef] [PubMed]
- Chachar, Z.; Fan, L.; Chachar, S.; Ahmed, N.; Narejo, M.-U.; Ahmed, N.; Lai, R.; Qi, Y. Genetic and Genomic Pathways to Improved Wheat (Triticum aestivum L.) Yields: A Review. Agronomy 2024, 14, 1201. [Google Scholar] [CrossRef]
- Impact of Varied Tillage Practices and Phosphorus Fertilization Regimes on Wheat Yield and Grain Quality Parameters in a Five-Year Corn-Wheat Rotation System|Scientific Reports. Available online: https://www.nature.com/articles/s41598-024-65784-w (accessed on 5 March 2025).
- Singh, D.; Roy, B.K. Evaluation of malathion-induced cytogenetical effects and oxidative stress in plants using Allium test. Acta Physiol. Plant. 2017, 39, 92. [Google Scholar] [CrossRef]
- Hossain, A.; Sarker, M.A.Z.; Hakim, M.A.; Lozovskaya, M.V.; Zvolinsky, V.P. Effect of temperature on yield and some agronomic characters of spring wheat (Triticum aestivum L.) genotypes. Int. J. Agric. Res. Innov. Technol. 2011, 1, 44–54. [Google Scholar] [CrossRef]
- Ali, M.A.; Alam, M.M.; Hossain, M.T.; Islam, M.R.; Hossain, M.A.; Huda, M.S.; Haque, M.N. Effect of hill temperature on wheat variety development and yield in the district of Khagrachari. Am. J. Pure Appl. Sci 2022, 4, 103–114. [Google Scholar]
- Rana, M.R.; Karim, M.M.; Hassan, M.J.; Hossain, M.A.; Haque, M.A. Grain filling patterns of barley as affected by high temperature stress. J. Bangladesh Agric. Univ. 2017, 15, 174–181. [Google Scholar] [CrossRef]
- Riaz-ud-Din, M.S.; Ahmad, N.; Hussain, M.; Rehman, A.U. Effect of temperature on development and grain formation in spring wheat. Pak. J. Bot. 2010, 42, 899–906. [Google Scholar]
- Panozzo, J.F.; Eagles, H.A. Rate and duration of grain filling and grain nitrogen accumulation of wheat cultivars grown in different environments. Aust. J. Agric. Res. 1999, 50, 1007–1016. [Google Scholar] [CrossRef]
- Jolánkai, M.; Kassai, M.K.; Tarnawa, Á.; Pósa, B.; Birkás, M. Impact of precipitation and temperature on the grain and protein yield of wheat (Triticum aestivum L.) varieties. Időjárás Q. J. Hung. Meteorol. Serv. 2018, 122, 31–40. [Google Scholar] [CrossRef]
- Gagiu, V.; Mateescu, E.; Belc, N. Assessment of common wheat quality in Romania in the context of climate change-minireview. Rom. J. Plant Prot. 2023, 16, 1–13. [Google Scholar] [CrossRef]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of genotype, growing season and nitrogen level on gluten protein assembly of durum wheat grown under mediterranean conditions. Agronomy 2020, 10, 755. [Google Scholar] [CrossRef]
- Kaur, V.; Behl, R.K. Grain yield in wheat as affected by short periods of high temperature, drought and their interaction during pre-and post-anthesis stages. Cereal Res. Commun. 2010, 38, 514–520. [Google Scholar] [CrossRef]
- FERRIS, R.; Ellis, R.H.; Wheeler, T.R.; Hadley, P. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann. Bot. 1998, 82, 631–639. [Google Scholar] [CrossRef]
- Lizana, X.C.; Calderini, D.F. Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: Considerations for the climatic change scenarios of Chile. J. Agric. Sci. 2013, 151, 209–221. [Google Scholar] [CrossRef]
- Salazar-Gutierrez, M.R.; Johnson, J.; Chaves-Cordoba, B.; Hoogenboom, G. Relationship of base temperature to development of winter wheat. Int. J. Plant Prod. 2013, 7, 741–762. [Google Scholar]
- Prasad, P.V.V.; Pisipati, S.; Ristic, Z.; Bukovnik, U.; Fritz, A. Impact of Nighttime Temperature on Physiology and Growth of Spring Wheat. Crop Sci. 2008, 48, 2372–2380. [Google Scholar] [CrossRef]
- Gaju, O.; Allard, V.; Martre, P.; Snape, J.; Heumez, E.; LeGouis, J.; Moreau, D.; Bogard, M.; Griffiths, S.; Orford, S.; et al. Identification of traits to improve the nitrogen-use efficiency of wheat genotypes. Field Crops Res. 2011, 123, 139–152. [Google Scholar] [CrossRef]
- Petolescu, C.; Sarac, I.; Popescu, S.; Tenche-Constantinescu, A.-M.; Petrescu, I.; Camen, D.; Turc, A.; Fora, G.C.; Turcus, V.; Horablaga, N.M.; et al. Assessment of Genetic Diversity in Alfalfa Using DNA Polymorphism Analysis and Statistical Tools. Plants 2024, 13, 2853. [Google Scholar] [CrossRef]
- Tenche-Constantinescu, A.-M.; Lalescu, D.V.; Popescu, S.; Sarac, I.; Petrescu, I.; Petolescu, C.; Camen, D.; Horablaga, A.; Popescu, C.A.; Berar, C.; et al. Exploring the Genetic Landscape of Tilia spp. with Molecular and Statistical Tools. Horticulturae 2024, 10, 596. [Google Scholar] [CrossRef]
- Tenche-Constantinescu, A.-M.; Lalescu, D.V.; Popescu, S.; Sarac, I.; Petolescu, C.; Camen, D.; Horablaga, A.; Popescu, C.A.; Herbei, M.V.; Dragomir, L.; et al. Juglans regia as Urban Trees: Genetic Diversity and Walnut Kernel Quality Assessment. Horticulturae 2024, 10, 1027. [Google Scholar] [CrossRef]
- Li, R.; Tan, Y.; Zhang, H. Regulators of Starch Biosynthesis in Cereal Crops. Molecules 2021, 26, 7092. [Google Scholar] [CrossRef]
- Sun, X.; Peng, T.; Mumm, R.H. The role and basics of computer simulation in support of critical decisions in plant breeding. Mol. Breed. 2011, 28, 421–436. [Google Scholar] [CrossRef]
- Cooper, M.; Podlich, D.; Jensen, N.M.; Chapman, S.C.; Hammer, G. Modelling plant breeding programs. Trends Agron. 1999, 2, 33–64. [Google Scholar]
- Cooper, M.; Messina, C.D.; Podlich, D.; Totir, L.R.; Baumgarten, A.; Hausmann, N.J.; Wright, D.; Graham, G. Predicting the future of plant breeding: Complementing empirical evaluation with genetic prediction. Crop Pasture Sci. 2014, 65, 311–336. [Google Scholar] [CrossRef]
Year | Protein/Yield | Starch/Yield | Protein/Starch |
---|---|---|---|
2019 | −0.35 | 0.36 | −0.99 *** |
2020 | −0.74 *** | 0.78 *** | −0.96 *** |
2021 | 0.10 | −0.13 | −0.93 *** |
2022 | −0.41 * | 0.34 | −0.81 *** |
2023 | −0.56 ** | 0.65 *** | −0.89 *** |
Overall | −0.50 * | 0.51 ** | −0.93 *** |
Source of Variance | Sum of Squares | Degrees of Freedom | F-Value | p-Value |
---|---|---|---|---|
Precipitation | 53,169,095 | 4 | 38.88716 | p < 0.001 |
Temperature | 5.57 × 10 −22 | 4 | 4.07 × 10−28 | Ns |
Yield | 7.87 × 10 8 | 4 | 575.652 | p < 0.001 |
Precipitation x Temperature | 1.04 × 10 9 | 16 | 190.7714 | p < 0.001 |
Precipitation x Yield | 70,482,891 | 16 | 12.88756 | p < 0.001 |
Temperature x Yield | 1.35 × 10 8 | 16 | 24.63772 | p < 0.001 |
Precipitation x Temperature x Yield | 2.67 × 10 9 | 64 | 122.0561 | p < 0.001 |
Residual | 1.07 × 10 8 | 312 |
Source of Variance | Sum of Squares | Degrees of Freedom | F-Value | p-Value |
---|---|---|---|---|
Year | 2.07 × 10 9 | 4 | 408.3426 | p < 0.001 |
Variety | 1.46 × 10 8 | 24 | 4.7911 | p < 0.001 |
Variety x Year | 2.24 × 10 8 | 96 | 1.8421 | p < 0.001 |
Residual | 3.17 × 10 8 | 250 |
Soi | CV_Yield | CV_Starch | CV_Protein |
---|---|---|---|
Alex | 7.70% | 4.03% | 7.19% |
Ciprian | 8.01% | 5.00% | 8.04% |
Glosa | 7.64% | 5.14% | 5.42% |
Boema | 17.86% | 2.93% | 4.10% |
Lv90 | 6.62% | 2.91% | 12.40% |
Otilia | 9.19% | 4.57% | 6.78% |
Litera | 8.81% | 3.48% | 6.10% |
Dacic | 13.51% | 3.13% | 9.80% |
Crișana | 15.05% | 9.40% | 7.73% |
Lovrin01 | 12.00% | 3.98% | 10.09% |
Lovrin02 | 10.57% | 3.53% | 6.87% |
Lovrin03 | 8.93% | 3.29% | 7.94% |
Lovrin04 | 7.16% | 5.99% | 8.00% |
Lovrin05 | 10.63% | 5.01% | 11.80% |
Lovrin06 | 9.89% | 4.27% | 13.14% |
Lovrin07 | 12.44% | 11.07% | 17.17% |
Lovrin08 | 12.50% | 2.76% | 8.51% |
Lovrin09 | 15.06% | 8.14% | 10.63% |
Lovrin10 | 10.63% | 7.95% | 11.22% |
Lovrin11 | 11.57% | 3.32% | 11.02% |
Lovrin12 | 7.46% | 2.33% | 11.49% |
Lovrin13 | 15.92% | 4.59% | 3.73% |
Lovrin14 | 14.06% | 3.53% | 9.79% |
Lovrin15 | 23.05% | 2.99% | 3.98% |
Lovrin16 | 9.48% | 4.95% | 4.60% |
Media | 11.43% | 4.73% | 8.70% |
Source of Variance | Df | Sum of Squares | F-Statistic | p-Value | Significance Level |
---|---|---|---|---|---|
Protein | 24 | 89.42 | 2.35 | p = 0.0017 | p < 0.01 |
Starch | 24 | 204.57 | 0.68 | p = 0.8598 | Not Significant |
Yield | 24 | 9634.44 | 2.75 | p = 0.0002 | p < 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorinoiu, G.; Petolescu, C.; Agapie, A.L.; Buzna, C.; Rain, P.; Horablaga, N.M.; Horablaga, A.; Samfira, I.; Boldea, M.V.; Petrescu, I.; et al. Yield, Protein, and Starch Equilibrium of Indigenous Varieties: An Open Door for Computational Breeding in Enhancing Selection Strategies. Agronomy 2025, 15, 1280. https://doi.org/10.3390/agronomy15061280
Gorinoiu G, Petolescu C, Agapie AL, Buzna C, Rain P, Horablaga NM, Horablaga A, Samfira I, Boldea MV, Petrescu I, et al. Yield, Protein, and Starch Equilibrium of Indigenous Varieties: An Open Door for Computational Breeding in Enhancing Selection Strategies. Agronomy. 2025; 15(6):1280. https://doi.org/10.3390/agronomy15061280
Chicago/Turabian StyleGorinoiu, Gabriela, Cerasela Petolescu, Alina Laura Agapie, Ciprian Buzna, Petru Rain, Nicolae Marinel Horablaga, Adina Horablaga, Ionel Samfira, Marius Valentin Boldea, Irina Petrescu, and et al. 2025. "Yield, Protein, and Starch Equilibrium of Indigenous Varieties: An Open Door for Computational Breeding in Enhancing Selection Strategies" Agronomy 15, no. 6: 1280. https://doi.org/10.3390/agronomy15061280
APA StyleGorinoiu, G., Petolescu, C., Agapie, A. L., Buzna, C., Rain, P., Horablaga, N. M., Horablaga, A., Samfira, I., Boldea, M. V., Petrescu, I., Sarac, I., & Onisan, E. (2025). Yield, Protein, and Starch Equilibrium of Indigenous Varieties: An Open Door for Computational Breeding in Enhancing Selection Strategies. Agronomy, 15(6), 1280. https://doi.org/10.3390/agronomy15061280