Research on Soil Pore Segmentation of CT Images Based on MMLFR-UNet Hybrid Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Multi-Modal Low-Frequency Reconstruction (MMLFR)
Algorithm 1: Multi-Modal Low-Frequency Reconstruction Algorithm (MMLFR) |
Input: Original image , Number of modes , Bandwidth parameters , Low-frequency energy threshold Output: Reconstructed low-frequency image
|
2.3. UNet Network Fundamentals
2.4. MMLFR-UNet Hybrid Model
2.5. Experimental Environment and Computational Efficiency
2.6. Evaluation Indicators
3. Results
3.1. Data Preprocessing and Annotation Strategy
- Binarization: The image underwent binarization, extracting key structural features to simplify subsequent segmentation tasks and produce a clear binary image (Figure 5b).
- Fuzzy C-Means (FCM): The binary image was further refined using the FCM algorithm, generating preliminary clustering results (Figure 5c). This method effectively addresses fuzzy boundaries and intricate backgrounds, preserving critical features.
- Morphological operations: Morphological techniques, including dilation, erosion, opening, and closing operations, were applied to the clustered image, reducing noise and optimizing boundary details to highlight pore structures (Figure 5d).
- Manual secondary calibration and inverse color processing: on the basis of the images generated by the above automated processing, the annotators carry out secondary calibration and refinement of the key regions to ensure the accuracy and completeness of the segmentation results. Finally, after inverse color processing, the final dataset Mask label is generated (Figure 5e).
3.2. Segmentation Framework: MMLFR-UNet
3.2.1. Frequency-Based Feature Enhancement (MMLFR)
3.2.2. MMLFR-UNet Image Segmentation
3.2.3. Visual Comparison of Segmentation Results Across Models
- Soil Masks (first column):
- 2.
- MMLFR-UNet (second column):
- 3.
- UNet (third column):
- 4.
- Otsu (fourth column):
- 5.
- Fuzzy C-Means (fifth column):
3.2.4. Quantitative Evaluation of Segmentation Performance
4. Discussion
4.1. Comparative Performance with Recent Segmentation Models
4.2. Applicability and Limitations of MMLFR-UNet
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
MMLFR | Multi-Modal Low-Frequency Reconstruction |
2Dvmd | Two-dimensional Variational Mode Decomposition |
IoU | Intersection over Union |
DSC | Dice Similarity Coefficient |
FCM | Fuzzy C-Means |
IMF | Intrinsic Mode Function |
References
- Falconer, R.E.; Houston, A.N.; Otten, W.; Baveye, P.C. Emergent Behavior of Soil Fungal Dynamics: Influence of Soil Architecture and Water Distribution. Soil Sci. 2012, 177, 111–119. [Google Scholar] [CrossRef]
- Martínez, F.S.J.; Martín, M.A.; Caniego, F.J.; Tuller, M.; Guber, A.; Pachepsky, Y.; García-Gutiérrez, C. Multifractal Analysis of Discretized X-Ray Ct Images for the Characterization of Soil Macropore Structures. Geoderma 2010, 156, 32–42. [Google Scholar] [CrossRef]
- Mzezewa, J. Impacts of Converting Native Grassland into Arable Land and an Avocado Orchard on Soil Hydraulic Properties at an Experimental Farm in South Africa. Agronomy 2025, 15, 1039. [Google Scholar] [CrossRef]
- Li, Q.; Qian, Y.; Wang, Y.; Peng, X. The Relation between Soil Moisture Phase Transitions and Soil Pore Structure under Freeze–Thaw Cycling. Agronomy 2024, 14, 1608. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, Y.; Liu, L.; Chen, Y.; Zhao, Y. A Simplified Convolutional Network for Soil Pore Identification Based on Computed Tomography Imagery. Soil Sci. Soc. Am. J. 2019, 83, 1309–1318. [Google Scholar] [CrossRef]
- da Silva, I.F.S.; de Carvalho Araújo, A.; de Almeida, J.D.S.; de Paiva, A.C.; Silva, A.C.; Roehl, D. Soil Structure Analysis with Attention: A Deep-Learning-Based Method for 3D Pore Segmentation and Characterization. AgriEngineering 2025, 7, 27. [Google Scholar] [CrossRef]
- Jia, Y.; Feng, Y.; Zhang, X.; Sun, X. Multifractal Analysis of Temporal Variation in Soil Pore Distribution. Agronomy 2024, 15, 37. [Google Scholar] [CrossRef]
- Gerke, K.M.; Karsanina, M.V. How Pore Structure Non-Stationarity Compromises Flow Properties Representativity (Rev) for Soil Samples: Pore-Scale Modelling and Stationarity Analysis. Eur. J. Soil Sci. 2021, 72, 527–545. [Google Scholar] [CrossRef]
- Borges, J.A.R.; Pires, L.F.; Cássaro, F.A.M.; Roque, W.L.; Heck, R.J.; Rosa, J.A.; Wolf, F.G. X-Ray Microtomography Analysis of Representative Elementary Volume (Rev) of Soil Morphological and Geometrical Properties. Soil Tillage Res. 2018, 182, 112–122. [Google Scholar] [CrossRef]
- Liu, Y.; Jeng, D.-S. Pore Structure of Grain-Size Fractal Granular Material. Materials 2019, 12, 2053. [Google Scholar] [CrossRef]
- Yu, Q.; Wang, J.; Tang, H.; Zhang, J.; Zhang, W.; Liu, L.; Wang, N. Application of Improved Unet and Englightengan for Segmentation and Reconstruction of in Situ Roots. Plant Phenomics 2023, 5, 0066. [Google Scholar] [CrossRef] [PubMed]
- Mairhofer, S.; Zappala, S.; Tracy, S.R.; Sturrock, C.; Bennett, M.; Mooney, S.J.; Pridmore, T. Rootrak: Automated Recovery of Three-Dimensional Plant Root Architecture in Soil from X-Ray Microcomputed Tomography Images Using Visual Tracking. Plant Physiol. 2012, 158, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.G.; Petersen, J.; Selvan, R.; Rasmussen, C.R. Segmentation of Roots in Soil with U-Net. Plant Methods 2020, 16, 13. [Google Scholar] [CrossRef]
- Fang, H.; Zhang, N.; Yu, Z.; Li, D.; Peng, X.; Zhou, H. Micro-Ct Analysis of Pore Structure in Upland Red Soil under Different Long-Term Fertilization Regimes. Agronomy 2024, 14, 2668. [Google Scholar] [CrossRef]
- Schlüter, S.; Weller, U.; Vogel, H.-J. Segmentation of X-Ray Microtomography Images of Soil Using Gradient Masks. Comput. Geosci. 2010, 36, 1246–1251. [Google Scholar] [CrossRef]
- Abrosimov, K.N.; Gerke, K.M.; Semenkov, I.N.; Korost, D.V. Otsu’s Algorithm in the Segmentation of Pore Space in Soils Based on Tomographic Data. Eurasian Soil Sci. 2021, 54, 560–571. [Google Scholar] [CrossRef]
- Ojeda-Magaña, B.; Quintanilla-Domínguez, J.; Ruelas, R.; Tarquis, A.M.; Gómez-Barba, L.; Andina, D. Identification of Pore Spaces in 3D Ct Soil Images Using Pfcm Partitional Clustering. Geoderma 2014, 217, 90–101. [Google Scholar] [CrossRef]
- Sofou, A.; Evangelopoulos, G.; Maragos, P. Soil Image Segmentation and Texture Analysis: A Computer Vision Approach. IEEE Geosci. Remote Sens. Lett. 2005, 2, 394–398. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, Y.; Zhao, Y.; Han, Q. Semi-Supervised Segmentation of Multi-Scale Soil Pores Based on a Novel Receptive Field Structure. Comput. Electron. Agric. 2023, 212, 108071. [Google Scholar] [CrossRef]
- Thompson, M.L.; Singh, P.; Corak, S.; Straszheim, W.E. Cautionary Notes for the Automated Analysis of Soil Pore-Space Images. Geoderma 1992, 53, 399–415. [Google Scholar] [CrossRef]
- Bauer, B.; Cai, X.; Peth, S.; Schladitz, K.; Steidl, G. Variational-Based Segmentation of Bio-Pores in Tomographic Images. Comput. Geosci. 2017, 98, 1–8. [Google Scholar] [CrossRef]
- Han, Q.; Zhao, Y.; Zhao, Y.; Liu, K.; Pang, M. Soil Pore Segmentation of Computed Tomography Images Based on Fully Convolutional Network. J. Agric. Eng. 2019, 35, 128–133. [Google Scholar]
- Cortina-Januchs, M.G.; Quintanilla-Dominguez, J.; Vega-Corona, A.; Tarquis, A.M.; Andina, D. Detection of Pore Space in Ct Soil Images Using Artificial Neural Networks. Biogeosciences 2011, 8, 279–288. [Google Scholar] [CrossRef]
- Wang, W.; Kravchenko, A.N.; Smucker, A.J.; Rivers, M.L. Comparison of Image Segmentation Methods in Simulated 2D and 3D Microtomographic Images of Soil Aggregates. Geoderma 2011, 162, 231–241. [Google Scholar] [CrossRef]
- Minaee, S.; Boykov, Y.; Porikli, F.; Plaza, A.; Kehtarnavaz, N.; Terzopoulos, D. Image Segmentation Using Deep Learning: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3523–3542. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, Z.; Zhao, Y.; Xi, B.; Zhao, Y.; Han, Q. A Weakly Supervised Soil Pore Segmentation Method Based on Traditional Segmentation Algorithm. Catena 2025, 249, 108660. [Google Scholar] [CrossRef]
- Schlüter, S.; Sheppard, A.; Brown, K.; Wildenschild, D. Image Processing of Multiphase Images Obtained Via X-Ray Microtomography: A Review. Water Resour. Res. 2014, 50, 3615–3639. [Google Scholar] [CrossRef]
- Cao, H.; Wang, Y.; Chen, J.; Jiang, D.; Zhang, X.; Tian, Q.; Wang, M. Swin-Unet: Unet-Like Pure Transformer for Medical Image Segmentation. In Proceedings of the European Conference on Computer Vision 2022, Tel Aviv, Israel, 23–27 October 2022. [Google Scholar]
- Krithika Alias AnbuDevi, M.; Suganthi, K. Review of Semantic Segmentation of Medical Images Using Modified Architectures of Unet. Diagnostics 2022, 12, 3064. [Google Scholar] [CrossRef]
- Dai, Q.; Lee, Y.H.; Sun, H.-H.; Ow, G.; Yusof, M.L.M.; Yucel, A.C. Dmrf-Unet: A Two-Stage Deep Learning Scheme for Gpr Data Inversion under Heterogeneous Soil Conditions. IEEE Trans. Antennas Propag. 2022, 70, 6313–6328. [Google Scholar] [CrossRef]
- Xu, J.-J.; Zhang, H.; Tang, C.-S.; Yang, Y.; Li, L.; Wang, D.-L.; Liu, B.; Shi, B. Soil Desiccation Crack Recognition: New Paradigm and Field Application. J. Geophys. Res. Mach. Learn. Comput. 2024, 1, e2024JH000347. [Google Scholar] [CrossRef]
- Bai, H.; Liu, L.; Han, Q.; Zhao, Y.; Zhao, Y. A Novel Unet Segmentation Method Based on Deep Learning for Preferential Flow in Soil. Soil Tillage Res. 2023, 233, 105792. [Google Scholar] [CrossRef]
- Liu, L.; Han, Q.; Zhao, Y.; Zhao, Y. A Novel Method Combining U-Net with Lstm for Three-Dimensional Soil Pore Segmentation Based on Computed Tomography Images. Appl. Sci. 2024, 14, 3352. [Google Scholar] [CrossRef]
- Huang, H.; Lin, L.; Tong, R.; Hu, H.; Zhang, Q.; Iwamoto, Y.; Han, X.; Chen, Y.-W.; Wu, J. Unet 3+: A Full-Scale Connected Unet for Medical Image Segmentation. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2020, Barcelona, Spain, 4–8 May 2020. [Google Scholar]
- Liu, F.; Wang, L. Unet-Based Model for Crack Detection Integrating Visual Explanations. Constr. Build. Mater. 2022, 322, 126265. [Google Scholar] [CrossRef]
- Seo, H.; Huang, C.; Bassenne, M.; Xiao, R.; Xing, L. Modified U-Net (Mu-Net) with Incorporation of Object-Dependent High Level Features for Improved Liver and Liver-Tumor Segmentation in Ct Images. IEEE Trans. Med. Imaging 2019, 39, 1316–1325. [Google Scholar] [CrossRef]
- Dyson, J.; Mancini, A.; Frontoni, E.; Zingaretti, P. Deep Learning for Soil and Crop Segmentation from Remotely Sensed Data. Remote Sens. 2019, 11, 1859. [Google Scholar] [CrossRef]
- Zhou, X.; Shi, P. Unet-Like Transformer for 1d Soil Stratification Using Cone Penetration Test and Borehole Data. Eng. Geol. 2024, 343, 107795. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, C.; Wang, R. Automatic Segmentation Model Combining U-Net and Level Set Method for Medical Images. Expert Syst. Appl. 2020, 153, 113419. [Google Scholar] [CrossRef]
- Qin, C.; Gu, X. A Single Image Dehazing Method Based on Decomposition Strategy. J. Syst. Eng. Electron. 2022, 33, 279–293. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods of Soil and Agricultural Chemistry; Chinese Agriculture Science and Technology: Beijing, China, 1999. [Google Scholar]
- Han, Q.; Lei, L.; Zhao, Y.; Zhao, Y. A Neighborhood Median Weighted Fuzzy C-Means Method for Soil Pore Identification. Pedosphere 2021, 31, 746–760. [Google Scholar] [CrossRef]
- Konstantin, D.; Zosso, D. Two-Dimensional Variational Mode Decomposition. In Proceedings of the Energy Minimization Methods in Computer Vision and Pattern Recognition 2015, Hong Kong, China, 13–16 January 2015. [Google Scholar]
- Qin, K.; Zhang, Y.; Li, J. Application of Variational Mode Decomposition Method in Fourier Transform Profilometry. In Proceedings of the 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment, Chengdu, China, 26–29 June 2018. [Google Scholar]
- Lavrukhin, E.V.; Gerke, K.M.; Romanenko, K.A.; Abrosimov, K.N.; Karsanina, M.V. Assessing the Fidelity of Neural Network-Based Segmentation of Soil Xct Images Based on Pore-Scale Modelling of Saturated Flow Properties. Soil Tillage Res. 2021, 209, 104942. [Google Scholar] [CrossRef]
- Rashmi, R.; Girisha, S. A Modified U-Net for Semantic Segmentation of Liver and Liver Tumors from Ct Scans. In Proceedings of the International Conference on Computation of Artificial Intelligence & Machine Learning 2024, Jaipur, India, 18–19 January 2024. [Google Scholar]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.-W.; Heng, P.-A. H-Denseunet: Hybrid Densely Connected Unet for Liver and Tumor Segmentation from Ct Volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Song, M.; Xi, B.; Zhao, Y.; Zhao, Y. Three-Dimensional Segmentation Method of Soil Multi-Category Pores Based on Improved Unet-Vae Network. Trans. Chin. Soc. Agric. Eng. 2024, 40, 81–89. [Google Scholar]
- Bai, H.; Han, Q.; Zhao, Y.; Zhao, Y. Mfhsformer: Hierarchical Sparse Transformer Based on Multi-Feature Fusion for Soil Pore Segmentation. Expert Syst. Appl. 2025, 272, 126789. [Google Scholar] [CrossRef]
- Song, M.; Zhao, Y.; Zhao, Y.; Han, Q. Acftransunet: A New Multi-Category Soil Pores 3d Segmentation Model Combining Transformer and Cnn with Concentrated-Fusion Attention. Comput. Electron. Agric. 2024, 225, 109312. [Google Scholar] [CrossRef]
Parameter Name | Value/Setting | Parameter Name | Value/Setting |
---|---|---|---|
alpha | 5000 | epochs | 200 |
tau | 0.25 | batch_size | 64 |
K | 5 | Learning Rate | 0.0001 |
DC | 1 | scale | 0.5 |
init | 1 | Initialization | Kaiming Normal |
tol | K × 10−6 | optimizer | RMSprop |
eps | 2.2204 × 10−16 | loss | BCEWithLogitsLoss |
low_freq_threshold | 0.3 | LR scheduler | ReduceLROnPlateau |
Methods | Boundary_F1 | DICE | IOU | Pixel_Accuracy |
---|---|---|---|---|
MMLFR-UNet | 0.5236 | 0.8714 | 0.7790 | 0.9883 |
UNet | 0.4929 | 0.8692 | 0.7718 | 0.9872 |
Otsu | 0.1351 | 0.6569 | 0.5069 | 0.9597 |
FCM | 0.2956 | 0.3966 | 0.3420 | 0.5617 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, C.; Zhang, J.; Duan, Y.; Li, C.; Dong, S.; Mu, F.; Chi, C.; Han, Y. Research on Soil Pore Segmentation of CT Images Based on MMLFR-UNet Hybrid Network. Agronomy 2025, 15, 1170. https://doi.org/10.3390/agronomy15051170
Qin C, Zhang J, Duan Y, Li C, Dong S, Mu F, Chi C, Han Y. Research on Soil Pore Segmentation of CT Images Based on MMLFR-UNet Hybrid Network. Agronomy. 2025; 15(5):1170. https://doi.org/10.3390/agronomy15051170
Chicago/Turabian StyleQin, Changfeng, Jie Zhang, Yu Duan, Chenyang Li, Shanzhi Dong, Feng Mu, Chengquan Chi, and Ying Han. 2025. "Research on Soil Pore Segmentation of CT Images Based on MMLFR-UNet Hybrid Network" Agronomy 15, no. 5: 1170. https://doi.org/10.3390/agronomy15051170
APA StyleQin, C., Zhang, J., Duan, Y., Li, C., Dong, S., Mu, F., Chi, C., & Han, Y. (2025). Research on Soil Pore Segmentation of CT Images Based on MMLFR-UNet Hybrid Network. Agronomy, 15(5), 1170. https://doi.org/10.3390/agronomy15051170