Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature
Abstract
1. Introduction
2. Materials and Methods
2.1. Origin and Composition of the Substrates
2.2. Ammonia Capture System
2.2.1. Description of the Novel Configuration for N Recovery
2.2.2. Experimental Tests to Design the Two-Parts N Recovery System
2.2.3. Experimental Tests to Study the Effect of NH3 Contact Time with the Gas-Permeable Membrane System and the Effect of PM Temperature on N Recovery
2.3. Analytical Methods and Yield
3. Results and Discussion
3.1. Design and Optimization of a Novel System Based on GPM Technology for NH3 Capture in the Air—Experiment 1
3.2. Effect of Contact Time on N Capture with GPM—Experiment 2
Scale | Substrate | Acidic Solution Static: Yes/No | Ammonia Gas Static: Yes/No | Ammonia Recovery Rate | Reference | ||
---|---|---|---|---|---|---|---|
- | - | - | g m−2 d−1 | ||||
Laboratory | Poultry Litter | No | No | 5.1 | [24] | ||
No | Yes | 1.4 | [26] | ||||
No | Yes | 1.3 | [6] | ||||
Pig Manure | No | Yes | 9.5–12.7 | [25] | |||
No | No | 11.4–18.8 | [25] | ||||
Yes | No | 22.7–73.2 | This study | ||||
Synthetic Manure | 12 g L−1 TAN | No | Yes | 19–34 | [13] | ||
6 g L−1 TAN | No | Yes | 13–21.4 | [13] | |||
3 g L−1 TAN | No | Yes | 6–7 | [13] | |||
6 g L−1 TAN | No | Yes | 24–25 | [14] | |||
Synthetic Solution | 0.6 g L−1 TAN | Yes | No | 163.8–237.0 | This study | ||
Pilot | Poultry Litter | No | No | 0.41 | [24] | ||
No | Yes | 10.4–28.6 | [17] | ||||
No | Yes | 16.5 | [26] | ||||
Poultry Manure Composting | No | No | 1.9–6.9 | [16] | |||
Pig Manure | No | No | 2.3 | [24] |
3.3. Effect of Manure Temperature on N Capture—Experiment 3
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GPM | Gas-permeable membrane |
PM | Pig Manure |
N | Nitrogen |
EU | European Union |
BAT | Best available techniques |
TAN | Total ammonia nitrogen |
TS | Total solids |
VS | Volatile Solids |
e-PTFE | Expanded polytetrafluoroethylene |
References
- Ti, C.; Xia, L.; Chang, S.X.; Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 2019, 245, 141–148. [Google Scholar] [CrossRef]
- National Emission Inventory. Ammonia Emissions from Animal Husbandry. EPA 2004. Available online: https://www.epa.gov/air-emissions-inventories (accessed on 10 March 2025).
- Malherbe, L.; German, R.; Couvidat, F.; Zanatta, L.; Blannin, L.; James, A.; Lètinois, L.; Schucht, S.; Berthelot, B.; Raoult, J. Emissions of Ammonia and Methane from the Agricultural Sector. Emissions from Livestock Farming (Eionet Report—ETC HE 2022/21). European Topic Centre on Human Health and the Environment. 2022. Available online: https://www.eionet.europa.eu/etcs/all-etc-reports (accessed on 14 February 2025).
- European Union. Directive (EU) 2016/2284 of the European Parliament and of the Council of 14 December 2016 on the Reduction of National Emissions of Certain Atmospheric Pollutants. Off. J. Eur. Union 2016. Available online: https://eur-lex.europa.eu/eli/dir/2016/2284/oj/eng (accessed on 10 March 2025).
- European Commission. Zero Pollution Action Plan. COM(2021) 400 Final 2021. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021DC0400 (accessed on 10 March 2025).
- Rothrock, M.J., Jr.; Szögi, A.A.; Vanotti, M.B. Recovery of ammonia from poultry litter using gas-permeable membranes. Trans. ASABE 2010, 53, 1267–1275. [Google Scholar] [CrossRef]
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef]
- Laureni, M.; Palatsi, J.; Llovera, M.; Bonmatí, A. Influence of pig slurry characteristics on ammonia stripping efficiencies and quality of the recovered ammonium-sulfate solution. J. Chem. Technol. Biotechnol. 2013, 88, 1654–1662. [Google Scholar] [CrossRef]
- Melse, R.W.; Ploegaert, J.P.; Ogink, N.W. Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations. Biosyst. Eng. 2012, 113, 242–252. [Google Scholar] [CrossRef]
- Ellersdorfer, M.; Pesendorfer, S.; Stocker, K. Nitrogen recovery from swine manure using a zeolite-based process. Processes 2020, 8, 1515. [Google Scholar] [CrossRef]
- Perera, M.K.; Englehardt, J.D.; Dvorak, A.C. Technologies for recovering nutrients from wastewater: A critical review. Environ. Eng. Sci. 2019, 36, 511–529. [Google Scholar] [CrossRef]
- Munasinghe-Arachchige, S.P.; Nirmalakhandan, N. Nitrogen-fertilizer recovery from the centrate of anaerobically digested sludge. Environ. Sci. Technol. Lett. 2020, 7, 450–459. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Vanotti, M.B.; Martín-Ramos, P. Effect of acid flow rate, membrane surface area, and capture solution on the effectiveness of suspended gpm systems to recover ammonia. Membranes 2021, 11, 538. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Evaluation of different capture solutions for ammonia recovery in suspended gas permeable membrane systems. Membranes 2022, 12, 572. [Google Scholar] [CrossRef] [PubMed]
- Zarebska, A.; Romero Nieto, D.; Christensen, K.V.; Fjerbæk Søtoft, L.; Norddahl, B. Ammonium fertilizers production from manure: A critical review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1469–1521. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Pilot plant for the capture of ammonia from the atmosphere of pig and poultry farms using gas-permeable membrane technology. Membranes 2021, 11, 859. [Google Scholar] [CrossRef] [PubMed]
- Buabeng, F.; Hashem, F.M.; Millner, P.; Matias, B.V.; Timmons, J.; Arthur, A. Controlling poultry house ammonia emissions using gas permeable membrane systems. Br. J. Environ. Sci. 2018, 6, 1–11. [Google Scholar]
- Tichý, O.; Eckhardt, S.; Balkanski, Y.; Hauglustaine, D.; Evangeliou, N. Decreasing trends of ammonia emissions over Europe seen from remote sensing and inverse modelling. Atmos. Chem. Phys. 2023, 23, 15235–15252. [Google Scholar] [CrossRef]
- Calvet, S.; Hunt, J.; Misselbrook, T.H. Low frequency aeration of pig slurry affects slurry characteristics and emissions of greenhouse gases and ammonia. Biosyst. Eng. 2017, 159, 121–132. [Google Scholar] [CrossRef]
- American Public Health Association. Standard Methods for the Examination of Water, Wastewater; APHA: Washington, DC, USA, 2005. [Google Scholar]
- Ramos, S.C.; Kim, S.H.; Jeong, C.D.; Mamuad, L.L.; Son, A.R.; Kang, S.H.; Lee, S.S. Increasing buffering capacity enhances rumen fermentation characteristics and alters rumen microbiota composition of high concentrate fed Hanwoo steers. Sci. Rep. 2022, 12, 20739. [Google Scholar] [CrossRef]
- Daguerre-Martini, S.; Vanotti, M.B.; Rodriguez-Pastor, M.; Rosal, A.; Moral, R. Nitrogen recovery from wastewater using gas-permeable membranes: Impact of inorganic carbon content and natural organic matter. Water Res. 2018, 137, 201–210. [Google Scholar] [CrossRef]
- Vanotti, M.B.; Szogi, A. Systems and Methods for Reducing Ammonia Emissions from Liquid Effluents and for Recovering the Ammonia. U.S. Patent No. 9,708,200, 18 July 2017. [Google Scholar]
- Soto-Herranz, M.; Sánchez-Báscones, M.; Antolín-Rodríguez, J.M.; Martín-Ramos, P. Reduction of ammonia emissions from laying hen manure in a closed composting process using gas-permeable membrane technology. Agronomy 2021, 11, 2384. [Google Scholar] [CrossRef]
- Soto-Herranz, M.; Sánchez-Báscones, M.; García-González, M.C.; Martín-Ramos, P. Comparison of the Ammonia Trapping performance of different gas-permeable tubular membrane system configurations. Membranes 2022, 12, 1104. [Google Scholar] [CrossRef]
- Rothrock, M.J.; Szögi, A.A.; Vanotti, M.B. Recovery of ammonia from poultry litter using flat gas permeable membranes. Waste Manag. 2013, 33, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Manuzon, R.; Hadlocon, L.J. Ammonia Emission from Animal Feeding Operations and Its Impacts. Agric. Nat. Resour. 2014. Available online: https://ohioline.osu.edu/factsheet/AEX-723.1 (accessed on 28 April 2025).
- Koenig, K.M.; McGinn, S.M. Effect of temperature on ammonia emissions from feedlot cattle manure. J. Anim. Sci. 2016, 94 (Suppl. S5), 569–570. [Google Scholar] [CrossRef]
- Meng, J.; Li, J.; Li, J.; Nan, J.; Deng, K.; Antwi, P. Effect of temperature on nitrogen removal and biological mechanism in an up-flow microaerobic sludge reactor treating wastewater rich in ammonium and lack in carbon source. Chemosphere 2019, 216, 186–194. [Google Scholar] [CrossRef]
- Bleizgys, R.; Naujokienė, V. Ammonia emissions from cattle manure under variable moisture exchange between the manure and the environment. Agronomy 2023, 13, 1555. [Google Scholar] [CrossRef]
- Pereira, J.; Misselbrook, T.H.; Chadwick, D.; Coutinho, J.; Trindade, H. Effects of temperature and dairy cattle excreta characteristics on potential ammonia and greenhouse gas emissions from housing—A laboratory study. Biosyst. Eng. 2012, 112, 138–150. [Google Scholar] [CrossRef]
pH | TAN | Conductivity | TS | VS | |
---|---|---|---|---|---|
- | mg L−1 | mS cm−1 | % | % | |
PM_EXP 1 | 7.00 (0.2) | 4600 (127) | 29.7 (0.14) | 2.7 (0.3) | 0.92 (0.1) |
PM_EXP 2 | 8.02 (0.0) | 4656 (4) | 26.5 (0.14) | 2.7 (0.3) | 0.92 (0.1) |
PM_EXP 3 | 7.30 (0.1) | 4818 (28) | 29.2 (0.14) | 2.7 (0.3) | 0.92 (0.1) |
Emitting Solution | Acidic Trapping Solution | ||||||||
---|---|---|---|---|---|---|---|---|---|
Test | Test Time | Final pH | Conductivity | Emitted N | Final pH | N Recovery | |||
min | mS cm−1 | mg TAN | % | mg TAN | % | g m−2 d−1 | |||
E1.1 | 60 | 10.0(0.3) | 1055.3 (51.9) | 530.5 (55.4) | 84 | 0.4 (0.0) | 1.5 (0.6) | 0.3 | 2.1 |
90 | 9.7(0.8) | 1046.7 (463.6) | 562.2 (41.9) | 89 | 0.6 (0.1) | 2.0 (0.4) | 0.4 | 1.9 | |
120 | 9.0(0.3) | 1209.0 (111.0) | 583.3 (199.3) | 92 | 0.7 (0.1) | 1.2 (0.1) | 0.2 | 0.9 | |
180 | 8.7(0.5) | 727.0 (29.5) | 564.5 (92.1) | 89 | 0.7 (0.2) | 9.0 (7.2) | 1.6 | 4.4 | |
E1.2 | 60 | 10.5(0.1) | 1219.3 (98.4) | 294.1 (105.9) | 47 | 1.3 (0.1) | 161.3 (21.1) | 55 | 237.0 |
90 | 9.6(1.2) | 1462.3 (91.7) | 364.2 (32.0) | 58 | 1.3 (0.3) | 183.0 (36.3) | 50 | 179.2 | |
120 | 10.3(0.1) | 1249.7 (147.9) | 409.3 (30.0) | 65 | 1.3 (0.1) | 223.0 (68.4) | 55 | 163.8 | |
180 | 9.2(0.1) | 2840.0 (1633.3) | 424.1 (6.9) | 67 | 0.2 (0.1) | 376.6 (112.8) | 89 | 184.4 | |
E1.3 | 60 | 10.7(0.0) | 1296.7 (395.3) | 345.1 (51.9) | 55 | 0.9 (0.0) | 87.5 (5.8) | 25 | 128.6 |
90 | 9.9(0.1) | 1300.3 (217.1) | 399.4 (20.0) | 63 | 0.9 (0.0) | 102.1 (13.8) | 26 | 100.0 | |
120 | n.d. | 709.7 (71.4) | 457.7 (1.4) | 72 | 0.9 (0.0) | 87.0 (58.1) | 19 | 63.9 | |
E1.4 | 60 | 10.2(0.2) | 1189.0 (315.2) | 358.1 (26.2) | 57 | 0.5 (0.0) | 139.7 (5.9) | 39 | 205.3 |
90 | 9.7(0.3) | 1421.0 (352.7) | 405.9 (24.82) | 64 | 0.5 (0.0) | 151.5 (232.4) | 37 | 148.4 | |
120 | n.d. | n.d. | 453.9 | 72 | n.d. | n.d. | n.d. | ||
E 1.5 | 60 | 7.6(0.3) | 27.4 (0.6) | 167.2 (17.4) | 37 | 0.2 (0.0) | 13.9 (4.9) | 8 | 20.4 |
90 | 8.0(0.5) | 26.6 (0.7) | 223.1 (9.6) | 48 | 0.2 (0.1) | 14.9 (2.6) | 7 | 14.6 |
Pig Manure | Acidic Trapping Solution | ||||||||
---|---|---|---|---|---|---|---|---|---|
Test Time | Initial pH | Final pH | Conductivity | Emmited N | Final pH | N Recovery | |||
min | - | - | mS/cm | mg TAN | % | - | mg TAN | % | g m−2 d−1 |
60 | 8.0 (0.0) | 8.9 (0.0) | 26.5 (0.4) | 93.3 (15.6) | 4 | 0.3 (0.0) | 15.5 (0.6) | 17 (3.4) | 22.7 (0.8) |
120 | 8.9 (0.2) | 9.2 (0.0) | 23.7 (1.1) | 237.5 (66.1) | 10 | 0.7 (0.1) | 99.6 (24.0) | 42 (1.6) | 73.2 (17.6) |
240 | 9.0 (0.0) | 9.2 (0.1) | 20.6 (0.8) | 406.2 (169.4) | 20 | 0.9 (0.1) | 162.6 (28.7) | 42 (10.6) | 59.7 (10.5) |
Pig Manure | Acidic Solution | |||||||
---|---|---|---|---|---|---|---|---|
Water Bath Temperature | Initial pH | Final pH | Final Temperature | Emitted N | Final pH | N Recovery | ||
°C | - | - | °C | mg | - | mg | % | g m−2 d−1 |
21.5 (0.5) | 7.4 (0.0) | 8.2 (0.4) | 23.5 (0.3) | 50.5 (10.3) | 0.2 (0.02) | 5.1 (1.4) | 11 (0.93) | 7.7 (2.2) |
38.8 (1.3) | 7.5 (0.0) | 8.7 (0.1) | 38.6 (0.9) | 39.1 (18.9) | 0.3 (0.06) | 10.4 (0.7) | 31 (16.58) | 15.9 (1.1) |
49.3 (0.7) | 7.5 (0.1) | 8.5 (0.1) | 48.4 (0.5) | 151.7 (69.1) | 0.2 (0.01) | 17.8 (6.7) | 13 (4.3) | 27.2 (3.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calvo-de Diego, P.; García-González, M.C.; Sánchez-Báscones, M.; Molinuevo-Salces, B. Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature. Agronomy 2025, 15, 1109. https://doi.org/10.3390/agronomy15051109
Calvo-de Diego P, García-González MC, Sánchez-Báscones M, Molinuevo-Salces B. Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature. Agronomy. 2025; 15(5):1109. https://doi.org/10.3390/agronomy15051109
Chicago/Turabian StyleCalvo-de Diego, Paula, María Cruz García-González, Mercedes Sánchez-Báscones, and Beatriz Molinuevo-Salces. 2025. "Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature" Agronomy 15, no. 5: 1109. https://doi.org/10.3390/agronomy15051109
APA StyleCalvo-de Diego, P., García-González, M. C., Sánchez-Báscones, M., & Molinuevo-Salces, B. (2025). Developing a New System Based on Membranes for Ammonia Recovery from the Atmosphere: Effect of Operation Time and Manure Temperature. Agronomy, 15(5), 1109. https://doi.org/10.3390/agronomy15051109