Biochar-Based Fertilizers: Advancements, Applications, and Future Directions in Sustainable Agriculture—A Review
Abstract
:1. Introduction
2. The Concept, Classification, and Preparation Methods of Biochar-Based Fertilizers
2.1. Concept and Classification of Biochar-Based Fertilizers
2.2. Preparation Methods of Biochar-Based Fertilizer
2.2.1. Co-Pyrolysis Method
2.2.2. In Situ Pyrolysis Method
2.2.3. Impregnation Method
2.2.4. Granulation Method
2.2.5. Coating Method
2.3. Life Cycle Assessment of Biochar-Based Fertilizer
3. The Important Role of Biochar-Based Fertilizers in Agriculture
3.1. The Impact of Biochar-Based Fertilizers on Soil Chemical Properties
3.2. The Impact of Biochar-Based Fertilizers on Soil Physical Properties
3.3. The Impact of Biochar-Based Fertilizers on Soil Microorganisms
3.4. Biochar-Based Fertilizers’ Effects on the Growth, Development, Quality, and Yield of Different Crops
3.5. Advantages of Biochar-Based Fertilizers in Nutrient Release
3.6. The Relationship Between Biochar-Based Fertilizers and Sustainable Agriculture
4. Conclusions and Future Perspectives
- (1)
- Strengthening long-term, multi-region, and multi-crop system field trials to verify their adaptability and stability under different soil types and climatic conditions.
- (2)
- Using molecular biology, soil ecology, and material science to deeply analyze the regulatory mechanisms of biochar-based fertilizers on the soil microbial community structure, enzyme activity, and nutrient transformation pathways.
- (3)
- Exploring green, low-cost, and high-efficiency preparation processes to develop scalable and functional biochar-based fertilizer products.
- (4)
- Establishing comprehensive product quality standards and field application guidelines to promote their practical use in green agriculture and precision nutrient management systems.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Farooq, M. Conservation agriculture and sustainable development goals. Pak. J. Agric. Sci. 2023, 60, 291–298. [Google Scholar] [CrossRef]
- Khan, Z.; Yang, X.J.; Fu, Y.Q.; Joseph, S.; Khan, M.N.; Khan, M.A.; Alam, I.; Shen, H. Engineered biochar improves nitrogen use efficiency via stabilizing soil water-stable macroaggregates and enhancing nitrogen transformation. Biochar 2023, 5, 52. [Google Scholar] [CrossRef]
- Zhou, J.; Xia, F.; Liu, X.M.; He, Y.; Xu, J.M.; Brookes, P.C. Effects of nitrogen fertilizer on the acidification of two typical acid soils in South China. J. Soils Sediments 2014, 14, 415–422. [Google Scholar] [CrossRef]
- Cai, Z.J.; Wang, B.R.; Xu, M.G.; Zhang, H.M.; He, X.H.; Zhang, L.; Gao, S.D. Intensified soil acidification from chemical N fertilization and prevention by manure in an 18-year field experiment in the red soil of southern China. J. Soils Sediments 2015, 15, 260–270. [Google Scholar] [CrossRef]
- Long, X.L.; Luo, Y.S.; Sun, H.P.; Tian, G. Fertilizer using intensity and environmental efficiency for China’s agriculture sector from 1997 to 2014. Nat. Hazards 2018, 92, 1573–1591. [Google Scholar] [CrossRef]
- Fu, J.; Wu, Y.L.; Wang, Q.H.; Hu, K.L.; Wang, S.Q.; Zhou, M.H.; Hayashi, K.; Wang, H.Y.; Zhan, X.Y.; Jian, Y.W.; et al. Importance of subsurface fluxes of water, nitrogen and phosphorus from rice paddy fields relative to surface runoff. Agric. Water Manag. 2019, 213, 627–635. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.Y.; Xu, W.; Liu, X.J.; Li, Y.; Wei, J.; Wang, Z.; Lu, X.H. Ammonia volatilization as the major nitrogen loss pathway in dryland agro-ecosystems. Environ. Pollut. 2020, 265 Pt A, 114862. [Google Scholar] [CrossRef]
- Krasilnikov, P.; Taboada, M.A.; Amanullah. Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture 2022, 12, 462. [Google Scholar] [CrossRef]
- Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manag. 2018, 227, 146–154. [Google Scholar] [CrossRef]
- Xia, F.; Zhang, Z.; Zhang, Q.; Huang, H.C.; Zhao, X.H. Life cycle assessment of greenhouse gas emissions for various feedstocks-based biochars as soil amendment. Sci. Total Environ. 2024, 911, 168734. [Google Scholar] [CrossRef]
- Lin, G.Y.; Wang, Y.Y.; Wu, X.D.; Meng, J.; Ok, Y.S.; Wang, C.H. Enhancing agricultural productivity with biochar: Evaluating feedstock and quality standards. Bioresour. Technol. Rep. 2025, 29, 102059. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Samoraj, M.; Mironiuk, M.; Witek-Krowiak, A.; Izydorczyk, G.; Skrzypczak, D.; Mikula, K.; Basladynska, S.; Moustakas, K.; Chojnacka, K. Biochar in environmental friendly fertilizers-Prospects of development products and technologies. Chemosphere 2022, 296, 133975. [Google Scholar] [CrossRef]
- Yu, O.Y.; Harper, M.; Hoepfl, M.; Domermuth, D. Characterization of Biochar and Its Effects on the Water Holding Capacity of Loamy Sand Soil: Comparison of Hemlock Biochar and Switchblade Grass Biochar Characteristics. Environ. Prog. Sustain. Energy 2017, 36, 1474–1479. [Google Scholar] [CrossRef]
- Masek, O.; Buss, W.; Brownsort, P.; Rovere, M.; Tagliaferro, A.; Zhao, L.; Cao, X.D.; Xu, G.W. Potassium doping increases biochar carbon sequestration potential by 45%, facilitating decoupling of carbon sequestration from soil improvement. Sci. Rep. 2019, 9, 5514. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Xie, N.Y.; Feng, C.C.; Wang, C.Q.; Huang, R.; Tao, Q.; Tang, X.Y.; Wu, Y.J.; Luo, Y.L.; Li, Q.Q.; et al. Pore size and organic carbon of biochar limit the carbon sequestration potential of Bacillus cereus SR. Ecotoxicol. Environ. Saf. 2024, 274, 116229. [Google Scholar] [CrossRef]
- He, D.B.; Ma, H.; Hu, D.N.; Wang, X.G.; Dong, Z.X.; Zhu, B. Biochar for sustainable agriculture: Improved soil carbon storage and reduced emissions on cropland. J. Environ. Manag. 2024, 371, 123147. [Google Scholar] [CrossRef] [PubMed]
- Sultan, H.; Li, Y.S.; Ahmed, W.; Yixue, M.; Shah, A.S.; Faizan, M.; Ahmad, A.; Abbas, H.M.M.; Nie, L.X.; Khan, M.N. Biochar and nano biochar: Enhancing salt resilience in plants and soil while mitigating greenhouse gas emissions: A comprehensive review. J. Environ. Manag. 2024, 355, 120448. [Google Scholar] [CrossRef]
- Jiang, Y.H.; Li, T.; Xu, X.R.; Sun, J.F.; Pan, G.X.; Cheng, K. A global assessment of the long-term effects of biochar application on crop yield. Curr. Res. Environ. Sustain. 2024, 7, 100247. [Google Scholar] [CrossRef]
- Xiao, L.A.; Lin, Y.; Chen, D.L.; Zhao, K.B.; Wang, Y.D.; You, Z.T.; Zhao, R.Q.; Xie, Z.X.; Liu, J.G. Maximizing crop yield and water productivity through biochar application: A global synthesis of field experiments. Agric. Water Manag. 2024, 305, 109134. [Google Scholar] [CrossRef]
- Qin, J.M.; Li, J.X.; Pei, H.H.; Li, Q.H.; Cheng, D.M.; Zhou, J.; Pei, G.P.; Wang, Y.Y.; Liu, F.W. Effective remediation and phytotoxicity assessment of oxytetracycline and Cd co-contaminated soil using biochar. Environ. Technol. Innov. 2024, 35, 103649. [Google Scholar] [CrossRef]
- Kizito, S.; Luo, H.Z.; Lu, J.X.; Bah, H.; Dong, R.J.; Wu, S.B. Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef]
- Yin, X.H.; Chen, J.N.; Cao, F.B.; Tao, Z.; Huang, M. Short-term application of biochar improves post-heading crop growth but reduces pre-heading biomass translocation in rice. Plant Prod. Sci. 2020, 23, 522–528. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, K.R.; Yang, J.E.; Ok, Y.S.; Owens, G.; Nehls, T.; Wessolek, G.; Kim, K.H. Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere 2016, 142, 153–159. [Google Scholar] [CrossRef]
- Joseph, S.; Kammann, C.I.; Shepherd, J.G.; Conte, P.; Schmidt, H.P.; Hagemann, N.; Rich, A.M.; Marjo, C.E.; Allen, J.; Munroe, P.; et al. Microstructural and associated chemical changes during the composting of a high temperature biochar: Mechanisms for nitrate, phosphate and other nutrient retention and release. Sci. Total Environ. 2018, 618, 1210–1223. [Google Scholar] [CrossRef]
- Eissa, R.; Jeyakumar, L.; McKenzie, D.B.; Wu, J.H. Influence of Biochar Feedstocks on Nitrate Adsorption Capacity. Earth 2024, 5, 55. [Google Scholar] [CrossRef]
- Hilber, I.; Bastos, A.C.; Loureiro, S.; Soja, G.; Marsz, A.; Cornelissen, G.; Bucheli, T.D. The different faces of biochar: Contamination risk versus remediation tool. J. Environ. Eng. Landsc. Manag. 2017, 25, 86–104. [Google Scholar] [CrossRef]
- Shanmugam, V.; Sreenivasan, S.N.; Mensah, R.A.; Forsth, M.; Sas, G.; Hedenqvist, M.S.; Neisiany, R.E.; Tu, Y.M.; Das, O. A review on combustion and mechanical behaviour of pyrolysis biochar. Mater. Today Commun. 2022, 31, 103629. [Google Scholar] [CrossRef]
- Nguyen, V.; Sharma, P.; Rowinski, L.; Le, H.C.; Le, D.T.N.; Osman, S.M.; Le, H.S.; Truong, T.H.; Nguyen, P.Q.P.; Cao, D.N. Biochar-based catalysts derived from biomass waste: Production, characterization, and application for liquid biofuel synthesis. Biofuels Bioprod. Biorefin. 2024, 18, 594–616. [Google Scholar] [CrossRef]
- Ullah, A.; Ren, W.L.; Tian, P.; Yu, X.Z. Biochar as a green strategy in alleviating Cd mobility in soil and uptake in plants: A step towards Cd-free food. Int. Biodeterior. Biodegrad. 2024, 190, 105787. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kang, Y.-G.; Kim, J.-H.; Taek-Keun, O.; Yun, Y.-U. Effects of nutrient-coated biochar amendments on the growth and elemental composition of leafy vegetables. Korean J. Agric. Sci. 2023, 50, 967–976. [Google Scholar] [CrossRef]
- Uwingabire, S.; Chamshama, S.A.O.; Nduwamungu, J.; Nyberg, G. French Bean Production as Influenced by Biochar and Biochar Blended Manure Application in Two Agro-Ecological Zones of Rwanda. Agronomy 2024, 14, 2020. [Google Scholar] [CrossRef]
- Seow, Y.X.; Tan, Y.H.; Mubarak, N.M.; Kansedo, J.; Khalid, M.; Ibrahim, M.L.; Ghasemi, M. A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications. J. Environ. Chem. Eng. 2022, 10, 107017. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, B.; Liu, G.; Cai, Z.; Zhang, C. Potential Toxic Compounds in Biochar. In Biochar Biomass Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 349–384. [Google Scholar] [CrossRef]
- Lu, J.W.; Li, Y.F.; Cai, Y.J.; Jiang, P.K.; Yu, B. Co-incorporation of hydrotalcite and starch into biochar-based fertilizers for the synthesis of slow-release fertilizers with improved water retention. Biochar 2023, 5, 44. [Google Scholar] [CrossRef]
- Nagaraju, K.; Prasad, T.; Chari, M.S.; Ramu, Y.R.; Murthy, B.R.; Naidu, M.V.S.; Leelavathy, G.P.; Mohan, P.R.; Damu, A.G.; Gopal, D. Effects of Soil Application of Nanobiochar-Based Nitrogen and Potassium Fertilizers on the Growth and Yield of Groundnut (Arachis hypogaea L.). J. Soil Sci. Plant Nutr. 2024, 24, 5759–5771. [Google Scholar] [CrossRef]
- Wang, J.; Sun, L.J.; Sun, Y.F.; Yang, S.Y.; Qin, Q.; Xue, Y. Integrated enzyme activities and untargeted metabolome to reveal the mechanism that allow long-term biochar-based fertilizer substitution improves soil quality and maize yield. Environ. Res. 2025, 270, 120935. [Google Scholar] [CrossRef] [PubMed]
- Nepal, J.; Ahmad, W.; Munsif, F.; Khan, A.; Zou, Z.Y. Advances and prospects of biochar in improving soil fertility, biochemical quality, and environmental applications. Front. Environ. Sci. 2023, 11, 14752. [Google Scholar] [CrossRef]
- Piash, M.I.; Iwabuchi, K.; Itoh, T. Synthesizing biochar-based fertilizer with sustained phosphorus and potassium release: Co-pyrolysis of nutrient-rich chicken manure and Ca-bentonite. Sci. Total Environ. 2022, 822, 153509. [Google Scholar] [CrossRef]
- Zhang, J.N.; Ge, L.A.; Yang, Y.X.; Zhang, X.X.; Wang, C.; Sun, H.F.; Chen, H.H.; Huang, J.; Zhou, S. Production and Subsequent Application of Different Biochar-based Organic Fertilizers to Enhance Vegetable Quality and Soil Carbon Stability. J. Soil Sci. Plant Nutr. 2024, 25, 147–159. [Google Scholar] [CrossRef]
- Grafmüller, J.; Möllmer, J.; Muehe, E.M.; Kammann, C.I.; Kray, D.; Schmidt, H.P.; Hagemann, N. Granulation compared to co-application of biochar plus mineral fertilizer and its impacts on crop growth and nutrient leaching. Sci. Rep. 2024, 14, 16555, Erratum in Sci. Rep. 2025, 15, 3796. https://doi.org/10.1038/s41598-025-87051-2. [Google Scholar] [CrossRef]
- Zhou, Z.D.; Gao, T.; Zhu, Q.; Yan, T.T.; Li, D.C.; Xue, J.H.; Wu, Y.B. Increases in bacterial community network complexity induced by biochar-based fertilizer amendments to karst calcareous soil. Geoderma 2019, 337, 691–700. [Google Scholar] [CrossRef]
- Puga, A.P.; Grutzmacher, P.; Cerri, C.E.P.; Ribeirinho, V.S.; de Andrade, C.A. Biochar-based nitrogen fertilizers: Greenhouse gas emissions, use efficiency, and maize yield in tropical soils. Sci. Total Environ. 2020, 704, 135375. [Google Scholar] [CrossRef]
- Barbosa, C.F.; Correa, D.A.; Carneiro, J.S.D.; Melo, L.C.A. Biochar Phosphate Fertilizer Loaded with Urea Preserves Available Nitrogen Longer than Conventional Urea. Sustainability 2022, 14, 686. [Google Scholar] [CrossRef]
- Fachini, J.; de Figueiredo, C.C.; do Vale, A.T.; da Silva, J.; Zandonadi, D.B. Potassium-enriched biochar-based fertilizers for improved uptake in radish plants. Nutr. Cycl. Agroecosyst. 2024, 128, 415–427. [Google Scholar] [CrossRef]
- Farrar, M.B.; Wallace, H.M.; Xu, C.Y.; Joseph, S.; Nguyen, T.T.N.; Dunn, P.K.; Bai, S.H. Biochar compound fertilisers increase plant potassium uptake 2 years after application without additional organic fertiliser. Environ. Sci. Pollut. Res. 2022, 29, 7170–7184. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.H.; Zhang, C.Y.; Yang, Z.H.; Liu, N.A.; Gao, Y.; Wang, R.T.; Huang, D.Y.; Tian, F.; Li, W.; Wei, C.; et al. Acid-modified biochar-based bacterial fertilizer and increase soil available phosphorus. J. Soils Sediments 2025, 25, 59–66. [Google Scholar] [CrossRef]
- Deng, Z.H.; Wang, J.W.; He, Y.H.; Tu, Z.; Tian, F.; Li, H.J.; Wu, Z.S.; An, X.F. Biochar-based Bacillus subtilis inoculant for enhancing plants disease prevention: Microbiota response and root exudates regulation. Biochar 2023, 5, 81. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K. Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield. Biomass Convers. Biorefin. 2023, 13, 13051–13063. [Google Scholar] [CrossRef]
- Esmaeili, N.; Rad, M.K.; Sangani, M.F.; Ghorbanzadeh, N. Biochar-based fertilizers from co-pyrolysis of algae and hazelnut shell with triple superphosphate: Physicochemical properties and slow release performance. Waste Manag. Res. 2024, 1–8. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Dissanayake, P.D.; El-Naggar, A.; Gayesha, E.; Wijesekara, H.; Krishnamoorthy, N.; Cai, Y.J.; Chang, S.X. Biochar-based controlled-release fertilizers for enhancing plant growth and environmental sustainability: A review. Biol. Fertil. Soils 2025, 61, 701–715. [Google Scholar] [CrossRef]
- Sim, D.H.H.; Tan, I.A.W.; Lim, L.L.P.; Hameed, B.H. Encapsulated biochar-based sustained release fertilizer for precision agriculture: A review. J. Clean. Prod. 2021, 303, 127018. [Google Scholar] [CrossRef]
- Zheng, J.F.; Han, J.M.; Liu, Z.W.; Xia, W.B.; Zhang, X.H.; Li, L.Q.; Liu, X.Y.; Bian, R.J.; Cheng, K.; Zheng, J.W.; et al. Biochar compound fertilizer increases nitrogen productivity and economic benefits but decreases carbon emission of maize production. Agric. Ecosyst. Environ. 2017, 241, 70–78. [Google Scholar] [CrossRef]
- Gao, Y.R.; Fang, Z.; Van Zwieten, L.; Bolan, N.; Dong, D.; Quin, B.F.; Meng, J.; Li, F.B.; Wu, F.C.; Wang, H.L.; et al. A critical review of biochar-based nitrogen fertilizers and their effects on crop production and the environment. Biochar 2022, 4, 36. [Google Scholar] [CrossRef]
- Abán, C.L.; Larama, G.; Ducci, A.; Huidobro, J.; Sabaté, D.C.; Gil, S.V.; Brandán, C.P. Restoration of degraded soils with perennial pastures shifts soil microbial communities and enhances soil structure. Agric. Ecosyst. Environ. 2025, 382, 109472. [Google Scholar] [CrossRef]
- Luyima, D.; Lee, J.H.; Sung, J.; Oh, T.K. Co-pyrolysed animal manure and bone meal-based urea hydrogen peroxide (UHP) fertilisers are an effective technique of combating ammonia emissions. J. Mater. Cycles Waste Manag. 2020, 22, 1887–1898. [Google Scholar] [CrossRef]
- Shackley, S.; Hammond, J.; Gaunt, J.; Ibarrola, R. The feasibility and costs of biochar deployment in the UK. Carbon Manag. 2011, 2, 335–356. [Google Scholar] [CrossRef]
- Wang, C.Q.; Luo, D.; Zhang, X.; Huang, R.; Cao, Y.J.; Liu, G.G.; Zhang, Y.S.; Wang, H. Biochar-based slow-release of fertilizers for sustainable agriculture: A mini review. Environ. Sci. Ecotechnol. 2022, 10, 100167. [Google Scholar] [CrossRef]
- Zhou, Q.F.; Houge, B.A.; Tong, Z.H.; Gao, B.; Liu, G.D. An in situ Technique for Producing Low-Cost Agricultural Biochar. Pedosphere 2018, 28, 690–695. [Google Scholar] [CrossRef]
- Wali, F.; Naveed, M.; Bashir, M.A.; Asif, M.; Ahmad, Z.; Alkahtani, J.; Alwahibi, M.S.; Elshikh, M.S. Formulation of Biochar-Based Phosphorus Fertilizer and Its Impact on Both Soil Properties and Chickpea Growth Performance. Sustainability 2020, 12, 9528. [Google Scholar] [CrossRef]
- Villada, E.; Velasquez, M.; Gómez, A.M.; Correa, J.D.; Saldarriaga, J.F.; López, J.E.; Tamayo, A. Combining anaerobic digestion slurry and different biochars to develop a biochar-based slow-release NPK fertilizer. Sci. Total Environ. 2024, 927, 171982. [Google Scholar] [CrossRef]
- Chen, Y.; Cui, Z.X.; Ding, H.; Wan, Y.C.; Tang, Z.B.; Gao, J.K. Cost-Effective Biochar Produced from Agricultural Residues and Its Application for Preparation of High Performance Form-Stable Phase Change Material via Simple Method. Int. J. Mol. Sci. 2018, 19, 3055. [Google Scholar] [CrossRef]
- Chen, L.; Chen, Q.C.; Rao, P.H.; Yan, L.L.; Shakib, A.; Shen, G.Q. Formulating and Optimizing a Novel Biochar-Based Fertilizer for Simultaneous Slow-Release of Nitrogen and Immobilization of Cadmium. Sustainability 2018, 10, 2740. [Google Scholar] [CrossRef]
- Wang, K.A.; Hou, J.J.; Zhang, S.D.; Hu, W.J.; Yi, G.W.; Chen, W.J.; Cheng, L.; Zhang, Q.Z. Preparation of a new biochar-based microbial fertilizer: Nutrient release patterns and synergistic mechanisms to improve soil fertility. Sci. Total Environ. 2023, 860, 160478. [Google Scholar] [CrossRef]
- Yu, Z.; Zhao, J.; Hua, Y.F.; Li, X.Y.; Chen, Q.C.; Shen, G.Q. Optimization of Granulation Process for Binder-Free Biochar-Based Fertilizer from Digestate and Its Slow-Release Performance. Sustainability 2021, 13, 8573. [Google Scholar] [CrossRef]
- Chen, S.L.; Yang, M.; Ba, C.; Yu, S.S.; Jiang, Y.F.; Zou, H.T.; Zhang, Y.L. Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. Sci. Total Environ. 2018, 615, 431–437. [Google Scholar] [CrossRef]
- An, X.F.; Wu, Z.S.; Qin, H.H.; Liu, X.; He, Y.H.; Xu, X.L.; Li, T.; Yu, B. Integrated co-pyrolysis and coating for the synthesis of a new coated biochar-based fertilizer with enhanced slow-release performance. J. Clean. Prod. 2021, 283, 124642. [Google Scholar] [CrossRef]
- Lu, J.W.; Wu, M.Q.; Luo, L.P.; Lu, R.H.; Zhu, J.; Li, Y.F.; Cai, Y.J.; Xiang, H.; Song, C.F.; Yu, B. Incorporating iron oxide nanoparticles in polyvinyl alcohol/starch hydrogel membrane with biochar for enhanced slow-release properties of compound fertilizers. Carbohydr. Polym. 2025, 348, 122834. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.M.; Hu, Z.Y.; Ba, Y.X.; Qi, W.F. Application of biochar-coated urea controlled loss of fertilizer nitrogen and increased nitrogen use efficiency. Chem. Biol. Technol. Agric. 2021, 8, 3. [Google Scholar] [CrossRef]
- Zhou, Z.D.; Gao, T.; Van Zwieten, L.; Zhu, Q.; Yan, T.T.; Xue, J.H.; Wu, Y.B. Soil Microbial Community Structure Shifts Induced by Biochar and Biochar-Based Fertilizer Amendment to Karst Calcareous Soil. Soil Sci. Soc. Am. J. 2019, 83, 398–408. [Google Scholar] [CrossRef]
- Wen, P.; Wu, Z.S.; Han, Y.J.; Cravotto, G.; Wang, J.; Ye, B.C. Microwave-Assisted Synthesis of a Novel Biochar-Based Slow-Release Nitrogen Fertilizer with Enhanced Water-Retention Capacity. ACS Sustain. Chem. Eng. 2017, 5, 7374–7382. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, C.J.; Fu, S.F.; Ashraf, M.I.; Zhao, E.F.; Shi, H.; Han, X.R.; Hong, Z.B. Study on Characteristics of Ammonium Nitrogen Adsorption by Biochar Prepared in Different Temperature. ICEEP 2013, 724–725, 452–456. [Google Scholar] [CrossRef]
- Wen, X.L.; Wu, Y.C.; Xu, J.J.; Zhou, Y.C.; Jia, L.Y.; Yuan, B.H. A facile strategy for improving the hydrophobicity and photo-thermal conversion capability of biochar and its application in the absorption of hazardous chemicals and viscous oil. Mater. Lett. 2024, 360, 136009. [Google Scholar] [CrossRef]
- Rudra, A.; Petersen, H.I.; Sanei, H. Molecular characterization of biochar and the relation to carbon permanence. Int. J. Coal Geol. 2024, 291, 104565. [Google Scholar] [CrossRef]
- Ndoung, O.C.N.; de Figueiredo, C.C.; Ramos, M.L.G. A scoping review on biochar-based fertilizers: Enrichment techniques and agro-environmental application. Heliyon 2021, 7, e08473. [Google Scholar] [CrossRef] [PubMed]
- Yin, D.W.; Yang, X.Y.; Wang, H.Z.; Guo, X.H.; Wang, S.Q.; Wang, Z.H.; Ding, G.H.; Yang, G.; Zhang, J.N.; Jin, L.; et al. Effects of chemical-based fertilizer replacement with biochar-based fertilizer on albic soil nutrient content and maize yield. Open Life Sci. 2022, 17, 517–528. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Xie, T.T.; Xiao, H.J.; Gao, M. Biochar-Based Fertilizer Improved Crop Yields and N Utilization Efficiency in a Maize-Chinese Cabbage Rotation System. Agriculture 2022, 12, 1030. [Google Scholar] [CrossRef]
- Feng, W.H.; Sánchez-Rodríguez, A.R.; Bilyera, N.; Wang, J.Q.; Wang, X.Q.; Han, Y.H.; Ma, B.X.; Zhang, H.Y.; Li, F.Y.; Zhou, J.; et al. Mechanisms of biochar-based organic fertilizers enhancing maize yield on a Chinese Chernozem: Root traits, soil quality and soil microorganisms. Environ. Technol. Innov. 2024, 36, 103756. [Google Scholar] [CrossRef]
- Rombel, A.; Krasucka, P.; Oleszczuk, P. Sustainable biochar-based soil fertilizers and amendments as a new trend in biochar research. Sci. Total Environ. 2022, 816, 151588. [Google Scholar] [CrossRef]
- Yan, T.T.; Xue, J.H.; Zhou, Z.D.; Wu, Y.B. Biochar-based fertilizer amendments improve the soil microbial community structure in a karst mountainous area. Sci. Total Environ. 2021, 794, 148757. [Google Scholar] [CrossRef]
- Yang, W.H.; Li, C.J.; Wang, S.S.; Zhou, B.Q.; Mao, Y.L.; Rensing, C.; Xing, S.H. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil. Appl. Soil Ecol. 2021, 166, 104005. [Google Scholar] [CrossRef]
- de Morais, E.G.; Silva, C.A. Novel Slow-Release NPK Biochar-Based Fertilizers with Acidulated Apatite: Evaluation of the Fertilization Value in a Short-Term Experiment. J. Soil Sci. Plant Nutr. 2023, 23, 4937–4954. [Google Scholar] [CrossRef]
- Wang, X.R.; Wang, B.; Gu, W.R.; Li, J. Effects of Carbon-Based Fertilizer on Soil Physical and Chemical Properties, Soil Enzyme Activity and Soil Microorganism of Maize in Northeast China. Agronomy 2023, 13, 877. [Google Scholar] [CrossRef]
- Deng, L.S.; Tu, P.F.; Ahmed, N.; Zhang, G.L.; Cen, Y.Y.; Huang, B.Y.; Deng, L.F.; Yuan, H.R. Biochar-based phosphate fertilizer improve phosphorus bioavailability, microbial functioning, and citrus seedling growth. Sci. Hortic. 2024, 338, 113699. [Google Scholar] [CrossRef]
- Bolan, N.; Sarmah, A.K.; Bordoloi, S.; Bolan, S.; Padhye, L.P.; Van Zwieten, L.; Sooriyakumar, P.; Khan, B.A.; Ahmad, M.; Solaiman, Z.M.; et al. Soil acidification and the liming potential of biochar. Environ. Pollut. 2023, 317, 120632. [Google Scholar] [CrossRef]
- Shetty, R.; Prakash, N.B. Effect of different biochars on acid soil and growth parameters of rice plants under aluminium toxicity. Sci. Rep. 2020, 10, 12249. [Google Scholar] [CrossRef]
- Mu, L.Y.; Zhou, H.Y.; Yang, K.; Wang, J.L.; Sun, S.J.; Lu, Z.L.; Wang, L.J.; Zhang, N.M.; Bao, L. Effect of Biochar-Based Organic Fertilizer on the Growth of Maize in Cadmium-Contaminated Soil. Agriculture 2025, 15, 447. [Google Scholar] [CrossRef]
- Angelovicová, L.; Lodenius, M.; Tulisalo, E.; Fazekasová, D. Effect of Heavy Metals on Soil Enzyme Activity at Different Field Conditions in Middle Spis Mining Area (Slovakia). Bull. Environ. Contam. Toxicol. 2014, 93, 670–675. [Google Scholar] [CrossRef]
- Wan, Y.A.; Liu, J.; Zhuang, Z.; Wang, Q.; Li, H.F.; Henriquez-Hernandez, L.A. Heavy Metals in Agricultural Soils: Sources, Influencing Factors, and Remediation Strategies. Toxics 2024, 12, 63. [Google Scholar] [CrossRef]
- Rai, P.K.; Lee, S.S.; Zhang, M.; Tsang, Y.F.; Kim, K.H. Heavy metals in food crops: Health risks, fate, mechanisms, and management. Environ. Int. 2019, 125, 365–385. [Google Scholar] [CrossRef]
- He, L.Z.; Zhong, H.; Liu, G.X.; Dai, Z.M.; Brookes, P.C.; Xu, J. Remediation of heavy metal contaminated soils by biochar: Mechanisms, potential risks and applications in China. Environ. Pollut. 2019, 252, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, L.; Naz, N.; Oranab, S.; Younis, U.; Alarfaj, A.A.; Alharbi, S.A.; Ansari, M.J. Minimization of cadmium toxicity and improvement in growth and biochemical attributes of spinach by using acidified biochar. Sci. Rep. 2025, 15, 5880. [Google Scholar] [CrossRef]
- Rasuli, F.; Owliaie, H.; Najafi-Ghiri, M.; Adhami, E. Effect of biochar on potassium fractions and plant-available P, Fe, Zn, Mn and Cu concentrations of calcareous soils. Arid Land Res. Manag. 2022, 36, 1–26. [Google Scholar] [CrossRef]
- Antonangelo, J.A.; Culman, S.; Zhang, H.L. Comparative analysis and prediction of cation exchange capacity via summation: Influence of biochar type and nutrient ratios. Front. Soil Sci. 2024, 4, 1371777. [Google Scholar] [CrossRef]
- Lv, G.F.; Yang, T.; Chen, Y.H.; Hou, H.Q.; Liu, X.M.; Li, J.G.; Wei, L.G.; Li, J.H. Biochar-based fertilizer enhanced Cd immobilization and soil quality in soil-rice system. Ecol. Eng. 2021, 171, 106396. [Google Scholar] [CrossRef]
- Xu, M.Z.; Luo, F.; Tu, F.; Rukh, G.; Ye, Z.Q.; Ruan, Z.Q.; Liu, D. Effects of stabilizing materials on soil Cd bioavailability, uptake, transport, and rice growth. Front. Environ. Sci. 2022, 10, 35960. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, M.; Yao, F.; Zhang, S.; Zhang, Y.; Liu, F.; Chen, L.; Song, Q.; Yang, X.; Gao, W.; et al. Effects of Biochar-based Fertilizer on Soil Physicochemical Properties and Rhizosphere Bacterial Community Structure. Plant Nutr. Soil Sci. Int. 2023, 2, 1–9. [Google Scholar] [CrossRef]
- Zhang, M.; Guo, J.; Liu, Y.; Qin, S. Effects of different biochar-based fertilizers on the biological properties and economic benefits of pod pepper (Capsicum annuum var frutescens L.). Appl. Ecol. Environ. Res. 2021, 19, 2829–2841. [Google Scholar] [CrossRef]
- Ramos, N.C.; Bulatao, R.M.; Pascual, K.S.; Monserate, J.J.; Diaz, J.M.A.; Abon, J.E.O. Synthesis and Characterization of Rice Straw Derived Nanoscale Biochar-Based Fertilizer Infused with Nutrients. Key Eng. Mater. 2022, 6352, 107–115. [Google Scholar] [CrossRef]
- Fei, Y.H.; She, D.L.; Yi, J.; Sun, X.Q.; Han, X.; Liu, D.D.; Liu, M.X.; Zhang, H.L. Roles of soil amendments in the water and salt transport of coastal saline soils through regulation of microstructure. Land Degrad. Dev. 2024, 35, 2382–2394. [Google Scholar] [CrossRef]
- Xing, L.Q.; Niu, X.Y.; Yin, X.W.; Duan, Z.H.; Liu, A.J.; Ma, Y.F.; Gao, P.L. Optimizing Biochar Concentration for Mitigating Nutrient Losses in Runoff: An Investigation into Soil Quality Improvement and Non-Point Source Pollution Reduction. Agriculture 2025, 15, 45. [Google Scholar] [CrossRef]
- Zong, Y.T.; Liu, Y.J.; Li, Y.Q.; Ma, R.H.; Malik, Z.; Xiao, Q.; Li, Z.C.; Zhang, J.; Shan, S.D. Changes in salinity, aggregates and physicomechanical quality induced by biochar application to coastal soil. Arch. Agron. Soil Sci. 2023, 69, 2721–2738. [Google Scholar] [CrossRef]
- Hua, L.; Lu, Z.Q.; Ma, H.R.; Jin, S.S. Effect of Biochar on Carbon Dioxide Release, Organic Carbon Accumulation, and Aggregation of Soil. Environ. Prog. Sustain. Energy 2014, 33, 941–946. [Google Scholar] [CrossRef]
- Azadifar, A.; Abyaneh, H.Z.; Sarikhani, H.; Mosaddeghi, M.R. Effects of Integrated Application Strategies of Natural Nanobiochar Amendment, Deficit Irrigation and Nitrogen Fertigation on Soil Structural Stability and Broccoli Growth. J. Soil Sci. Plant Nutr. 2024, 25, 710–727. [Google Scholar] [CrossRef]
- Zan, O.Y.; Zhang, J.; Liang, X.L.; Wang, H.; Yang, Z.F.; Tang, R.; Yu, Q.H.; Zhang, Y. Micro-nano aerated subsurface drip irrigation and biochar promote photosynthesis, dry matter accumulation and yield of cucumbers in greenhouse. Agric. Water Manag. 2025, 308, 109295. [Google Scholar] [CrossRef]
- Lustosa, J.F.; da Silva, A.P.F.; Costa, S.T.; Gomes, H.T.; de Figueiredo, T.; Hernández, Z. Biochars Derived from Olive Mill Byproducts: Typology, Characterization, and Eco-Efficient Application in Agriculture-A Systematic Review. Sustainability 2024, 16, 5004. [Google Scholar] [CrossRef]
- Zhang, P.Z.; Chang, F.L.; Huo, L.L.; Yao, Z.L.; Luo, J. Impacts of Biochar Pyrolysis Temperature, Particle Size, and Application Rate on Water Retention of Loess in the Semiarid Region. Water 2025, 17, 69. [Google Scholar] [CrossRef]
- Glab, T.; Palmowska, J.; Zaleski, T.; Gondek, K. Effect of biochar application on soil hydrological properties and physical quality of sandy soil. Geoderma 2016, 281, 11–20. [Google Scholar] [CrossRef]
- Yan, T.T.; Xue, J.H.; Zhou, Z.D.; Wu, Y.B. Impacts of biochar-based fertilization on soil arbuscular mycorrhizal fungal community structure in a karst mountainous area. Environ. Sci. Pollut. Res. 2021, 28, 66420–66434. [Google Scholar] [CrossRef]
- Wang, D.; Chen, J.H.; Tang, Z.Y.; Zhang, Y.H. Effects of Soil Physical Properties on Soil Infiltration in Forest Ecosystems of Southeast China. Forests 2024, 15, 1470. [Google Scholar] [CrossRef]
- Feng, H.-L.; Xu, C.-S.; He, H.-H.; Zeng, Q.; Chen, N.; Li, X.-L.; Ren, T.-B.; Ji, X.-M.; Liu, G.-S. Effect of Biochar on Soil Enzyme Activity & the Bacterial Community and Its Mechanism. Huan Jing Ke Xue 2021, 42, 422–432. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Feng, Z.B.; Gu, W.Q.; Wang, Y.N.; Liu, Z.F.; Wang, W.J.; Zhang, Y.X.; Zhang, W.M.; Chen, W.F. Could continuous rice cropping increase soil fertility and rice productivity by rice straw carbonized utilization in cold areas?—A 6-year field-located trial. Environ. Sci. Pollut. Res. 2023, 30, 110674–110686. [Google Scholar] [CrossRef] [PubMed]
- Tazebew, E.; Addisu, S.; Bekele, E.; Alemu, A.; Belay, B.; Sato, S. Sustainable soil health and agricultural productivity with biochar-based indigenous organic fertilizers in acidic soils: Insights from Northwestern Highlands of Ethiopia. Discov. Sustain. 2024, 5, 205. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiello, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota—A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Nguyen, T.T.N.; Wallace, H.M.; Xu, C.Y.; Zwieten, L.; Weng, Z.H.; Xu, Z.H.; Che, R.X.; Tahmasbian, I.; Hu, H.W.; Bai, S.H. The effects of short term, long term and reapplication of biochar on soil bacteria. Sci. Total Environ. 2018, 636, 142–151. [Google Scholar] [CrossRef]
- Wang, J.; Sun, L.J.; Sun, Y.F.; Yang, S.Y.; Qin, Q.; Xue, Y. Long-term biochar-based fertilizer substitution promotes carbon, nitrogen, and phosphorus acquisition enzymes in dryland soils by affecting soil properties and regulating bacterial community. Appl. Soil Ecol. 2025, 206, 105801. [Google Scholar] [CrossRef]
- Warnock, D.D.; Mummey, D.L.; McBride, B.; Major, J.; Lehmann, J.; Rillig, M.C. Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: Results from growth-chamber and field experiments. Appl. Soil Ecol. 2010, 46, 450–456. [Google Scholar] [CrossRef]
- Liao, J.Y.; Liu, X.R.; Hu, A.; Song, H.X.; Chen, X.Z.; Zhang, Z.H. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.). Sci. Rep. 2020, 10, 11063. [Google Scholar] [CrossRef]
- Gao, M.Y.; Yang, J.F.; Liu, C.M.; Gu, B.W.; Han, M.; Li, J.W.; Li, N.; Liu, N.; An, N.; Dai, J.; et al. Effects of long-term biochar and biochar-based fertilizer application on brown earth soil bacterial communities. Agric. Ecosyst. Environ. 2021, 309, 107285. [Google Scholar] [CrossRef]
- Zheng, J.L.; Wang, S.J.; Wang, R.M.; Chen, Y.L.; Siddique, K.H.M.; Xia, G.M.; Chi, D.C. Ameliorative roles of biochar-based fertilizer on morpho-physiological traits, nutrient uptake and yield in peanut (Arachis hypogaea L.) under water stress. Agric. Water Manag. 2021, 257, 107129. [Google Scholar] [CrossRef]
- Roy, A.; Pyne, S.; Chaturvedi, S. Effect of enriched biochar based fertilizers on growth, yield and nitrogen use efficiency in direct-seeded rice (Oryza sativa). Indian J. Agric. Sci. 2021, 91, 459–463. [Google Scholar] [CrossRef]
- Gao, M.Y.; Yang, J.F.; Du, Z.D.; Mu, J.H.; Zhang, Y.H. Impact of application of biochar and biochar-based fertilizer on peanuts nutrient absorption and yield. ICMMCT 2017, 126, 151–155. [Google Scholar] [CrossRef]
- Yuan, M.; Bi, Y.D.; Han, D.W.; Wang, L.; Wang, L.X.; Fan, C.; Zhang, D.; Wang, Z.; Liang, W.W.; Zhu, Z.J.; et al. Long-Term Corn-Soybean Rotation and Soil Fertilization: Impacts on Yield and Agronomic Traits. Agronomy 2022, 12, 2554. [Google Scholar] [CrossRef]
- Qian, J.; Zhu, P.; Deng, J.; Peng, X.; Wang, H. Effects of Microbial Biochar-Based Fertilizer on Yield and Quality of Rice in Cadmium-Contaminated Paddy Fields. J. Mod. Crop Sci. 2024, 3, 1–9. [Google Scholar] [CrossRef]
- Chen, J.T.; Wang, X.R.; Liu, X.Y.; Wang, S.F.; Zhao, J.N.; Zhang, H.; Wang, Y.B.; Li, C.F. Beneficial Effects of Biochar-Based Organic Fertilizers on Nitrogen Assimilation, Photosynthesis, and Sucrose Synthesis of Sugar Beet (Beta vulgaris L.). J. Plant Prod. 2022, 16, 755–768. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.L.; Wei, Q.Q.; Liu, L.L.; Gu, X.F.; Gou, J.L. Biochar-Based Fertilizer Enhances the Production Capacity and Economic Benefit of Open-Field Eggplant in the Karst Region of Southwest China. Agriculture 2022, 12, 1388. [Google Scholar] [CrossRef]
- Bi, H.W.; Xu, J.F.; Li, K.X.; Li, K.A.; Cao, H.L.; Zhao, C. Effects of Biochar-Coated Nitrogen Fertilizer on the Yield and Quality of Bok Choy and on Soil Nutrients. Sustainability 2024, 16, 1659. [Google Scholar] [CrossRef]
- Chew, J.; Zhu, L.L.; Nielsen, S.; Graber, E.; Mitchell, D.R.G.; Horvat, J.; Mohammed, M.; Liu, M.L.; van Zwieten, L.; Donne, S.; et al. Biochar-based fertilizer: Supercharging root membrane potential and biomass yield of rice. Sci. Total Environ. 2020, 713, 136431. [Google Scholar] [CrossRef]
- Yan, S.; Wang, P.; Cai, X.J.; Wang, C.L.; Van Zwieten, L.; Wang, H.L.; Yin, Q.Y.; Liu, G.S.; Ren, T.B. Biochar-based fertilizer enhanced tobacco yield and quality by improving soil quality and soil microbial community. Environ. Technol. Innov. 2025, 37, 103964. [Google Scholar] [CrossRef]
- Luo, W.C.; Qian, L.; Liu, W.W.; Zhang, X.; Wang, Q.; Jiang, H.Y.; Cheng, B.J.; Ma, H.; Wu, Z.Y. A potential Mg-enriched biochar fertilizer: Excellent slow-release performance and release mechanism of nutrients. Sci. Total Environ. 2021, 768, 144454. [Google Scholar] [CrossRef]
- Zhang, H.W.; Xing, L.B.; Liang, H.X.; Liu, S.Z.; Ding, W.; Zhang, J.G.; Xu, C.Y. Preparation and characterization of biochar-based slow-release nitrogen fertilizer and its effect on maize growth. Ind. Crops Prod. 2023, 203, 117227. [Google Scholar] [CrossRef]
- Melo, L.C.A.; Lehmann, J.; Carneiro, J.S.D.; Camps-Arbestain, M. Biochar-based fertilizer effects on crop productivity: A meta-analysis. Plant Soil 2022, 472, 45–58. [Google Scholar] [CrossRef]
- Liu, X.R.; Liao, J.Y.; Song, H.X.; Yang, Y.; Guan, C.Y.; Zhang, Z.H. A Biochar-Based Route for Environmentally Friendly Controlled Release of Nitrogen: Urea-Loaded Biochar and Bentonite Composite. Sci. Rep. 2019, 9, 9548. [Google Scholar] [CrossRef]
- An, X.F.; Wu, Z.S.; Liu, X.; Shi, W.; Tian, F.; Yu, B. A new class of biochar-based slow-release phosphorus fertilizers with high water retention based on integrated co-pyrolysis and co-polymerization. Chemosphere 2021, 285, 131481. [Google Scholar] [CrossRef]
- Chen, Z.F.; Pei, J.C.; Wei, Z.D.; Ruan, X.L.; Hua, Y.X.; Xu, W.; Zhang, C.S.; Liu, T.Y.; Guo, Y. A novel maize biochar-based compound fertilizer for immobilizing cadmium and improving soil quality and maize growth. Environ. Pollut. 2021, 277, 116455. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Ghosh, G.K. Development and evaluation of biochar-based secondary and micronutrient enriched slow release nano-fertilizer for reduced nutrient losses. Biomass Convers. Biorefin. 2023, 13, 12193–12204. [Google Scholar] [CrossRef]
- Khajavi-Shojaei, S.; Moezzi, A.; Masir, M.N.; Taghavi, M. Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Convers. Biorefin. 2023, 13, 593–601. [Google Scholar] [CrossRef]
- Rubel, R.I.; Wei, L. Biochar-Based Controlled Release Nitrogen Fertilizer Coated with Polylactic Acid. J. Polym. Environ. 2022, 30, 4406–4417. [Google Scholar] [CrossRef]
- Roy, A.; Chaturvedi, S.; Singh, S.V.; Kasivelu, G.; Dhyani, V.C.; Pyne, S. Preparation and evaluation of two enriched biochar-based fertilizers for nutrient release kinetics and agronomic effectiveness in direct-seeded rice. Biomass Convers. Biorefin. 2024, 14, 2007–2018. [Google Scholar] [CrossRef]
- Wei, X.R.; Hao, M.D.; Xue, X.H.; Shi, P.; Horton, R.; Wang, A.; Zang, Y.F. Nitrous oxide emission from highland winter wheat field after long-term fertilization. Biogeosciences 2010, 7, 3301–3310. [Google Scholar] [CrossRef]
- Tian, H.Q.; Lu, C.Q.; Melillo, J.; Ren, W.; Huang, Y.; Xu, X.F.; Liu, M.L.; Zhang, C.; Chen, G.S.; Pan, S.F.; et al. Food benefit and climate warming potential of nitrogen fertilizer uses in China. Environ. Res. Lett. 2012, 7, 044020. [Google Scholar] [CrossRef]
- Song, S.N.; Jiyun, W.; Min, K.S.; Hwa-Soo, L.; Eui-Chan, J. Characteristics of N2O Emissions from Urea Fertilizer Application to Cabbage Fields. J. Clim. Change Res. 2021, 12, 515–522. [Google Scholar] [CrossRef]
- Giuffre de Lopez Camelo, L.; Ratto de Miguez, S.; Marban, L. Heavy metals input with phosphate fertilizers used in Argentina. Sci. Total Environ. 1997, 204, 245–250. [Google Scholar] [CrossRef]
- Huang, Q.Q.; Liu, X.; Zhang, Q.; Qiao, Y.H.; Su, D.C.; Jiang, R.F.; Rui, Y.K.; Li, H.F. Application of ICP-MS and AFS to Detecting Heavy Metals in Phosphorus Fertilizers. Spectrosc. Spectral Anal. 2014, 34, 1403–1406. [Google Scholar] [CrossRef]
- Wang, F.L.; Yan, T.Z.; Zong, H.Y.; Li, S.J.; Liu, J.; Liu, Y.; Hou, X.S. Long-term fertilization influencing agricultural diffuse heavy metal pollution and its environmental threat to a coastal city, Qingdao, east China. Fresenius Environ. Bull. 2020, 29, 5390–5398. [Google Scholar]
- Acharya, N.; Vista, S.P.; Shrestha, S.; Neupane, N.; Pandit, N.R. Potential of Biochar-Based Organic Fertilizers on Increasing Soil Fertility, Available Nutrients, and Okra Productivity in Slightly Acidic Sandy Loam Soil. Nitrogen 2023, 4, 1–15. [Google Scholar] [CrossRef]
- Strokal, M.; Ma, L.; Bai, Z.H.; Luan, S.J.; Kroeze, C.; Oenema, O.; Velthof, G.; Zhang, F.S. Alarming nutrient pollution of Chinese rivers as a result of agricultural transitions. Environ. Res. Lett. 2016, 11, 024014. [Google Scholar] [CrossRef]
- Liang, J.J. Analysis on Comprehensive Utilization of Straw in Agricultural Area. SSI 2018, 124, 30–34. [Google Scholar] [CrossRef]
- Cai, X.H.; Qin, Y.F.; Yan, B.J.; Shi, W.J. Identification of livestock farms with potential risk of environmental pollution by using a model for returning livestock manure to cultivated land. Environ. Sci. Pollut. Res. 2023, 30, 103062–103072. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Ngo, H.H.; Guo, W.S.; Chang, S.W.; Nguyen, D.D.; Nghiem, L.D.; Liu, Y.W.; Ni, B.J.; Hai, F.I. Insight into greenhouse gases emissions from the two popular treatment technologies in municipal wastewater treatment processes. Sci. Total Environ. 2019, 671, 1302–1313. [Google Scholar] [CrossRef]
- Sobanaa, M.; Prathiviraj, R.; Selvin, J.; Prathaban, M. A comprehensive review on methane’s dual role: Effects in climate change and potential as a carbon-neutral energy source. Environ. Sci. Pollut. Res. 2024, 31, 10379–10394. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhu, Q.A.; Peng, C.H.; Wu, N.; Wang, Y.F.; Fang, X.Q.; Jiang, H.; Xiang, W.H.; Chang, J.; Deng, X.W.; et al. Methane emissions from rice paddies natural wetlands, lakes in China: Synthesis new estimate. Glob. Change Biol. 2013, 19, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000-2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Dong, D.; Li, J.; Ying, S.S.; Wu, J.S.; Han, X.G.; Teng, Y.X.; Zhou, M.R.; Ren, Y.; Jiang, P.K. Mitigation of methane emission in a rice paddy field amended with biochar-based slow-release fertilizer. Sci. Total Environ. 2021, 792, 148460. [Google Scholar] [CrossRef]
- Zhou, J.S.; Tang, C.X.; Kuzyakov, Y.; Vancov, T.; Fang, Y.Y.; Song, X.Z.; Zhou, X.H.; Jiang, Z.H.; Ge, T.D.; Xu, L.; et al. Biochar-based urea increases soil methane uptake in a subtropical forest. Geoderma 2024, 449, 116994. [Google Scholar] [CrossRef]
- Zhou, J.S.; Qu, T.H.; Li, Y.F.; Van Zwieten, L.; Wang, H.L.; Chen, J.H.; Song, X.Z.; Lin, Z.W.; Zhang, X.P.; Luo, Y.; et al. Biochar-based fertilizer decreased while chemical fertilizer increased soil N2O emissions in a subtropical Moso bamboo plantation. Catena 2021, 202, 105257. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Q.H.; Qian, X.J.; Chen, H.M.; Wang, F.; Yi, Z.G. Effects of the combined application of biochar-based fertilizer and urea on N2O emissions, nitrifier, and denitrifier communities in the acidic soil of pomelo orchards. J. Soils Sediments 2022, 22, 3119–3136. [Google Scholar] [CrossRef]
- Richardson, D.; Felgate, H.; Watmough, N.; Thomson, A.; Baggs, E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle—Could enzymic regulation hold the key? Trends Biotechnol. 2009, 27, 388–397. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Yan, C.; Wang, T.; Zhang, G.X.; Bahn, M.; Mo, F.; Han, J. Biochar strategy for long-term N2O emission reduction: Insights into soil physical structure and microbial interaction. Soil Biol. Biochem. 2025, 202, 109685. [Google Scholar] [CrossRef]
Method | Production Cost | Core Advantages | Applicable Scenarios |
---|---|---|---|
In situ pyrolysis method | low | on-site conversion | straw return to the field, continuous cropping obstacles |
Impregnation method | low | flexible nutrient adjustment | fast-acting fertilization, applied to leafy vegetables |
Granulation method | medium | uniform and stable nutrient distribution | field crops, orchards |
Co-pyrolysis method | medium to high | synergistic retention of carbon and nutrients | degraded soils, economic crops |
Coating method | high | high nutrient efficiency and nutrients released according to plant needs | high-value crops, precision agriculture |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, P.; Zhang, W.; Xiao, D.; Hu, J.; Li, N.; Yang, J. Biochar-Based Fertilizers: Advancements, Applications, and Future Directions in Sustainable Agriculture—A Review. Agronomy 2025, 15, 1104. https://doi.org/10.3390/agronomy15051104
Luo P, Zhang W, Xiao D, Hu J, Li N, Yang J. Biochar-Based Fertilizers: Advancements, Applications, and Future Directions in Sustainable Agriculture—A Review. Agronomy. 2025; 15(5):1104. https://doi.org/10.3390/agronomy15051104
Chicago/Turabian StyleLuo, Peiyu, Weikang Zhang, Dan Xiao, Jiajing Hu, Na Li, and Jinfeng Yang. 2025. "Biochar-Based Fertilizers: Advancements, Applications, and Future Directions in Sustainable Agriculture—A Review" Agronomy 15, no. 5: 1104. https://doi.org/10.3390/agronomy15051104
APA StyleLuo, P., Zhang, W., Xiao, D., Hu, J., Li, N., & Yang, J. (2025). Biochar-Based Fertilizers: Advancements, Applications, and Future Directions in Sustainable Agriculture—A Review. Agronomy, 15(5), 1104. https://doi.org/10.3390/agronomy15051104