YOLOv8-Orah: An Improved Model for Postharvest Orah Mandarin (Citrus reticulata cv. Orah) Surface Defect Detection
Abstract
:1. Introduction
- To solve the problem of multi-scale feature fusion in detection, we propose the Focusing Diffusion Pyramid Network (FDPN) while we introduce the Diffusion and Spatial Interaction (DASI) module. It can effectively fuse and enhance features at different scales.
- To solve the problems of large differences in the size of surface defects and the limited feature expression capability of single-scale convolution operation in complex scenes, we employ the Hybrid Dilated Residual Attention Block (HDRAB) to replace the Bottleneck in the C2f module. This avoids the loss of feature information.
- The NWD-CIoU joint bounding box loss is introduced to calculate the localization loss. It accelerates the convergence speed and improves the small defect detection accuracy.
- In response to the lack of public datasets for orah mandarin detection, a suitable dataset for orah mandarin detection was constructed by image acquisition through the grading pipeline.
2. Materials and Methods
2.1. Dataset Making
2.1.1. Data Collection
2.1.2. Data Collection Data Enhancement and Processing
2.2. Improvement of YOLOv8n Model
2.2.1. Overview of YOLOv8n Model
2.2.2. FDPN
2.2.3. C2f_HDRAB Module
2.2.4. NWD-CIoU Loss
3. Experiments and Results
3.1. Evaluation Metrics
3.2. Environment Configuration
3.3. Environment Configuration Comparative Experiments on Different Feature Pyramid Networks
3.4. Comparative Experiments of Attention Module
3.5. Loss Function Comparison Experiment
3.6. Loss Function Comparison of Ablation Experiments
3.7. Comparative Experiment of Different Models
3.8. Visualization Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldenberg, L.; Yaniv, Y.; Porat, R.; Carmi, N. Mandarin Fruit Quality: A Review. J. Sci. Food Agric. 2017, 98, 18–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Wei, P.; Tang, Y.; Li, J.; Yi, P.; Deng, Z.; He, X.; Ling, D.; Sun, J.; Zhang, L. Screening and Characteristics Analysis of Polysaccharides from Orah Mandarin (Citrus reticulata Cv. Orah). Foods 2023, 13, 82. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, Y.; Yu, Y.; Liu, J. Application of Attention-Enhanced 1D-CNN Algorithm in Hyperspectral Image and Spectral Fusion Detection of Moisture Content in Orah Mandarin (Citrus reticulata Blanco). Information 2024, 15, 408. [Google Scholar] [CrossRef]
- He, Y.; Li, W.; Zhu, P.; Wang, M.; Qiu, J.; Sun, H.; Zhang, R.; Liu, P.; Ling, L.; Fu, X.; et al. Comparison between the Vegetative and Fruit Characteristics of “Orah” (Citrus reticulata Blanco) Mandarin under Different Climatic Conditions. Sci. Hortic. 2022, 300, 111064. [Google Scholar] [CrossRef]
- Moraes Bazioli, J.; Belinato, J.R.; Costa, J.H.; Akiyama, D.Y.; Pontes, J.G.d.M.; Kupper, K.C.; Augusto, F.; de Carvalho, J.E.; Fill, T.P. Biological Control of Citrus Postharvest Phytopathogens. Toxins 2019, 11, 460. [Google Scholar] [CrossRef]
- Li, J.; Li, H.; Ji, S.; Chen, T.; Tian, S.; Qin, G. Enhancement of Biocontrol Efficacy of Cryptococcus laurentii by Cinnamic Acid against Penicillium italicum in Citrus Fruit. Postharvest Biol. Technol. 2019, 149, 42–49. [Google Scholar] [CrossRef]
- Zhu, C.; Sheng, D.; Wu, X.; Wang, M.; Hu, X.; Li, H.; Yu, D. Identification of Secondary Metabolite Biosynthetic Gene Clusters Associated with the Infection of Citrus Fruit by Penicillium digitatum. Postharvest Biol. Technol. 2017, 134, 17–21. [Google Scholar] [CrossRef]
- Park, Y.; Yun, S.K.; Kim, S.S.; Joa, J.; Kim, M. Decision Support Strategy for Preventing Sunburn: Precise Prediction of Sunburn Occurrence Reflecting Both Biotic and Abiotic Factors in Late-Maturing Citrus Orchards. Sci. Hortic. 2023, 309, 111662. [Google Scholar] [CrossRef]
- Mirhaji, H.; Soleymani, M.; Asakereh, A.; Abdanan Mehdizadeh, S. Fruit Detection and Load Estimation of an Orange Orchard Using the YOLO Models through Simple Approaches in Different Imaging and Illumination Conditions. Comput. Electron. Agric. 2021, 191, 106533. [Google Scholar] [CrossRef]
- Ye, L.; Wang, X.; Han, J.; He, S.; Wei, S.; Zhu, Q.; Meng, J.; Zhou, L. Effects of Meyerozyma guilliermondii PJ15 on the Biocontrol of Penicillium crustosum Causing Postharvest Decay in Orah and Its Influence on the Microbial Diversity of Orah. Food Qual. Saf. 2024, 8, fyae041. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, B.; Yang, Y.; Lianxi, H.; Yang, M.; Qiao, Y. Method of Haze-Removal Based on Dark Channel Prior in Visual System of Apple Harvest Robot. Trans. Chin. Soc. Agric. Eng. 2016, 32, 151–158. [Google Scholar]
- Lu, Y.; Lu, R. Structured-Illumination Reflectance Imaging for the Detection of Defects in Fruit: Analysis of Resolution, Contrast and Depth-Resolving Features. Biosyst. Eng. 2019, 180, 1–15. [Google Scholar] [CrossRef]
- Jaspin, K.; Selvan, S.; Rose, J.D.; Ebenezer, J.; Chockalingam, A. Real-Time Surveillance for Identification of Fruits Ripening Stages and Vegetables Maturation Stages with Infection Detection. In Proceedings of the 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), Solan, India, 7–9 October 2021; pp. 581–586. [Google Scholar]
- Montanaro, G.; Carlomagno, A.; Petrozza, A.; Cellini, F.; Manolikaki, I.; Koubouris, G.; Nuzzo, V. Predicting Oil Accumulation by Fruit Image Processing and Linear Models in Traditional and Super High-Density Olive Cultivars. Front. Plant Sci. 2024, 15, 1456800. [Google Scholar] [CrossRef]
- Hussain Hassan, N.M.; Nashat, A.A. New Effective Techniques for Automatic Detection and Classification of External Olive Fruits Defects Based on Image Processing Techniques. Multidimens. Syst. Signal Process. 2019, 30, 571–589. [Google Scholar] [CrossRef]
- He, Y.; Peng, Y.; Wei, C.; Zheng, Y.; Yang, C.; Zou, T. Automatic Disease Detection from Strawberry Leaf Based on Improved YOLOv8. Plants 2024, 13, 2556. [Google Scholar] [CrossRef]
- Chen, D.; Lin, F.; Lu, C.; Zhuang, J.; Su, H.; Zhang, D.; He, J. YOLOv8-MDN-Tiny: A Lightweight Model for Multi-Scale Disease Detection of Postharvest Golden Passion Fruit. Postharvest Biol. Technol. 2025, 219, 113281. [Google Scholar] [CrossRef]
- Meng, Y.; Zhan, J.; Li, K.; Yan, F.; Zhang, L. A Rapid and Precise Algorithm for Maize Leaf Disease Detection Based on YOLO MSM. Sci. Rep. 2025, 15, 6016. [Google Scholar] [CrossRef]
- Miao, Y.; Meng, W.; Zhou, X. SerpensGate-YOLOv8: An Enhanced YOLOv8 Model for Accurate Plant Disease Detection. Front. Plant Sci. 2025, 15, 1514832. [Google Scholar] [CrossRef]
- Luo, D.; Xue, Y.; Deng, X.; Yang, B.; Chen, H.; Mo, Z. Citrus Diseases and Pests Detection Model Based on Self-Attention YOLOV8. IEEE Access 2023, 11, 139872–139881. [Google Scholar] [CrossRef]
- Lu, Y.; Yu, J.; Zhu, X.; Zhang, B.; Sun, Z. YOLOv8-Rice: A Rice Leaf Disease Detection Model Based on YOLOv8. Paddy Water Environ. 2024, 22, 695–710. [Google Scholar] [CrossRef]
- Chen, M.; Zou, W.; Niu, X.; Fan, P.; Liu, H.; Li, C.; Zhai, C. Improved YOLOv8-Based Segmentation Method for Strawberry Leaf and Powdery Mildew Lesions in Natural Backgrounds. Agronomy 2025, 15, 525. [Google Scholar] [CrossRef]
- Abdullah, A.; Amran, G.A.; Tahmid, S.M.A.; Alabrah, A.; AL-Bakhrani, A.A.; Ali, A. A Deep-Learning-Based Model for the Detection of Diseased Tomato Leaves. Agronomy 2024, 14, 1593. [Google Scholar] [CrossRef]
- Wang, J.; Ma, S.; Wang, Z.; Ma, X.; Yang, C.; Chen, G.; Wang, Y. Improved Lightweight YOLOv8 Model for Rice Disease Detection in Multi-Scale Scenarios. Agronomy 2025, 15, 445. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, Y.; Zheng, Q.; Tao, R.; Liu, Y. SMC-YOLO: A High-Precision Maize Insect Pest-Detection Method. Agronomy 2025, 15, 195. [Google Scholar] [CrossRef]
- Abu Bakar, M.N.; Abdullah, A.H.; Abdul Rahim, N.; Yazid, H.; Zakaria, N.S.; Omar, S.; Wan Nik, W.M.F.; Abu Bakar, N.; Sulaiman, S.F.; Ahmad, M.I.; et al. Defects Detection Algorithm of Harumanis Mango for Quality Assessment Using Colour Features Extraction. J. Phys. Conf. Ser. 2021, 2107, 012008. [Google Scholar] [CrossRef]
- Knott, M.; Perez-Cruz, F.; Defraeye, T. Facilitated Machine Learning for Image-Based Fruit Quality Assessment. J. Food Eng. 2023, 345, 111401. [Google Scholar] [CrossRef]
- Han, B.; Lu, Z.; Zhang, J.; Almodfer, R.; Wang, Z.; Sun, W.; Dong, L. Rep-ViG-Apple: A CNN-GCN Hybrid Model for Apple Detection in Complex Orchard Environments. Agronomy 2024, 14, 1733. [Google Scholar] [CrossRef]
- Gu, B.; Wen, C.; Liu, X.; Hou, Y.; Hu, Y.; Su, H. Improved YOLOv7-Tiny Complex Environment Citrus Detection Based on Lightweighting. Agronomy 2023, 13, 2667. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, Y.; Zhao, Y.; Pan, Q.; Jin, K.; Xu, G.; Hu, Y. TS-YOLO: An All-Day and Lightweight Tea Canopy Shoots Detection Model. Agronomy 2023, 13, 1411. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Wang, L.; Wang, J.; Liao, J.; Li, Y.; Lan, Y. A Lightweight Cherry Tomato Maturity Real-Time Detection Algorithm Based on Improved YOLOV5n. Agronomy 2023, 13, 2106. [Google Scholar] [CrossRef]
- Wu, X.; Liang, J.; Yang, Y.; Li, Z.; Jia, X.; Pu, H.; Zhu, P. SAW-YOLO: A Multi-Scale YOLO for Small Target Citrus Pests Detection. Agronomy 2024, 14, 1571. [Google Scholar] [CrossRef]
- Sajitha, P.; Diana Andrushia, A.; Anand, N.; Naser, M.Z.; Lubloy, E. A Deep Learning Approach to Detect Diseases in Pomegranate Fruits via Hybrid Optimal Attention Capsule Network. Ecol. Inform. 2024, 84, 102859. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Z.; Wang, S.; Tian, S.; Xu, H. MSDD-YOLOX: An Enhanced YOLOX for Real-Time Surface Defect Detection of Oranges by Type. Eur. J. Agron. 2023, 149, 126918. [Google Scholar] [CrossRef]
- Lu, J.; Chen, W.; Lan, Y.; Qiu, X.; Huang, J.; Luo, H. Design of Citrus Peel Defect and Fruit Morphology Detection Method Based on Machine Vision. Comput. Electron. Agric. 2024, 219, 108721. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S. YOLOv8-CBSE: An Enhanced Computer Vision Model for Detecting the Maturity of Chili Pepper in the Natural Environment. Agronomy 2025, 15, 537. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, L.; Li, P. A Lightweight Model of Underwater Object Detection Based on YOLOv8n for an Edge Computing Platform. J. Mar. Sci. Eng. 2024, 12, 697. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Wang, N.; Zhang, Z. Scale-Aware Trident Networks for Object Detection. arXiv 2019, arXiv:1901.01892. [Google Scholar]
- Chen, Y.; Zhang, C.; Chen, B.; Huang, Y.; Sun, Y.; Wang, C.; Fu, X.; Dai, Y.; Qin, F.; Peng, Y.; et al. Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for Aiding Diagnosis of Blood Diseases. Comput. Biol. Med. 2024, 170, 107917. [Google Scholar] [CrossRef]
- Yang, G.; Lei, J.; Zhu, Z.; Cheng, S.; Feng, Z.; Liang, R. AFPN: Asymptotic Feature Pyramid Network for Object Detection. arXiv 2023, arXiv:2306.15988. [Google Scholar]
- Xu, X.; Jiang, Y.; Chen, W.; Huang, Y.; Zhang, Y.; Sun, X. DAMO-YOLO: A Report on Real-Time Object Detection Design. arXiv 2022, arXiv:2211.15444. [Google Scholar]
- Liu, W.; Lu, H.; Fu, H.; Cao, Z. Learning to Upsample by Learning to Sample. arXiv 2023, arXiv:2308.15085. [Google Scholar]
- Ding, X.; Zhang, Y.; Ge, Y.; Zhao, S.; Song, L.; Yue, X.; Shan, Y. UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition. arXiv 2024, arXiv:2311.15599. [Google Scholar]
- Yu, W.; Si, C.; Zhou, P.; Luo, M.; Zhou, Y.; Feng, J.; Yan, S.; Wang, X. MetaFormer Baselines for Vision. IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 896–912. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. arXiv 2020, arXiv:1905.11946. [Google Scholar]
- Yang, X.; Wang, X. Kolmogorov-Arnold Transformer. arXiv 2024, arXiv:2409.10594. [Google Scholar]
- Draelos, R.L.; Carin, L. HiResCAM: Faithful Location Representation in Visual Attention for Explainable 3D Medical Image Classification. arXiv 2021, arXiv:2011.08891. [Google Scholar]
Component | Specification |
---|---|
Operating System | Windows 11 |
GPU | NVIDIA GeForce RTX 3080 (NVIDIA Corporation, Santa Clara, CA, USA) |
CPU | Intel(R) Core(TM) i9-10900K (Intel Corporation, Santa Clara, CA, USA) |
RAM | 128 GB |
Python | 3.10.14 |
Torch | 2.2.2 |
CUDA | 12.1 |
Component | Specification |
---|---|
Input Image Size | 640 × 640 |
Training Batch Size | 200 |
Batch Processing Size | 32 |
Optimizer | SGD |
Initial Learning Rate | 0.01 |
Learning Rate Decay Ratio | 0.01 |
Weight Decay Coefficient | 0.0005 |
Learning Rate Momentum Coefficient | 0.937 |
Model | P/% | R/% | mAP@0.5/% | GFLOPs/G | Parameters/M |
---|---|---|---|---|---|
YOLOv8n | 77.9 | 77.1 | 81.2 | 8.1 | 3.01 |
YOLOv8n + BIFPN | 77.3 | 76.0 | 80.5 | 7.1 | 1.99 |
YOLOv8n + HSFPN | 79.6 | 76.2 | 80.9 | 6.9 | 1.93 |
YOLOv8n + AFPN-345 | 78.0 | 76.2 | 80.3 | 8.4 | 2.60 |
YOLOv8n + GFPN | 79.3 | 76.9 | 81.6 | 8.3 | 3.26 |
YOLOv8n + GDFPN | 81.1 | 76.5 | 81.8 | 8.3 | 3.26 |
YOLOv8n + FDPN | 80.7 | 77.7 | 82.2 | 8.4 | 2.77 |
Model | P/% | R/% | mAP@0.5/% | GFLOPs/G | Parameters/M |
---|---|---|---|---|---|
YOLOv8n | 77.9 | 77.1 | 81.2 | 8.1 | 3.01 |
YOLOv8n + DRB | 77.1 | 77.3 | 80.9 | 7.1 | 2.56 |
YOLOv8n + FMB | 74.4 | 77.5 | 78.8 | 7.8 | 2.94 |
YOLOv8n + IdentityFormer | 77.4 | 74.2 | 79.5 | 6.8 | 2.48 |
YOLOv8n + EMBC | 77.8 | 78.5 | 82.0 | 9.5 | 3.63 |
YOLOv8n + KAN | 78.6 | 75.9 | 81.3 | 8.1 | 4.78 |
YOLOv8n + HDRAB | 78.6 | 79.6 | 82.1 | 8.2 | 3.04 |
Model | FDPN | HDRAB | NWD-CIoU | P/% | R/% | mAP@0.5/% | GFLOPs/G | Parameters/M |
---|---|---|---|---|---|---|---|---|
YOLOv8n | 77.9 | 77.1 | 81.2 | 8.1 | 3.01 | |||
Method1 | ✓ | 80.7 | 77.7 | 82.2 | 8.4 | 2.74 | ||
Method2 | ✓ | 78.6 | 78.6 | 82.1 | 8.2 | 3.04 | ||
Method3 | ✓ | 77.9 | 78.7 | 81.5 | 8.1 | 3.01 | ||
Method4 | ✓ | ✓ | 81 | 77.5 | 82.7 | 8.5 | 2.77 | |
Method5 | ✓ | ✓ | 81.9 | 77.6 | 83.1 | 8.4 | 2.74 | |
Method6 | ✓ | ✓ | 82.2 | 75.8 | 82.4 | 8.2 | 3.04 | |
Method7 | ✓ | ✓ | ✓ | 81.9 | 78.8 | 84.2 | 8.5 | 2.77 |
Model | P/% | R/% | mAP@0.5/% | GFLOPs/G | Parameters/M |
---|---|---|---|---|---|
Faster-RCNN | 73.8 | 72.2 | 74.2 | 369.8 | 136.77 |
RT-DETR-r18 | 77.2 | 78.6 | 77.9 | 57.0 | 19.88 |
YOLOv5n | 76.2 | 76.6 | 79.6 | 4.1 | 1.77 |
YOLOv7-tiny | 74.8 | 77.2 | 80.4 | 13.1 | 6.02 |
YOLOv8n | 77.9 | 77.1 | 81.2 | 8.1 | 3.01 |
YOLOv10n | 79.8 | 72.7 | 79.8 | 6.5 | 2.27 |
YOLOv11n | 78.2 | 75.9 | 80.7 | 6.3 | 2.58 |
YOLOv8-Orah | 81.9 | 78.8 | 84.2 | 8.5 | 2.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Wang, X.; Bu, Y.; David, C.C.; Chen, X. YOLOv8-Orah: An Improved Model for Postharvest Orah Mandarin (Citrus reticulata cv. Orah) Surface Defect Detection. Agronomy 2025, 15, 891. https://doi.org/10.3390/agronomy15040891
Li H, Wang X, Bu Y, David CC, Chen X. YOLOv8-Orah: An Improved Model for Postharvest Orah Mandarin (Citrus reticulata cv. Orah) Surface Defect Detection. Agronomy. 2025; 15(4):891. https://doi.org/10.3390/agronomy15040891
Chicago/Turabian StyleLi, Hongda, Xiangyu Wang, Yifan Bu, Chiaka Chibuike David, and Xueyong Chen. 2025. "YOLOv8-Orah: An Improved Model for Postharvest Orah Mandarin (Citrus reticulata cv. Orah) Surface Defect Detection" Agronomy 15, no. 4: 891. https://doi.org/10.3390/agronomy15040891
APA StyleLi, H., Wang, X., Bu, Y., David, C. C., & Chen, X. (2025). YOLOv8-Orah: An Improved Model for Postharvest Orah Mandarin (Citrus reticulata cv. Orah) Surface Defect Detection. Agronomy, 15(4), 891. https://doi.org/10.3390/agronomy15040891