Distribution Features and Health Risk Assessment of Phthalate Pollutants in Facility Soil and Agricultural Products in Xinjiang, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Extraction and Clean-Up
2.3. Instrumental Analysis
2.4. Quality Assurance and Quality Control
2.5. Health Risk Assessments
2.6. Statistical Analysis
3. Results and Discussion
3.1. Content and Distribution Characteristics of PAEs in Soil
3.1.1. Content and Composition of PAEs in Soil
3.1.2. Content and Distribution of PAEs in Soil Across Different Regions
3.2. Contents and Distribution Characteristics of PAEs in Agricultural Products
3.2.1. Contents and Compositions of PAEs in Farm Products
3.2.2. Concentrations of PAEs in Agricultural Products in Different Regions
3.2.3. Concentrations of PAEs in Different Types of Agricultural Products
3.3. Health Risk Assessments of PAEs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hart, L.B.; Beckingham, B.; Wells, R.S.; Alten Flagg, M.; Wischusen, K.; Moors, A.; Kucklick, J.; Pisarski, E.; Wirth, E. Urinary Phthalate Metabolites in Common Bottlenose Dolphins (Tursiops truncatus) From Sarasota Bay, FL, USA. Geohealth 2018, 2, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zeng, T.; Gu, C.; Zhu, S.; Zhang, Q.; Luo, X. Photodegradation Pathways of Typical Phthalic Acid Esters Under UV, UV/TiO(2), and UV-Vis/Bi(2)WO(6) Systems. Front. Chem. 2019, 7, 852. [Google Scholar] [CrossRef]
- Ebenau-Jehle, C.; Soon, C.; Fuchs, J.; Geiger, R.; Boll, M. An Aerobic Hybrid Phthalate Degradation Pathway via Phthaloyl-Coenzyme A in Denitrifying Bacteria. Appl. Environ. Microbiol. 2020, 86, e00498-20. [Google Scholar] [CrossRef] [PubMed]
- Nenadov, D.S.; Pogrmic-Majkic, K.; Tesic, B.; Kokai, D.; Fa Nedeljkovic, S.; Stanic, B.; Andric, N. Impact of In Vitro Long-Term Low-Level DEHP Exposure on Gene Expression Profile in Human Granulosa Cells. Cells 2022, 11, 2304. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, V.; Arokia Vijaya Anand, M.; David, E.; Venkatachalam, K.; Vijayakumar, S.; Sankaran, V.; Balupillai, A.; Sangeetha, C.C.; Gothandam, K.M.; Kotakadi, V.S.; et al. Antidiabetic Activity of Gold Nanoparticles Synthesized Using Wedelolactone in RIN-5F Cell Line. Antioxidants 2019, 9, 8. [Google Scholar] [CrossRef]
- Benjamin, S.; Pradeep, S.; Sarath Josh, M.; Kumar, S.; Masai, E. A monograph on the remediation of hazardous phthalates. J. Hazard. Mater. 2015, 298, 58–72. [Google Scholar] [CrossRef]
- Maqbool, F.; Mostafalou, S.; Bahadar, H.; Abdollahi, M. Review of endocrine disorders associated with environmental toxicants and possible involved mechanisms. Life Sci. 2016, 145, 265–273. [Google Scholar] [CrossRef]
- Li, Y.; Yan, H.Q.; Li, X.Q.; Ge, J.; Cheng, J.J.; Yu, X.Y. Presence, distribution and risk assessment of phthalic acid esters (PAEs) in suburban plastic film pepper-growing greenhouses with different service life. Ecotoxicol. Environ. Saf. 2020, 196, 110551. [Google Scholar] [CrossRef]
- Wang, Z.M.; Ma, J.C.; Wang, T.T.; Qin, C.; Hu, X.J.; Mosa, A.; Ling, W.T. Environmental health risks induced by interaction between phthalic acid esters (PAEs) and biological macromolecules: A review. Chemosphere 2023, 328, 138578. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, L.; Wu, Q.L. Occurrence and combined exposure of phthalate esters in urban soil, surface dust, atmospheric dustfall, and commercial food in the semi-arid industrial city of Lanzhou, Northwest China. Environ. Pollut. 2024, 354, 124170. [Google Scholar] [CrossRef]
- Li, R.L.; Liang, J.; Gong, Z.B.; Zhang, N.N.; Duan, H.L. Occurrence, spatial distribution, historical trend and ecological risk of phthalate esters in the Jiulong River, Southeast China. Sci. Total Environ. 2017, 580, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Deng, Y.L.; Zheng, T.Z.; Yang, P.; Jiang, X.Q.; Liu, E.N.; Miao, X.P.; Wang, L.Q.; Jiang, M.; Zeng, Q. Urinary biomarkers of phthalates exposure and risks of thyroid cancer and benign nodule. J. Hazard. Mater. 2020, 383, 121189. [Google Scholar] [CrossRef] [PubMed]
- Lü, H.X.; Mo, C.H.; Zhao, H.M.; Xiang, L.; Katsoyiannis, A.; Li, Y.W.; Cai, Q.Y.; Wong, M.H. Soil contamination and sources of phthalates and its health risk in China: A review. Environ. Res. 2018, 164, 417–429. [Google Scholar] [CrossRef]
- Gao, M.; Dong, Y.; Zhang, Z.; Song, W.; Qi, Y. Growth and antioxidant defense responses of wheat seedlings to di-n-butyl phthalate and di (2-ethylhexyl) phthalate stress. Chemosphere 2017, 172, 418–428. [Google Scholar] [CrossRef]
- Liu, W.R.; Li, X.X.; Lv, H.J.; Liang, C.L.; Wang, Q.; Yao, X.F.; Dong, C.; Zhang, W.J.; Wang, J.H.; Zhu, L.S.; et al. Occurrence and health risk assessment of phthalates in a typical estuarine soil: A case study of the various functional areas of the Yellow River Delta. Sci. Total Environ. 2023, 904, 166972. [Google Scholar] [CrossRef]
- Hu, W.Y.; Zhang, Y.X.; Huang, B.; Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies. Chemosphere 2017, 170, 183–195. [Google Scholar] [CrossRef]
- Liu, X.Y.; Xin, L.J. Spatial and temporal evolution and greenhouse gas emissions of China’s agricultural plastic greenhouses. Sci. Total Environ. 2023, 863, 160810. [Google Scholar] [CrossRef]
- Wang, J.; Lv, S.; Zhang, M.; Chen, G.; Zhu, T.; Zhang, S.; Teng, Y.; Christie, P.; Luo, Y. Effects of plastic film residues on occurrence of phthalates and microbial activity in soils. Chemosphere 2016, 151, 171–177. [Google Scholar] [CrossRef]
- Xu, Y.; Xiong, B.; Huang, Y.-M.M.; Xu, J.; He, Y.; Lu, Z. Exploring additives beyond phthalates: Release from plastic mulching films, biodegradation and occurrence in agricultural soils. Sci. Total Environ. 2024, 918, 170763. [Google Scholar] [CrossRef]
- Chen, L.Y.; Yu, L.; Han, B.J.; Li, Y.J.; Zhang, J.D.; Tao, S.; Liu, W.X. Pollution characteristics and affecting factors of phthalate esters in agricultural soils in mainland China. J. Hazard. Mater. 2024, 466, 133625. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Zhang, G.Q.; Zhang, Y.; Li, M.K.; Hao, J.X.; Xiong, Y.C.; Li, C.X.; Cao, J. Accumulation Characteristics and Sources of PAEs in Agricultural Soils in Gansu Province. Huanjing Kexue/Environ. Sci. 2022, 43, 4622–4629. [Google Scholar] [CrossRef]
- Chen, N.; Shuai, W.J.; Hao, X.M.; Zhang, H.C.; Zhou, D.M.; Gao, J. Contamination of Phthalate Esters in Vegetable Agriculture and Human Cumulative Risk Assessment. Pedosphere 2017, 27, 439–451. [Google Scholar] [CrossRef]
- Zeng, L.J.; Huang, Y.H.; Chen, X.T.; Chen, X.H.; Mo, C.H.; Feng, Y.X.; Lü, H.X.; Xiang, L.; Li, Y.W.; Li, H.; et al. Prevalent phthalates in air-soil-vegetable systems of plastic greenhouses in a subtropical city and health risk assessments. Sci. Total Environ. 2020, 743, 140755. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, P.J.; Wang, L.; Sun, G.Q.; Zhao, J.Y.; Zhang, H.; Du, N. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China. Sci. Total Environ. 2015, 506–507, 118–125. [Google Scholar] [CrossRef]
- Li, C.; Chen, J.Y.; Wang, J.H.; Han, P.; Luan, Y.X.; Ma, X.P.; Lu, A.X. Phthalate esters in soil, plastic film, and vegetable from greenhouse vegetable production bases in Beijing, China: Concentrations, sources, and risk assessment. Sci. Total Environ. 2016, 568, 1037–1043. [Google Scholar] [CrossRef]
- Bai, X.Y.; Pan, K.W.; Shoaib, N.; Sun, X.M.; Wu, X.G.; Zhang, L. Status of phthalate esters pollution in facility agriculture across China: Spatial distribution, risk assessment, and remediation measures. Sci. Total Environ. 2024, 908, 168416. [Google Scholar] [CrossRef]
- Chai, C.; Cheng, H.; Ge, W.; Ma, D.; Shi, Y. Phthalic Acid Esters in Soils from Vegetable Greenhouses in Shandong Peninsula, East China. PLoS ONE 2014, 9, e95701. [Google Scholar] [CrossRef]
- Wang, J.; Luo, Y.M.; Teng, Y.; Ma, W.T.; Christie, P.; Li, Z.G. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film. Environ. Pollut. 2013, 180, 265–273. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, L.X.; Wang, Y.B.; Sun, Y.; Li, X.J.; Xu, H.J.; Weng, L.P.; Pan, Z.; Yang, S.D.; Chang, X.P.; et al. Spatial distribution of phthalate esters and the associated response of enzyme activities and microbial community composition in typical plastic-shed vegetable soils in China. Ecotoxicol. Environ. Saf. 2020, 195, 110495. [Google Scholar] [CrossRef]
- Long, F.; Ren, Y.; Ji, Y.; Li, J.; Zhang, H.; Wu, Z.; Gao, R.; Bi, F.; Liu, Z.; Li, H. Pollution Characteristics, Toxicological Properties, and Health Risk Assessment of Phthalic Acid Esters in Water, Soil, and Atmosphere. Atmosphere 2024, 15, 1071. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.C.; Christie, P.; Zhang, M.Y.; Luo, Y.M.; Teng, Y. Occurrence and risk assessment of phthalate esters (PAEs) in vegetables and soils of suburban plastic film greenhouses. Sci. Total Environ. 2015, 523, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Wang, J.; Bai, H.C.; Ni, K.; Liu, K.; Lu, P.L. Occurrence, sources, and risk assessments of phthalic acid esters in tea plantations in China. J. Environ. Chem. Eng. 2022, 10, 107636. [Google Scholar] [CrossRef]
- Zeng, F.; Cui, K.Y.; Xie, Z.Y.; Wu, L.; Luo, D.L.; Chen, L.X.; Lin, Y.J.; Liu, M.; Sun, G.X. Distribution of phthalate esters in urban soils of subtropical city, Guangzhou, China. J. Hazard. Mater. 2009, 164, 1171–1178. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Zhang, Y.; Zhao, Q.; Yu, B.; Li, Y.; Zhou, Q. Salinity and Conductivity Amendment of Soil Enhanced the Bioelectrochemical Degradation of Petroleum Hydrocarbons. Sci. Rep. 2016, 6, 32861. [Google Scholar] [CrossRef]
- Muchangos, L.D.; Xue, M.Q.; Zhou, L.; Kojima, N.; Machimura, T.; Tokai, A. Flows, stocks, and emissions of DEHP products in Japan. Sci. Total Environ. 2019, 650, 1007–1018. [Google Scholar] [CrossRef]
- Zhou, B.; Zhao, L.X.; Sun, Y.; Li, X.J.; Weng, L.P.; Li, Y.T. Contamination and human health risks of phthalate esters in vegetable and crop soils from the Huang-Huai-Hai region of China. Sci. Total Environ. 2021, 778, 146281. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G.; Peng, X.; Lu, L. Distribution and sources of phthalate esters in the topsoils of Beijing, China. Environ. Geochem. Health 2014, 36, 505–515. [Google Scholar] [CrossRef]
- Yesildagli, B.; Göktaş, R.K.; Ayaz, T.; Olgun, B.; Dokumacı, E.N.; Özkaleli, M.; Erdem, A.; Yurtsever, M.; Doğan, G.; Yurdakul, S.; et al. Phthalate ester levels in agricultural soils of greenhouses, their potential sources, the role of plastic cover material, and dietary exposure calculated from modeled concentrations in tomato. J. Hazard. Mater. 2024, 468, 133710. [Google Scholar] [CrossRef]
- Tran, B.C.; Teil, M.-J.; Blanchard, M.; Alliot, F.; Chevreuil, M. Fate of phthalates and BPA in agricultural and non-agricultural soils of the Paris area (France). Environ. Sci. Pollut. Res. 2015, 22, 11118–11126. [Google Scholar] [CrossRef]
- Saha, S.; Narayanan, N.; Singh, N.; Gupta, S. Occurrence of endocrine disrupting chemicals (EDCs) in river water, ground water and agricultural soils of India. Int. J. Environ. Sci. Technol. 2022, 19, 11459–11474. [Google Scholar] [CrossRef]
- Bouajila, A.; Omar, Z.; Saoud, R.; Rahmani, R. Soil Contamination by Phthalate Esters in Cultivated and Non-Cultivated Soils in North African Arid Regions: A Tunisian Case Study. Environ. Nat. Resour. J. 2022, 20, 553–562. [Google Scholar] [CrossRef]
- Chen, W.D.; Chi, C.C.; Zhou, C.; Xia, M.; Ronda, C.; Shen, X.Y. Analysis of the influencing factors of PAEs volatilization from typical plastic products. J. Environ. Sci. 2018, 66, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Bai, R.; Ding, W.; Liu, Q.; Liu, Q.; He, W.; Yan, C.; Li, Z. Potential agricultural contamination and environmental risk of phthalate acid esters arrived from plastic film mulching. J. Environ. Chem. Eng. 2024, 12, 111785. [Google Scholar] [CrossRef]
- Wu, W.; Sheng, H.; Gu, C.; Song, Y.; Willbold, S.; Qiao, Y.; Liu, G.; Zhao, W.; Wang, Y.; Jiang, X.; et al. Extraneous dissolved organic matter enhanced adsorption of dibutyl phthalate in soils: Insights from kinetics and isotherms. Sci. Total Environ. 2018, 631–632, 1495–1503. [Google Scholar] [CrossRef]
- Yang, F.; Wang, M.; Wang, Z.Y. Sorption behavior of 17 phthalic acid esters on three soils: Effects of pH and dissolved organic matter, sorption coefficient measurement and QSPR study. Chemosphere 2013, 93, 82–89. [Google Scholar] [CrossRef]
- Tang, J.; Rong, X.; Jin, D.; Gu, C.; Chen, A.; Luo, S. Biodegradation of phthalate esters in four agricultural soils: Main influencing factors and mechanisms. Int. Biodeterior. Biodegrad. 2020, 147, 104867. [Google Scholar] [CrossRef]
- Zeng, W.; Zhang, C.; Wang, Q.; Wang, F. Adsorption Characteristics of Three Precedence-Controlled Phthalate Esters on Purple Soil. J. Southwest Univ. (Nat. Sci. Ed.) 2017, 39, 17–25. [Google Scholar] [CrossRef]
- Wang, L.; Gan, D.; Gong, L.; Zhang, Y.; Wang, J.; Guan, R.; Zeng, L.; Qu, J.; Dong, M.; Wang, L. Analysis of the performance of the efficient di-(2-ethylhexyl) phthalate-degrading bacterium Rhodococcus pyridinovorans DNHP-S2 and associated catabolic pathways. Chemosphere 2022, 306, 135610. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Zhao, J.; Huang, H.; Wu, M.; Li, X.; Li, W.; Sun, X.; Sun, B. An efficient phthalate ester-degrading Bacillus subtilis: Degradation kinetics, metabolic pathway, and catalytic mechanism of the key enzyme. Environ. Pollut. 2021, 273, 116461. [Google Scholar] [CrossRef]
- Hou, Z.; Pan, H.; Gu, M.; Chen, X.; Ying, T.; Qiao, P.; Cao, J.; Wang, H.; Hu, T.; Zheng, L.; et al. Simultaneously degradation of various phthalate esters by Rhodococcus sp. AH-ZY2: Strain, omics and enzymatic study. J. Hazard. Mater. 2024, 474, 134776. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Zhu, Y.; Li, J.; Li, X. Biodegradation of seven phthalate esters by Bacillus mojavensis B1811. Int. Biodeterior. Biodegrad. 2018, 132, 200–207. [Google Scholar] [CrossRef]
- Tian, J.; Qian, Y.; He, X.; Qi, R.; Lei, J.; Wang, Q.; Feng, C. Influencing factors and risk assessment of phthalate ester pollution in the agricultural soil on a tropical island. Chemosphere 2024, 357, 142041. [Google Scholar] [CrossRef] [PubMed]
- Collins, C.; Fryer, M.; Grosso, A. Plant uptake of non-ionic organic chemicals. Environ. Sci. Technol. 2006, 40, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.-x.; Fan, C.Q. Gas/solid particulate phthalic esters (PAEs) in Masson pine (Pinus massoniana L.) needles and rhizosphere surface soils. J. Hazard. Mater. 2014, 276, 149–156. [Google Scholar] [CrossRef]
- Zhu, H.; Wang, F.; Li, B.; Yao, Y.; Wang, L.; Sun, H. Accumulation and translocation of polybrominated diphenyl ethers into plant under multiple exposure scenarios. Environ. Int. 2020, 143, 105947. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Huang, B.; Chen, Z.; Zhong, M.; Lu, Q.; Liu, X.; Ji, Q. Phthalate pollution and migration in soil-air-vegetable systems in typical plastic agricultural greenhouses in northwestern China. Sci. Total Environ. 2022, 809, 151101. [Google Scholar] [CrossRef]
- Teuten, E.L.; Saquing, J.M.; Knappe, D.R.; Barlaz, M.A.; Jonsson, S.; Björn, A.; Rowland, S.J.; Thompson, R.C.; Galloway, T.S.; Yamashita, R. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2027–2045. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Xiang, L.; Gu, C.G.; Redmile-Gordon, M.; Sheng, H.J.; Wang, Z.Q.; Fu, Y.H.; Bian, Y.R.; Jiang, X. Risk Assessment of Agricultural Plastic Films Based on Release Kinetics of Phthalate Acid Esters. Environ. Sci. Technol. 2021, 55, 3676–3685. [Google Scholar] [CrossRef]
- Mo, C.-H.; Cai, Q.-Y.; Tang, S.-R.; Zeng, Q.-Y.; Wu, Q.-T. Polycyclic Aromatic Hydrocarbons and Phthalic Acid Esters in Vegetables from Nine Farms of the Pearl River Delta, South China. Arch. Environ. Contam. Toxicol. 2009, 56, 181–189. [Google Scholar] [CrossRef]
- Cai, Q.Y.; Xiao, P.Y.; Chen, T.; Lü, H.; Zhao, H.M.; Zeng, Q.Y.; Li, Y.W.; Li, H.; Xiang, L.; Mo, C.H. Genotypic variation in the uptake, accumulation, and translocation of di-(2-ethylhexyl) phthalate by twenty cultivars of rice (Oryza sativa L.). Ecotoxicol. Environ. Saf. 2015, 116, 50–58. [Google Scholar] [CrossRef]
- Pan, B.; Zhu, X.; Huang, L.; Cai, K.; Li, Y.-W.; Cai, Q.-Y.; Feng, N.-X.; Mo, C.-H. Root-zone regulation and longitudinal translocation cause intervarietal differences for phthalates accumulation in vegetables. Chemosphere 2024, 359, 142322. [Google Scholar] [PubMed]
- Wei, L.Y.; Li, Z.H.; Sun, J.T.; Zhu, L.Z. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil and vegetables in the Yangtze River Delta of China. Sci. Total Environ. 2020, 726, 137978. [Google Scholar] [CrossRef] [PubMed]
- Ma, T.T.; Wu, L.H.; Chen, L.; Zhang, H.B.; Teng, Y.; Luo, Y.M. Phthalate esters contamination in soils and vegetables of plastic film greenhouses of suburb Nanjing, China and the potential human health risk. Environ. Sci. Pollut. Res. 2015, 22, 12018–12028. [Google Scholar] [CrossRef]
- Li, Y.; Huang, G.; Gu, H.; Huang, Q.; Lou, C.; Zhang, L.; Liu, H. Assessing the Risk of Phthalate Ester (PAE) Contamination in Soils and Crops Irrigated with Treated Sewage Effluent. Water 2018, 10, 999. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Xu, Y.; Tan, F. Characteristics, prediction, and risk assessment of phthalates, organophosphate esters, and polycyclic aromatic hydrocarbons in vegetables from plastic greenhouses of Northeast China. Chemosphere 2024, 368, 143743. [Google Scholar] [CrossRef]
- Castagnoli, A.; Pasciucco, F.; Iannelli, R.; Meoni, C.; Pecorini, I. Keu contamination in Tuscany: The life cycle assessment of remediation project as a decision support tool for local administration. Sustainability 2022, 14, 14828. [Google Scholar] [CrossRef]
- Pasciucco, E.; Pasciucco, F.; Castagnoli, A.; Iannelli, R.; Pecorini, I. Removal of heavy metals from dredging marine sediments via electrokinetic hexagonal system: A pilot study in Italy. Heliyon 2024, 10, e27616. [Google Scholar] [CrossRef]
Parameters | Meaning | Unit | Adult | Child |
---|---|---|---|---|
IR1 | Daily fruit and vegetable intake | kg d−1 | 0.345 | 0.231 |
IS | Daily average soil intake | mg d−1 | 100 | 200 |
Ii | Respiration rate | m3 d−1 | 20 | 8 |
EF1 | Crop exposure frequencies | d a−1 | 350 | |
EF2 | Soil exposure frequencies | d a−1 | 250 | |
ED1 | Crop exposure years | a | 30 | 6 |
ED2 | Soil exposure years | a | 24 | 6 |
CF | Conversion factor | / | 1 × 10−6 | |
SA | Exposed skin area | cm2 d−1 | 57,000 | 28,000 |
AF | Soil adhesion factor | mg cm−1 | 0.07 | 0.2 |
ABS | Absorption of soil factors by the skin | / | 0.1 | |
PEF | Particulate emission factor | m3 kg−1 | 1.36 × 109 | |
BW | Body weight | kg | 70 | 15 |
RfD | Reference dose | mg kg−1 d−1 | DMP: 10, DEP: 0.8, DBP: 0.1, BBP: 0.2, DEHP: 0.02, DnBP: 0.1, DIBP: 0.08 | |
CFS | Carcinogenic slope factor | mg kg−1 d−1 | DEHP: 0.014, BBP: 0.0019 | |
AT | Average lifetime | d | Carcinogenic risk is 25,550, Con-carcinogenic risk is 365 × ED |
PAE | Min | Max | Median | Mean | SD | DF/% | Control Standard | Rate of Exceedance/% |
---|---|---|---|---|---|---|---|---|
DEHP | 1.12 | 180.1 | 9.95 | 22.1 | 30.08 | 100 | 4350 | 0 |
DBP | ND | 974.7 | 25.5 | 68.5 | 132 | 99.6 | 80 | 16.1 |
DIBP | ND | 62.0 | 0.39 | 7.09 | 12.5 | 98.4 | - | - |
DEP | ND | 30.0 | 0.80 | 2.74 | 5.18 | 84.7 | 70 | 0 |
DMP | ND | 81.4 | 5.20 | 11.4 | 15.9 | 98.4 | 20 | 16.9 |
BBP | ND | ND | ND | ND | - | 0 | - | - |
DCHP | ND | ND | ND | ND | - | 0 | - | - |
DMEP | ND | ND | ND | ND | - | 0 | - | - |
BMPP | ND | ND | ND | ND | - | 0 | - | - |
DEEP | ND | ND | ND | ND | - | 0 | - | - |
DPP | ND | ND | ND | ND | - | 0 | - | - |
DHXP | ND | ND | ND | ND | - | 0 | - | - |
DBEP | ND | ND | ND | ND | - | 0 | - | - |
DPHP | ND | ND | ND | ND | - | 0 | - | - |
DNOP | ND | ND | ND | ND | - | 0 | 1200 | - |
DNP | ND | ND | ND | ND | - | 0 | - | - |
∑4PAEs | 6.88 | 1063.5 | 48.4 | 104.7 | - | - | - | - |
∑16PAEs | 7.29 | 1064.1 | 54.7 | 111.8 | - | - | - | - |
PAEs | Min | Max | Mean | SD | DF/% |
---|---|---|---|---|---|
DEHP | ND | 1520 | 23.63 | 139.37 | 3.9 |
DBP | ND | 2310 | 314.56 | 419.17 | 46.8 |
DIBP | ND | 860 | 30.94 | 139.91 | 4.9 |
DEP | ND | ND | - | - | 0 |
DMP | ND | ND | - | - | 0 |
BBP | ND | ND | - | - | 0 |
DCHP | ND | ND | - | - | 0 |
DMEP | ND | ND | - | - | 0 |
BMPP | ND | 2620 | 93.24 | 337.16 | 11.8 |
DEEP | ND | ND | ND | - | 0 |
DPP | ND | 2750 | 50.25 | 338.99 | 3.0 |
DHXP | ND | ND | ND | - | 0 |
DBEP | ND | ND | ND | - | 0 |
DPHP | ND | ND | ND | - | 0 |
DNOP | ND | 3450 | 125.44 | 463.98 | 9.4 |
DNP | ND | ND | ND | - | 0 |
∑16PAEs | ND | 5140 | 637.60 | 897.06 | - |
Crowd | Exposure Routes | CR | HQ | |||||
---|---|---|---|---|---|---|---|---|
DEHP | DMP | DEP | DBP | DEHP | DNOP | Total | ||
Adult | Dietary intake | 6.73 × 10−7 | 0 | 0 | 1.50 × 10−2 | 5.63 × 10−3 | 1.50 × 10−2 | 3.56 × 10−2 |
Soil ingestion | 1.04 × 10−15 | 1.11 × 10−14 | 3.35 × 10−14 | 6.70 × 10−12 | 1.08 × 10−11 | 0 | 1.76 × 10−11 | |
Dermal contact | 4.14 × 10−10 | 4.43 × 10−9 | 1.34 × 10−8 | 2.67 × 10−6 | 4.31 × 10−6 | 0 | 7.01 × 10−6 | |
Inhalation | 7.21 × 10−10 | 7.72 × 10−9 | 2.33 × 10−8 | 4.66 × 10−6 | 7.51 × 10−6 | 0 | 1.22 × 10−5 | |
Sum | 6.74 × 10−7 | 1.22 × 10−9 | 3.67 × 10−8 | 1.50 × 10−2 | 5.65 × 10−3 | 1.5 × 10−2 | 3.56 × 10−2 | |
Child | Dietary intake | 4.21 × 10−7 | 0 | 0 | 4.67 × 10−2 | 1.75 × 10−2 | 4.65 × 10−2 | 1.11 × 10−1 |
Soil ingestion | 2.42 × 10−15 | 1.04 × 10−13 | 3.13 × 10−13 | 6.26 × 10−11 | 1.01 × 10−10 | 0 | 1.64 × 10−10 | |
Dermal contact | 6.78 × 10−10 | 2.90 × 10−8 | 8.76 × 10−8 | 1.75 × 10−5 | 2.83 × 10−5 | 0 | 4.59 × 10−5 | |
Inhalation | 1.80 × 10−10 | 7.72 × 10−9 | 2.33 × 10−8 | 4.66 × 10−6 | 7.51 × 10−6 | 0 | 1.22 × 10−5 | |
Sum | 4.22 × 10−7 | 3.68 × 10−8 | 1.11 × 10−7 | 4.67 × 10−2 | 1.76 × 10−2 | 4.6 × 10−2 | 1.11 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Liu, H.; Liu, Z.; Su, H.; Simayi, S.; Liu, G. Distribution Features and Health Risk Assessment of Phthalate Pollutants in Facility Soil and Agricultural Products in Xinjiang, China. Agronomy 2025, 15, 821. https://doi.org/10.3390/agronomy15040821
Li H, Liu H, Liu Z, Su H, Simayi S, Liu G. Distribution Features and Health Risk Assessment of Phthalate Pollutants in Facility Soil and Agricultural Products in Xinjiang, China. Agronomy. 2025; 15(4):821. https://doi.org/10.3390/agronomy15040821
Chicago/Turabian StyleLi, Haifeng, Hejiang Liu, Zhigang Liu, Hanming Su, Silayiding Simayi, and Guohong Liu. 2025. "Distribution Features and Health Risk Assessment of Phthalate Pollutants in Facility Soil and Agricultural Products in Xinjiang, China" Agronomy 15, no. 4: 821. https://doi.org/10.3390/agronomy15040821
APA StyleLi, H., Liu, H., Liu, Z., Su, H., Simayi, S., & Liu, G. (2025). Distribution Features and Health Risk Assessment of Phthalate Pollutants in Facility Soil and Agricultural Products in Xinjiang, China. Agronomy, 15(4), 821. https://doi.org/10.3390/agronomy15040821