Genome-Wide Association Analysis and Candidate Gene Prediction of Wheat Grain Copper Concentration
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Materials and Field Planting
2.2. Determination of Copper Content in Mature Grains of Wheat
2.3. Statistical Analysis
2.4. Multi-Loci Association Analysis
2.5. Candidate Gene Prediction
3. Results
3.1. Variation Analysis of Copper Content in Mature Grains of Wheat
3.2. Genome-Wide Association Analysis Based on Multiple Models
3.3. Candidate Gene Analysis
4. Discussion
4.1. Natural Variation of Copper Content in Wheat Grain
4.2. Advantages of Multi-Loci Model
4.3. Candidate Gene Prediction of Copper Content in Wheat Grain
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Poudel, R.; Bhatta, M. Review of Nutraceuticals and Functional Properties of Whole Wheat. J. Nutr. Food Sci. 2017, 7, 571. [Google Scholar] [CrossRef]
- Burkhead, J.L.; Gogolin Reynolds, K.A.; Abdel-Ghany, S.E.; Cohu, C.M.; Pilon, M. Copper Homeostasis. New Phytol. 2009, 182, 799–816. [Google Scholar] [CrossRef] [PubMed]
- Ravet, K.; Pilon, M. Copper and Iron Homeostasis in Plants: The Challenges of Oxidative Stress. Antioxid. Redox Signal. 2013, 19, 919–932. [Google Scholar] [CrossRef]
- Binesh, A.; Venkatachalam, K. Copper in Human Health and Disease: A Comprehensive Review. J. Biochem. Mol. Tox 2024, 38, e70052. [Google Scholar] [CrossRef]
- Chhetri, S.K.; Mills, R.J.; Shaunak, S.; Emsley, H.C.A. Copper Deficiency. BMJ 2014, 348, g3691. [Google Scholar] [CrossRef]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and metallothioneins: Roles in Heavy Metal Detoxification and Homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. [Google Scholar] [CrossRef]
- Andrés-Colás, N.; Sancenón, V.; Rodríguez-Navarro, S.; Mayo, S.; Thiele, D.J.; Ecker, J.R.; Puig, S.; Peñarrubia, L. The Arabidopsis Heavy Metal P-type ATPase HMA5 Interacts with Metallochaperones and Functions in Copper Detoxification of Roots. Plant J. 2006, 45, 225–236. [Google Scholar]
- Lu, K.; Li, L.; Zheng, X.; Zhang, Z.; Mou, T.; Hu, Z. Quantitative Trait Loci Controlling Cu, Ca, Zn, Mn and Fe Content in Rice Grains. J. Genet. 2008, 87, 305–310. [Google Scholar] [CrossRef]
- Hu, B.-L.; Huang, D.-R.; Xiao, Y.-Q.; Fan, Y.-Y.; Chen, D.-Z.; Zhuang, J.-Y. Mapping QTLs for Mineral Element Contents in Brown and Milled Rice Using an Oryza Sativa × O. Rufipogon Backcross Inbred Line Population. Cereal Res. Commun. 2016, 44, 57–68. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Jin, T.; Huang, Y.; Chen, J.; Zhu, L.; Zhao, Y.; Guo, J. Correction to: Identification of Quantitative Trait Locus and Prediction of Candidate Genes for Grain Mineral Concentration in Maize across Multiple Environments. Euphytica 2018, 214, 71. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Yang, Y.; Zhang, Q.; Fu, B.; Cai, J.; Guo, W.; Shi, L.; Wu, J.; Chen, Y. A Thorough Screening Based on QTLs Controlling Zinc and Copper Accumulation in the Grain of Different Wheat Genotypes. Environ. Sci. Pollut. Res. 2021, 28, 15043–15054. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Qi, S.; Yuan, M.; Zhao, D.; Zhang, D.; Feng, J.; Wang, J.; Li, W.; Song, C.; Wang, T.; et al. A Genome-Wide Association Study Revealed the Genetic Variation and Candidate Genes for Grain Copper Content in Bread Wheat (Triticum aestivum L.). Food Funct. 2022, 13, 5177–5188. [Google Scholar] [CrossRef] [PubMed]
- Bálint, A.F.; Röder, M.S.; Hell, R.; Galiba, G.; Börner, A. Mapping of QTLs Affecting Copper Tolerance and the Cu, Fe, Mn and Zn Contents in the Shoots of Wheat Seedlings. Biol. Plant 2007, 51, 129–134. [Google Scholar] [CrossRef]
- Zhao, L.; Pan, Y.; Dong, Z.; Zheng, Y.; Liu, J.; Geng, J.; Ren, Y.; Zhang, N.; Chen, F. Investigation and Genome-Wide Association Study of Grain Copper Content in Chinese Common Wheat. J. Cereal Sci. 2020, 95, 102991. [Google Scholar] [CrossRef]
- Zhou, G.; Zhu, Q.; Mao, Y.; Chen, G.; Xue, L.; Lu, H.; Shi, M.; Zhang, Z.; Song, X.; Zhang, H.; et al. Multi-Locus Genome-Wide Association Study and Genomic Selection of Kernel Moisture Content at the Harvest Stage in Maize. Front. Plant Sci. 2021, 12, 697688. [Google Scholar] [CrossRef]
- Zhong, H.; Liu, S.; Sun, T.; Kong, W.; Deng, X.; Peng, Z.; Li, Y. Multi-Locus Genome-Wide Association Studies for Five Yield-Related Traits in Rice. BMC Plant Biol. 2021, 21, 364. [Google Scholar] [CrossRef]
- Vikas, V.K.; Pradhan, A.K.; Budhlakoti, N.; Mishra, D.C.; Chandra, T.; Bhardwaj, S.C.; Kumar, S.; Sivasamy, M.; Jayaprakash, P.; Nisha, R.; et al. Multi-Locus Genome-Wide Association Studies (ML-GWAS) Reveal Novel Genomic Regions Associated with Seedling and Adult Plant Stage Leaf Rust Resistance in Bread Wheat (Triticum aestivum L.). Heredity 2022, 128, 434–449. [Google Scholar] [CrossRef]
- Peng, Y.; Liu, H.; Chen, J.; Shi, T.; Zhang, C.; Sun, D.; He, Z.; Hao, Y.; Chen, W. Genome-Wide Association Studies of Free Amino Acid Levels by Six Multi-Locus Models in Bread Wheat. Front. Plant Sci. 2018, 9, 1196. [Google Scholar] [CrossRef]
- Zhou, Z.; Guan, H.; Liu, C.; Zhang, Z.; Geng, S.; Qin, M.; Li, W.; Shi, X.; Dai, Z.; Lei, Z.; et al. Identification of Genomic Regions Affecting Grain Peroxidase Activity in Bread Wheat Using Genome-Wide Association Study. BMC Plant Biol. 2021, 21, 52. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Tamba, C.; Zhang, Y.M. A fast mrMLM algorithm for multi-locus genome-wide association studies. bioRxiv 2018, 7, 341784. [Google Scholar]
- Tamba, C.L.; Ni, Y.L.; Zhang, Y.M. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput. Biol. 2017, 13, e1005357. [Google Scholar]
- Wang, S.B.; Feng, J.Y.; Ren, W.L.; Huang, B.; Zhou, L.; Wen, Y.J.; Jin, Z.; Dunwell, J.M.; Xu, S.; Zhang, Y.M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci. Rep. 2016, 6, 19444. [Google Scholar]
- Ren, W.L.; Wen, Y.J.; Dunwell, J.M.; Zhang, Y.M. pKWmEB: Integration of kruskal-wallis test with empirical bayes under polygenic background control for multi-locus genome-wide association study. Heredity 2018, 120, 208–218. [Google Scholar]
- Zhang, J.; Feng, J.Y.; Ni, Y.L.; Wen, Y.J.; Niu, Y.; Tamba, C.L.; Yue, C.; Song, Q.; Zhang, Y.M. pLARmEB: Integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Heredity 2017, 118, 517–524. [Google Scholar]
- Alaux, M.; Rogers, J.; Letellier, T.; Flores, R.; Alfama, F.; Pommier, C.; Mohellibi, N.; Durand, S.; Kimmel, E.; Michotey, C.; et al. Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. Genome Biol. 2018, 19, 111. [Google Scholar] [CrossRef]
- Alaux, M.; Dyer, S.; Sen, T.Z. Wheat Data Integration and FAIRification: IWGSC, GrainGenes, Ensembl and Other Data Repositories. In The Wheat Genome. Compendium of Plant Genomes; Appels, R., Eversole, K., Feuillet, C., Gallagher, D., Eds.; Springer: Cham, Switzerland, 2024. [Google Scholar]
- Yuan, M.; Li, X.; Xiao, J.; Wang, S. Molecular and Functional Analyses of COPT/Ctr-Type Copper Transporter-like Gene Family in Rice. BMC Plant Biol. 2011, 11, 69. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.A.; Lee, J.; Guerinot, M.L.; An, G. Zinc Deficiency-Inducible OsZIP8 Encodes a Plasma Membrane-Localized Zinc Transporter in Rice. Mol. Cells 2010, 29, 551–558. [Google Scholar]
- Tan, L.; Qu, M.; Zhu, Y.; Peng, C.; Wang, J.; Gao, D.; Chen, C. ZINC TRANSPORTER5 and ZINC TRANSPORTER9 Function Synergistically in Zinc/Cadmium Uptake. Plant Physiol. 2020, 183, 1235–1249. [Google Scholar]
- Ishimaru, Y.; Suzuki, M.; Tsukamoto, T.; Suzuki, K.; Nakazono, M.; Kobayashi, T.; Wada, Y.; Watanabe, S.; Matsuhashi, S.; Takahashi, M.; et al. Rice Plants Take up Iron as an Fe3+ -phytosiderophore and as Fe2+. Plant J. 2006, 45, 335–346. [Google Scholar]
- Yu, E.; Yamaji, N.; Mao, C.; Wang, H.; Ma, J.F. Lateral Roots but Not Root Hairs Contribute to High Uptake of Manganese and Cadmium in Rice. J. Exp. Bot. 2021, 72, 7219–7228. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W. Systemic Impact of Trace Elements on Human Health and Diseases: Nutrition, Toxicity, and Beyond. J. Trace Elem. Med. Biol. 2020, 62, 126634. [Google Scholar]
- Li, J.; Martin, C.; Fernie, A. Biofortification’s Contribution to Mitigating Micronutrient Deficiencies. Nat. Food 2024, 5, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Hao, B.; Ma, J.; Chen, P.; Jiang, L.; Wang, X.; Li, C.; Wang, Z. Wheat Breeding in China over the Past 80 Years Has Increased Grain Zinc but Decreased Grain Iron Concentration. Field Crops Res. 2021, 271, 108253. [Google Scholar]
- Murphy, K.M.; Reeves, P.G.; Jones, S.S. Relationship between Yield and Mineral Nutrient Concentrations in Historical and Modern Spring Wheat Cultivars. Euphytica 2008, 163, 381–390. [Google Scholar] [CrossRef]
- Bhatta, M.; Baenziger, P.S.; Waters, B.M.; Poudel, R.; Belamkar, V.; Poland, J.; Morgounov, A. Genome-Wide Association Study Reveals Novel Genomic Regions Associated with 10 Grain Minerals in Synthetic Hexaploid Wheat. Int. J. Mol. Sci. 2018, 19, 3237. [Google Scholar] [CrossRef]
- Cu, S.T.; Guild, G.; Nicolson, A.; Velu, G.; Singh, R.; Stangoulis, J. Genetic Dissection of Zinc, Iron, Copper, Manganese and Phosphorus in Wheat (Triticum aestivum L.) Grain and Rachis at Two Developmental Stages. Plant Sci. 2020, 291, 110338. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, F.; Zhou, Y. The Application of Multi-Locus GWAS for the Detection of Salt-Tolerance Loci in Rice. Front. Plant Sci. 2018, 9, 1464. [Google Scholar] [CrossRef]
- Segura, V.; Vilhjálmsson, B.J.; Platt, A.; Korte, A.; Seren, Ü.; Long, Q.; Nordborg, M. An Efficient Multi-Locus Mixed-Model Approach for Genome-Wide Association Studies in Structured Populations. Nat. Genet. 2012, 44, 825–830. [Google Scholar] [CrossRef]
- Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [Google Scholar] [CrossRef]
- Shakoor, N.; Ziegler, G.; Dilkes, B.P.; Brenton, Z.; Boyles, R.; Connolly, E.L.; Kresovich, S.; Baxter, I. Integration of Experiments across Diverse Environments Identifies the Genetic Determinants of Variation in Sorghum Bicolor Seed Element Composition. Plant Physiol. 2016, 170, 1989–1998. [Google Scholar] [PubMed]
- Pandey, A.; Khan, M.K.; Hakki, E.E.; Thomas, G.; Hamurcu, M.; Gezgin, S.; Gizlenci, O.; Akkaya, M.S. Assessment of Genetic Variability for Grain Nutrients from Diverse Regions: Potential for Wheat Improvement. SpringerPlus 2016, 5, 1912. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Yang, S.; Liu, B.; Zhang, M.; Wu, K. Molecular Characterization of a Rice Metal Tolerance Protein, OsMTP1. Plant Cell Rep. 2012, 31, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Fujii, Y.; Yamaji, N.; Masuda, S.; Takemoto, Y.; Kamiya, T.; Yusuyin, Y.; Iwasaki, K.; Kato, S.; Maeshima, M.; et al. Mn Tolerance in Rice Is Mediated by MTP8.1, a Member of the Cation Diffusion Facilitator Family. J. Exp. Bot. 2013, 64, 4375–4387. [Google Scholar] [CrossRef]
Program | Step 1 | Step 2 | Step 3 |
---|---|---|---|
Temperature/°C | RT *–120 | 120–180 | 180–RT * |
climbing time/min | 12 | 10 | 15 |
settling time/min | 5 | 35 | 10 |
Traits | Environment * | Min | Max | Mean | Kurtosis | Skewness | CV (%) |
---|---|---|---|---|---|---|---|
Copper | E1 | 3.33 | 7.33 | 5.41 | −0.86 | 0.04 | 16.39 |
E2 | 3.38 | 7.89 | 5.47 | 0.69 | 0.46 | 13.29 | |
BLUP | 4.57 | 6.46 | 5.44 | 0.16 | 0.31 | 6.34 |
QTN | Chromosome | Position (Mb) | −log10(p) | r2 (%) | Model | Environment * |
---|---|---|---|---|---|---|
AX-110905625 | 1A | 473.8 | 6.6–7.7 | 2.1–3.9 | FASTmrMLM, pLARmEB | BLUP |
AX-111542470 | 1A | 580.1 | 4.4–6.8 | 2.3–4.7 | FASTmrMLM, pLARmEB, pKWmEB | E1, BLUP |
AX-94651674 | 1B | 685.1 | 4.2–8.3 | 1.4–3.6 | FASTmrMLM, ISIS EM-BLASSO, pLARmEB, pKWmEB | E2 |
AX-110129246 | 2A | 19.8 | 6.0–8.7 | 8.0–11.5 | FASTmrMLM, mrMLM | E2 |
AX-110386266 | 2A | 226.5 | 4.9–6.2 | 6.2–14.8 | FASTmrMLM, mrMLM, pLARmEB, pKWmEB | E1, BLUP |
AX-108874892 | 2A | 691.1 | 4.8–6.3 | 1.9–5.8 | FASTmrMLM, mrMLM, pLARmEB | BLUP |
AX-109319457 | 2A | 729.3 | 5.2–5.3 | 3.9–4.7 | FASTmrMLM, pKWmEB | E1 |
AX-110676161 | 2B | 172.8 | 3.8–3.8 | 0.5–1.6 | FASTmrMLM, pLARmEB | E2 |
AX-110456252 | 2B | 449.1 | 3.8–10.1 | 3.0–6.2 | FASTmrMLM, pLARmEB, pKWmEB | BLUP |
AX-110707064 | 2B | 603.8 | 3.8–5.7 | 0.3–2.2 | FASTmrMLM, ISIS EM-BLASSO, pLARmEB | E2 |
AX-110192731 | 2D | 75.6 | 5.6–5.9 | 3.3–4.2 | FASTmrMLM, pKWmEB | E1 |
AX-111211824 | 2D | 647.5 | 4.1–8.6 | 5.5–17.0 | FASTmrMLM, pKWmEB | E2 |
AX-111231642 | 3A | 20.3 | 5.2–6.2 | 1.4–10.9 | mrMLM, pLARmEB | E2 |
AX-110092804 | 3B | 18.8 | 4.9–7.4 | 2.2–4.9 | FASTmrMLM, pLARmEB, pKWmEB | E1 |
AX-110816744 | 3D | 594.5 | 4.2–4.9 | 2.5–4.9 | FASTmrMLM, pLARmEB | BLUP |
AX-110710058 | 4A | 606.6 | 3.8–7.6 | 1.2–7.3 | ISIS EM-BLASSO, pLARmEB, pKWmEB | E1 |
AX-110630308 | 4B | 10.6 | 3.8–6.1 | 1.4–8.1 | FASTmrMLM, mrMLM | E2 |
AX-110984751 | 4B | 32.3 | 5.2–6.8 | 5.9–6.1 | ISIS EM-BLASSO, pKWmEB | E1 |
AX-109407721 | 4B | 38.8 | 5.7–6.3 | 1.1–3.3 | ISIS EM-BLASSO, pLARmEB | E2 |
AX-108752003 | 4B | 610.2 | 4.0–9.5 | 2.9–7.8 | mrMLM, ISIS EM-BLASSO, pLARmEB | E2, BLUP |
AX-108801851 | 5A | 17.4 | 3.9–6.5 | 3.4–5.2 | ISIS EM-BLASSO, pKWmEB | E1 |
AX-110975044 | 5A | 512.6 | 6.2–11.1 | 4.0–11.3 | FASTmrMLM, pLARmEB, pKWmEB | BLUP |
AX-111073739 | 5A | 681.5 | 4.2–5.0 | 1.2–3.7 | pLARmEB, pKWmEB | E2, BLUP |
AX-111822227 | 5B | 634.1 | 4.5–4.8 | 1.2–1.8 | FASTmrMLM, pLARmEB | BLUP |
AX-109737823 | 5D | 443.9 | 4.3–4.8 | 2.4–16.2 | pLARmEB, pKWmEB | E2 |
AX-109330452 | 6B | 202.9 | 5.4–6.4 | 3.0–6.0 | FASTmrMLM, mrMLM | E2 |
AX-110276099 | 6D | 463.9 | 4.6–4.9 | 0.9–3.1 | FASTmrMLM, pLARmEB, pKWmEB | E2 |
AX-109925765 | 7A | 37.3 | 5.1–7.2 | 2.1–4.6 | FASTmrMLM, mrMLM, pLARmEB, pKWmEB | E1, BLUP |
AX-111012263 | 7A | 261.7 | 4.9–6.4 | 5.2–9.7 | FASTmrMLM, pLARmEB, pKWmEB | E1 |
AX-110506329 | 7B | 336.4 | 4.2–7.1 | 6.7–29.3 | mrMLM, ISIS EM-BLASSO, pLARmEB, pKWmEB | BLUP |
QTN | Chromosome | Candidate Gene | Annotation | Distance to QTN (Mb) |
---|---|---|---|---|
AX-109319457 | 2A | TraesCS2A02G505500 | Zinc transporter | 4.50 |
AX-110456252 | 2B | TraesCS2B02G313200 | Copper transporter family protein | −0.40 |
AX-111231642 | 3A | TraesCS3A02G042600 | Metal tolerance protein | 2.49 |
AX-110092804 | 3B | TraesCS3B02G040900 | Metal tolerance protein | 1.52 |
AX-110630308 | 4B | TraesCS4B02G019300 | Zinc transporter | 3.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Z.; Liu, X.; Li, F.; Hou, J.; Zhou, Z.; Jing, X.; Peng, Y.; Man, J.; Lei, Z. Genome-Wide Association Analysis and Candidate Gene Prediction of Wheat Grain Copper Concentration. Agronomy 2025, 15, 792. https://doi.org/10.3390/agronomy15040792
Zou Z, Liu X, Li F, Hou J, Zhou Z, Jing X, Peng Y, Man J, Lei Z. Genome-Wide Association Analysis and Candidate Gene Prediction of Wheat Grain Copper Concentration. Agronomy. 2025; 15(4):792. https://doi.org/10.3390/agronomy15040792
Chicago/Turabian StyleZou, Zhaojun, Xiaofei Liu, Fengfeng Li, Jinna Hou, Zhengfu Zhou, Xiaojing Jing, Yanchun Peng, Jianguo Man, and Zhensheng Lei. 2025. "Genome-Wide Association Analysis and Candidate Gene Prediction of Wheat Grain Copper Concentration" Agronomy 15, no. 4: 792. https://doi.org/10.3390/agronomy15040792
APA StyleZou, Z., Liu, X., Li, F., Hou, J., Zhou, Z., Jing, X., Peng, Y., Man, J., & Lei, Z. (2025). Genome-Wide Association Analysis and Candidate Gene Prediction of Wheat Grain Copper Concentration. Agronomy, 15(4), 792. https://doi.org/10.3390/agronomy15040792