Breeding of Solanaceous Crops Using AI: Machine Learning and Deep Learning Approaches—A Critical Review
Abstract
:1. Introduction
1.1. ML and DL Applications for Plant Breeding
1.2. AI-Driven Crop Breeding to Overcome Traditional Breeding Limitations in Solanaceae
2. Applications of Machine and Deep Learning in Solanaceous Crop Breeding
2.1. Tomato
2.1.1. Plant Phenotyping for Productivity Monitoring and Yield Prediction
2.1.2. Genomic Selection Based on Morphological Classification and Fruit Quality Traits
2.1.3. Breeding Against Environmental Stressors
2.2. Eggplant
2.2.1. Productivity Monitoring and Yield Prediction
2.2.2. Phenotyping for Key Aspects on Plant Physiology and Development
2.2.3. Breeding Against Environmental Stressors
2.3. Potato
2.3.1. Productivity Monitoring and Yield Prediction
2.3.2. Varietal Identification and Tuber Quality Assessment
2.3.3. Breeding Against Environmental Stressors
2.4. Pepper
2.4.1. Agronomic Traits and Yield Prediction
2.4.2. Varietal Identification Based on Morphological and Chemical Classification
2.4.3. Breeding Against Environmental Stressors
3. Limitations and Future Prospects of AI in Breeding Solanaceous Crops
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mogili, U.M.R.; Deepak, B.B.V.L. Review on application of drone systems in precision agriculture International Conference on Robotics and Smart Manufacturing. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S.; Gonçalves, P. Precision Agriculture for Crop and Livestock Farming-Brief Review. Animals 2021, 11, 2345. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karami, A.; Jafari, F. Leveraging Big Data Characteristics for Enhanced Healthcare Fraud Detection. Cluster Comput. 2024; in press. [Google Scholar]
- Qiang, J.; Zhang, X. Data analytics for crop management: A big data view. J. Big Data 2022, 9, 52. [Google Scholar] [CrossRef]
- Balasubramanian, V.; Guo, W.; Chandra, A.; Desai, S.V. Computer Vision with Deep Learning for Plant Phenotyping in Agriculture: A Survey. arXiv 2020, arXiv:2006.11391. [Google Scholar] [CrossRef]
- Van Dijk, A.D.J.; Kootstra, G.; Kruijer, W.; de Ridder, D. Machine learning in plant science and plant breeding. iScience 2021, 24, 101890. [Google Scholar] [CrossRef]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Random Forest for Genomic Prediction. In Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Tardaguila, J.; Fernández-Novales, J.; Diago, M.P. Support Vector Machine and Artificial Neural Network Models for the Classification of Grapevine Varieties Using a Portable NIR Spectrophotometer. PLoS ONE 2015, 10, e0143197. [Google Scholar] [CrossRef]
- Yan, J.; Xu, Y.; Cheng, Q.; Jiang, S.; Wang, Q.; Xiao, Y.; Ma, C.; Yan, J.; Wang, X. LightGBM: Accelerated genomically designed crop breeding through ensemble learning. Genome. Biol. 2021, 22, 271. [Google Scholar] [CrossRef]
- Karahan, T.; Nabiyev, V. Plant identification with convolutional neural networks and transfer learning. Pamukkale Univ. J. Eng. Sci. 2021, 27, 638–645. [Google Scholar] [CrossRef]
- Mohmed, G.; Heynes, X.; Sun, W.; Hardy, K.; Grundy, S. Modelling daily plant growth response to environmental conditions in Chinese solar greenhouse using Bayesian neural network. Sci. Rep. 2023, 13, 4379. [Google Scholar] [CrossRef]
- Ferreira, M.G.; Azevedo, A.M.; Siman, L.I.; da Silva, G.H.; Carneiro, C.D.S.; Alves, F.M.; Nick, C. Automation in accession classification of Brazilian Capsicum germplasm through artificial neural networks. Sci. Agric. 2017, 74, 203–207. [Google Scholar] [CrossRef]
- Singh, A.; Ganapathysubramanian, B.; Singh, A.K.; Sarkar, S. Machine learning for high-throughput stress phenotyping in plants. Trends Plant Sci. 2016, 21, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Gill, T.; Gill, S.K.; Saini, D.K.; Chopra, Y.; de Koff, J.P.; Sandhu, K.S. A comprehensive review of high throughput phenotyping and machine learning for plant stress phenotyping. Phenomics 2020, 2, 156–183. [Google Scholar] [CrossRef]
- Bai, Y.; Lindhout, P. Domestication and Breeding of Tomatoes: What Have We Gained and What Can We Gain in the Future. Ann. Bot. 2007, 100, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Cembrowska-Lech, D.; Krzemińska, A.; Miller, T.; Nowakowska, A.; Adamski, C.; Radaczyńska, M.; Mikiciuk, G.; Mikiciuk, M. An Integrated Multi-Omics and Artificial Intelligence Framework for Advance Plant Phenotyping in Horticulture. Biology 2023, 12, 1298. [Google Scholar] [CrossRef] [PubMed]
- Jeon, D.; Kang, Y.; Lee, S.; Choi, S.; Sung, Y.; Lee, T.H.; Kim, C. Digitalizing breeding in plants: A new trend of next-generation breeding based on genomic prediction. Front. Plant Sci. 2023, 14, 1092584. [Google Scholar] [CrossRef]
- Diaz-Garcia, L.; Covarrubias-Pazaran, G.; Schlautman, B.; Zalapa, J. GiNA, an Efficient and High-Throughput Software for Horticultural Phenotyping. PLoS ONE 2016, 11, e0160439. [Google Scholar] [CrossRef]
- Sun, L.; Lai, M.; Ghouri, F.; Nawaz, M.A.; Ali, F.; Baloch, F.S.; Nadeem, M.A.; Aasim, M.; Shahid, M.Q. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence—A Critical Review. Plants 2024, 13, 2676. [Google Scholar] [CrossRef]
- Jafar, A.; Bibi, N.; Naqvi, R.A.; Sadeghi-Niaraki, A.; Jeong, D. Revolutionizing agriculture with artificial intelligence: Plant disease detection methods, applications, and their limitations. Front. Plant Sci. 2024, 15, 1356260. [Google Scholar] [CrossRef]
- Barbosa, I.D.P.; da Silva, M.J.; da Costa, W.G.; de Castro Sant’Anna, I.; Nascimento, M.; Cruz, C.D. Genome-enabled prediction through machine learning methods considering different levels of trait complexity. Crop Sci. 2021, 61, 1890–1902. [Google Scholar] [CrossRef]
- Esposito, S.; Ruggieri, V.; Tripodi, P. Editorial: Machine Learning for Big Data Analysis: Applications in Plant Breeding and Genomics. Front. Genet. 2020, 13, 916462. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.K.; Vieira, C.C.; Dias, K.O.G. Using machine learning to combine genetic and environmental data for maize grain yield predictions across multi-environment trials. Theor. Appl. Genet. 2024, 137, 189. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Zhu, Y.; Hu, X. The AI-driven potato gene editing: A new perspective on target identification. Geogr. Res. Bull. 2024, 3, 370–372. [Google Scholar] [CrossRef]
- Amoah, P.; Oumarou Mahamane, A.R.; Byiringiro, M.H.; Mahula, N.J.; Manneh, N.; Oluwasegun, Y.R.; Assfaw, A.T.; Mukiti, H.M.; Garba, A.D.; Chiemeke, F.K.; et al. Genome editing in Sub-Saharan Africa: A game-changing strategy for climate change mitigation and sustainable agriculture. GM Crops Food 2024, 15, 279–302. [Google Scholar] [CrossRef]
- Angon, P.B.; Mondal, S.; Akter, S.; Sakil, M.A.; Jalil, M.A. Roles of CRISPR to mitigate drought and salinity stresses on plants. Plant Stress 2023, 8, 100169. [Google Scholar] [CrossRef]
- Manoj, K.; Ranjan, P.M.; Manish, K.P.; Kumar, S.P.; Abhishek, B.; Baozhu, G.; Rajeev, K.V. Application of CRISPR/Cas9-mediated gene editing for abiotic stress management in crop plants. Front. Plant Sci. 2023, 14, 1157678. [Google Scholar]
- Tong, H.; Nankar, A.N.; Liu, J.; Todorova, V.; Ganeva, D.; Grozeva, S.; Nikoloski, Z. Genomic prediction of morphometric and colorimetric traits in Solanaceous fruits. Hortic. Res. 2022, 9, uhac072. [Google Scholar] [CrossRef]
- Anitha, P.; Kuthkunja, A.; Aditya, G.; Anvitha, V. Analysis of Leaf Disease Detection in the Solanaceae family plants using Machine Learning Algorithms. In Proceedings of the International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bangalore, India, 24–25 January 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Taneja, A.; Nair, G.; Joshi, M.; Sharma, S.; Sharma, S.; Jambrak, A.R.; Roselló-Soto, E.; Barba, F.J.; Castagnini, J.M.; Leksawasdi, N.; et al. Artificial Intelligence: Implications for the Agri-Food Sector. Agronomy 2023, 13, 1397. [Google Scholar] [CrossRef]
- Belouz, K.; Nourani, A.; Zereg, S.; Bencheikh, A. Prediction of greenhouse tomato yield using artificial neural networks combined with sensitivity analysis. Sci. Hortic. 2022, 293, 110666. [Google Scholar] [CrossRef]
- Acharya, B.; Kumar, P.P.; Hazra, S.; Dutta, S.; Saha, S.; Roy, S.; Maji, A.; Chakraborty, I.; Chattopadhyay, A.; Hazra, P. Genetic control of important yield attributing characters predicted through machine learning in segregating generations of interspecific crosses of tomato (Solanum lycopersicum L.). Acta Physiol. Plant. 2024, 46, 78. [Google Scholar] [CrossRef]
- Balaji Prabhu, B.V. ARIA: Augmented Reality and Artificial Intelligence enable mobile application for Yield and grade prediction of tomato crops. Procedia Comput. Sci. 2024, 235, 2693–2702. [Google Scholar] [CrossRef]
- Rahnemoonfar, M.; Sheppard, C. Deep Count: Fruit Counting Based on Deep Simulated Learning. Sensors 2017, 17, 905. [Google Scholar] [CrossRef]
- Hemming, S.; Zwart, F.D.; Elings, A.; Petropoulou, A.; Righini, I. Cherry Tomato Production in Intelligent Greenhouses—Sensors and AI for Control of Climate, Irrigation, Crop Yield, and Quality. Sensors 2019, 20, 6430. [Google Scholar] [CrossRef] [PubMed]
- Niazian, M.; Shariatpanahi, M.E.; Abdipour, M.; Oroojloo, M. Modeling callus induction and regeneration in an anther culture of tomato (Lycopersicon esculentum L.) using image processing and artificial neural network method. Protoplasma 2019, 256, 1317–1332. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, E.; Matsunaga, H.; Onogi, A.; Kajiya-Kanegae, H.; Minamikawa, M.; Suzuki, A.; Shirasawa, K.; Hirakawa, H.; Nunome, T.; Yamaguchi, H.; et al. A simulation-based breeding design that uses whole-genome prediction in tomato. Sci. Rep. 2016, 6, 19454. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Li, H.; Zheng, H.; Zhang, J.; Olsen, M.S.; Varshney, R.K.; Prasanna, B.M.; Qian, Q. Smart breeding driven by big data, artificial intelligence, and integrated genomic-enviromic prediction. Mol Plant 2022, 15, 1664–1695. [Google Scholar] [CrossRef]
- Ansari, R.; Manna, A.; Hazra, S.; Bose, S.; Chatterjee, A.; Sen, P. Breeding 4.0 vis-à-vis application of artificial intelligence (AI) in crop improvement: An overview. N. Z. J. Crop Hortic. Sci. 2024, 1–43. [Google Scholar] [CrossRef]
- Mollazade, K.; Omid, M.; Akhlaghian Tab, F.; Rezaei Kalaj, Y.; Mohtasebi, S. Data Mining-Based Wavelength Selection for Monitoring Quality of Tomato Fruit by Backscattering and Multispectral Imaging. Int. J. Food Prop. 2015, 18, 880–896. [Google Scholar] [CrossRef]
- Zhu, W.; Li, W.; Zhang, H.; Li, L. Big data and artificial intelligence-aided crop breeding: Progress and prospects. J. Integr. Plant Biol. 2024, 1–14. [Google Scholar] [CrossRef]
- Duangjit, J.; Causse, M.; Sauvage, C. Efficiency of genomic selection for tomato fruit quality. Mol. Breed. 2016, 36, 1–16. [Google Scholar] [CrossRef]
- El-Bendary, N.; El-hariri, E.; Hassanien, A.E.; Badr, A. Using machine learning techniques for evaluating tomato ripeness. Expert Syst. Appl. 2014, 42, 1892–1905. [Google Scholar] [CrossRef]
- Vazquez, D.V.; Spetale, F.E.; Nankar, A.N.; Grozeva, S.; Rodríguez, G.R. Machine Learning-Based Tomato Fruit Shape Classification System. System. Plants 2024, 13, 2357. [Google Scholar] [CrossRef] [PubMed]
- Yeon, J.; Nguyen, T.T.; Kim, M.; Sim, S.C. Prediction accuracy of genomic estimated breeding values for fruit traits in cultivated tomato (Solanum lycopersicum L.). BMC Plant Biol. 2024, 24, 222. [Google Scholar] [CrossRef] [PubMed]
- Cappetta, E.; Andolfo, G.; Di Matteo, A.; Barone, A.; Frusciante, L.; Ercolano, M.R. Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches. Plants 2020, 9, 1236. [Google Scholar] [CrossRef]
- Seed, X. Seed-X and TomaTech Use AI to Speed Up Breeding of Superior Quality Hybrid Tomatoes. 2019. Available online: https://www.prnewswire.com/news-releases/seed-x-and-tomatech-use-ai-to-speed-up-breeding-of-superior-quality-hybrid-tomatoes-300860396.html (accessed on 14 January 2025).
- Khan, T.; Adem, I. An AI Taste ‘Connoisseur’ Could be the Future of Crop Breeding. Agriculture Dive. 2023. Available online: https://www.agriculturedive.com/news/an-ai-taste-connoisseur-could-be-thefuture-of-crop-breeding/700086/ (accessed on 16 January 2025).
- Ropelewska, E.; Piecko, J. Discrimination of tomato seeds belonging to different cultivars using machine learning. Eur. Food Res. Technol. 2022, 248, 685–705. [Google Scholar] [CrossRef]
- Zhang, X.; Ibrahim, Z.; Khaskheli, M.B.; Raza, H.; Zhou, F.; Shamsi, I.H. Integrative Approaches to Abiotic Stress Management in Crops: Combining Bioinformatics Educational Tools and Artificial Intelligence Applications. Sustainability 2023, 16, 7651. [Google Scholar] [CrossRef]
- Chowdhury, R.H.; Eti, F.S.; Ahmed, R.; Gupta, S.D.; Jhan, P.K.; Islam, T.; Bhuiyan, M.A.R.; Rubel, M.H.; Khayer, A. Drought-responsive genes in tomato: Meta-analysis of gene expression using machine learning. Sci Rep. 2023, 13, 19374. [Google Scholar] [CrossRef]
- Bupi, N.; Sangaraju, V.K.; Phan, L.T.; Lal, A.; Vo, T.T.B.; Ho, P.T.; Qureshi, M.A.; Tabassum, M.; Lee, S.; Manavalan, B. An Effective Integrated Machine Learning Framework for Identifying Severity of Tomato Yellow Leaf Curl Virus and Their Experimental Validation. Research 2023, 6, 16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dias, F.; Valente, D.; Oliveira, C.; Dariva, F.; Copati, M. Remote sensing and machine learning techniques for high throughput phenotyping of late blight-resistant tomato plants in open field trials. Int. J. Remote Sens. 2023, 44, 1900–1921. [Google Scholar] [CrossRef]
- Gadade, H.; Kirange, D. Machine Learning Based Identification of Tomato Leaf Diseases at Various Stages of Development; Semantic Scholar: Seatle, WA, USA, 2021; pp. 814–819. [Google Scholar] [CrossRef]
- Tan, L.; Lu, J.; Jiang, H. Tomato Leaf Diseases Classification Based on Leaf Images: A Comparison between Classical Machine 838 Learning and Deep Learning Methods. AgriEngineering 2021, 3, 542–558. [Google Scholar] [CrossRef]
- Johansen, K.; Morton, M.J.L.; Malbeteau, Y.; Aragon, B.; Al-Mashharawi, S.; Ziliani, M.G.; McCabe, M.F. Predicting biomass and yield in a tomato phenotyping experiment using UAV imagery and random forest. Front. Artif. Intell. 2020, 3, 28. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, A.; Yoon, S.; Kim, S.C.; Park, D.S. A robust deep-learning-based detector for real-time tomato plant diseases and pests recognition. Sensors 2017, 17, 2022. [Google Scholar] [CrossRef] [PubMed]
- Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention embedded residual CNN for disease detection in tomato leaves. Appl. Soft Comput. 2020, 86, 105933. [Google Scholar] [CrossRef]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep learning for tomato diseases: Classification and symptoms visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Taşan, S.; Cemek, B.; Taşan, M.; Cantürk, A. Estimation of eggplant yield with machine learning methods using spectral vegetation indices. Comput. Electron. Agric. 2022, 202, 107367. [Google Scholar] [CrossRef]
- Islam, A.; Shanto, M.N.I.; Rabby, M.S.M.; Sikder, A.R.; Uddin, M.S.; Arefin, M.N.; Patwary, M.J. Eggplant Yield Prediction Utilizing 130 Locally Collected Genotypes and Machine Learning Model. In Proceedings of the 2023 26th International Conference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 13–15 December 2023; pp. 1–6. [Google Scholar]
- Thingujam, U.; Bhattacharyya, K.; Ray, K.; Phonglosa, A.; Pari, A.; Banerjee, H.; Majumdar, K. Integrated Nutrient Management for Eggplant: Yield and Quality Models through Artificial Neural Network. Commun. Soil Sci. Plant Anal. 2019, 51, 70–85. [Google Scholar] [CrossRef]
- García-Fortea, E.; García-Pérez, A.; Gimeno-Páez, E.; Sánchez-Gimeno, A.; Vilanova, S.; Prohens, J.; Pastor-Calle, D. A Deep Learning-Based System (Microscan) for the Identification of Pollen Development Stages and Its Application to Obtaining Doubled Haploid Lines in Eggplant. Biology 2020, 9, 272. [Google Scholar] [CrossRef]
- Sun, L.; Fan, X.; Huang, S.; Luo, S.; Zhao, L.; Chen, X.; Suo, X. Research on classification method of eggplant seeds based on machine learning and multispectral imaging classification eggplant seeds. J. Sens. 2021, 2021, 8857931. [Google Scholar] [CrossRef]
- Nomura, K.; Kaneko, T.; Iwao, T.; Kitayama, M.; Goto, Y.; Kitano, M. Hybrid AI model for estimating the canopy photosynthesis of eggplants. Photosynth. Res. 2023, 155, 77–92. [Google Scholar] [CrossRef]
- Kaniyassery, A.; Goyal, A.; Thorat, S.A.; Rao, M.R.; Chandrashekar, H.K.; Murali, T.S.; Muthusamy, A. Association of meteorological variables with leaf spot and fruit rot disease incidence in eggplant and YOLOv8-based disease classification. Ecol. Inform. 2024, 83, 102809. [Google Scholar] [CrossRef]
- Lajom, M.P.; Remigio, J.P.; Arboleda, E.; Sacala, R.J.R. Design and Development of Eggplant Fruit and Shoot Borer (Leucinodes orbonalis) Detector Using Near-Infrared Spectroscopy. J. Eng. Sustain. Dev. 2024, 28, 439–454. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, D.; Zhang, Y.; Cheng, F.; Zhao, X.; Wang, M.; Fan, X. Early detection of verticillium wilt in eggplant leaves by fusing five image channels: A deep learning approach. Plant Methods 2024, 20, 173. [Google Scholar] [CrossRef] [PubMed]
- Cemek, B.; Tasan, S.; Canturk, A. Machine learning techniques in estimation of eggplant crop evapotranspiration. Appl. Water Sci. 2023, 13, 136. [Google Scholar] [CrossRef]
- Aravind, K.R.; Raja, P.; Ashiwin, R.; Mukesh, K.V. Disease classification in solanum melongena using deep learning. Spanish J. Agric. Res. 2019, 17, e0204. [Google Scholar] [CrossRef]
- Biyun, Y.; Yong, X. Applications of deep-learning approaches in horticultural research: A review. Hortic. Res. 2021, 8, 123. [Google Scholar] [CrossRef]
- Salvador, P.; Gómez, D.; Sanz, J.; Casanova, J.L. Estimation of Potato Yield Using Satellite Data at a Municipal Level: A Machine Learning Approach. ISPRS Int. J. Geo-Inf. 2020, 9, 343. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. Potato Yield Prediction Using Machine Learning Techniques and Sentinel 2 Data. Remote Sens. 2019, 11, 1745. [Google Scholar] [CrossRef]
- Gómez, D.; Salvador, P.; Sanz, J.; Casanova, J.L. New spectral indicator Potato Productivity Index based on Sentinel-2 data to 890 improve potato yield prediction: A machine learning approach. Int. J. Remote Sens. 2021, 42, 3426–3444. [Google Scholar] [CrossRef]
- Kurek, J.; Niedbała, G.; Wojciechowski, T.; Świderski, B.; Antoniuk, I.; Piekutowska, M.; Kruk, M.; Bobran, K. Prediction of Potato (Solanum tuberosum L.) Yield Based on Machine Learning Methods. Agriculture 2023, 13, 2259. [Google Scholar] [CrossRef]
- El-Kenawy, E.-S.M.; Alhussan, A.A.; Khodadadi, N.; Mirjalili, S.; Eid, M.M. Predicting Potato Crop Yield with Machine Learning and Deep Learning for Sustainable Agriculture. Potato Res. 2024, 1–34. [Google Scholar] [CrossRef]
- Li, D.; Miao, Y.; Gupta, S.K.; Rosen, C.J.; Yuan, F.; Wang, C.; Wang, L.; Huang, Y. Improving Potato Yield Prediction by Combining Cultivar Information and UAV Remote Sensing Data Using Machine Learning. Remote Sens. 2021, 13, 3322. [Google Scholar] [CrossRef]
- Coulibali, Z.; Cambouris, A.N.; Parent, S.-É. Cultivar-specific nutritional status of potato (Solanum tuberosum L.) crops. PLoS ONE 2020, 15, e0230458. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Zhou, J.; Fan, J.; Wang, Y.; Zhang, Z. Potato Leaf Area Index Estimation Using Multi-Sensor Unmanned Aerial Vehicle (UAV) Imagery and Machine Learning. Remote Sens. 2023, 15, 4108. [Google Scholar] [CrossRef]
- Rahman, M.A.; Khan, A.A.; Hasan, M.M.; Rahman, M.S.; Habib, M.T. Deep Learning Modeling for Potato Breed Recognition. IEEE Trans. AgriFood Electron. 2024, 2, 419–427. [Google Scholar] [CrossRef]
- Azizi, A.; Abbaspour-Gilandeh, Y.; Nooshyar, M.; Afkari-Sayah, A. Identifying Potato Varieties Using Machine Vision and Artificial Neural Networks. Int. J. Food Prop. 2015, 19, 618–635. [Google Scholar] [CrossRef]
- Gao, J.; Westergaard, J.C.; Sundmark, E.H.R.; Bagge, M.; Liljeroth, E.; Alexandersson, E. Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning. Knowl. Based Syst. 2021, 214, 106723. [Google Scholar] [CrossRef]
- Aparajita Sharma, R.; Singh, A.; Dutta, M.K.; Riha, K.; Kriz, P. Image processing based automated identification of late blight disease from leaf images of potato crops. In Proceedings of the 2017 40th International Conference on Telecommunications and Signal Processing, Barcelona, Spain, 5–7 July 2017; pp. 758–762. [Google Scholar] [CrossRef]
- Iqbal, M.A.; Talukder, K.H. Detection of Potato Disease Using Image Segmentation and Machine Learning. In Proceedings of the 2020 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET), Chennai, India, 4–6 August 2020; pp. 43–47. [Google Scholar] [CrossRef]
- Tarik, M.I.; Akter, S.; Mamun, A.A.; Sattar, A. Potato Disease Detection Using Machine Learning. In Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks (ICICV), Tirunelveli, India, 4–6 February 2021; pp. 800–803. [Google Scholar] [CrossRef]
- Singh, A.; Kaur, H. Potato Plant Leaves Disease Detection and Classification using Machine Learning Methodologies. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1022, 012121. [Google Scholar] [CrossRef]
- Rashid, J.; Khan, I.; Ali, G.; Almotiri, S.H.; AlGhamdi, M.A.; Masood, K. Multi-Level Deep Learning Model for Potato Leaf Disease Recognition. Electronics 2021, 10, 2064. [Google Scholar] [CrossRef]
- Bhere, H.; Jariwala, V.; Sharma, A.; Nemade, V. Potato Plant Leaf Disease Classification Using Deep CNN. In Proceedings of the Potato Plant Leaf Disease Classification Using Deep CNN, Presented at the 5th International Conference (ESDA 2022), Kolkata, India, 17–18 December 2022; Springer: Singapore, 2024; pp. 367–378. [Google Scholar] [CrossRef]
- Pasalkar, J.; Gorde, G.; More, C.; Memane, S.; Gaikwad, V. Potato Leaf Disease Detection using Machine Learning. Curr. Agric. Res. J. 2023, 11, 949–954. [Google Scholar] [CrossRef]
- Sholihati, R.A.; Sulistijono, I.A.; Risnumawan, A.; Kusumawati, E. Potato Leaf Disease Classification Using Deep Learning Approach. In Proceedings of the 2020 International Electronics Symposium (IES), Surabaya, Indonesia, 29–30 September 2020; pp. 392–397. [Google Scholar] [CrossRef]
- Griffel, L.M.; Delparte, D.; Edwards, J. Using Support Vector Machines classification to differentiate spectral signatures of potato plants infected with Potato Virus, Y. Comput. Electron. Agric. 2018, 153, 318–324. [Google Scholar] [CrossRef]
- Polder, G.; Blok, P.M.; De Villiers, H.A.C.; Van Der Wolf, J.M.; Kamp, J. Potato Virus Y Detection in Seed Potatoes Using Deep Learning on Hyperspectral Images. Front. Plant Sci. 2019, 10, 209. [Google Scholar] [CrossRef] [PubMed]
- Sugiura, R.; Tsuda, S.; Tsuji, H.; Murakami, N. Virus-Infected Plant Detection in Potato Seed Production Field by UAV Imagery. In Proceedings of the 2018 ASABE Annual International Meeting, Detroit, MI, USA, 29 July–1 August 2018; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2018. [Google Scholar] [CrossRef]
- Gold, K.M.; Townsend, P.A.; Herrmann, I.; Gevens, A.J. Investigating potato late blight physiological differences across potato cultivars with spectroscopy and machine learning. Plant Sci. 2020, 295, 110316. [Google Scholar] [CrossRef] [PubMed]
- Boguszewska-Mańkowska, D.; Ruszczak, B.; Zarzyńska, K. Classification of Potato Varieties Drought Stress Tolerance Using Supervised Learning. Appl. Sci. 2022, 12, 1939. [Google Scholar] [CrossRef]
- Lapajne, J.; Vojnović, A.; Vončina, A.; Žibrat, U. Enhancing Water-Deficient Potato Plant Identification: Assessing Realistic Performance of Attention-Based Deep Neural Networks and Hyperspectral Imaging for Agricultural Applications. Plants 2024, 13, 1918. [Google Scholar] [CrossRef]
- Lozada, D.N.; Sandhu, K.S.; Bhatta, M. Ridge regression and deep learning models for genome-wide selection of complex traits in New Mexican Chile peppers. BMC Genom. Data 2023, 24, 80. [Google Scholar] [CrossRef]
- Sabanci, K.; Fatih Aslan, M.; Ropelewska, E.; Fahri Unlersen, M. A convolutional neural network-based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine. J. Food Process Eng. 2021, 45, e13955. [Google Scholar] [CrossRef]
- Kurtulmuş, F.; Kavdir, I.; Alibaş, İ. Classification of pepper seeds using machine vision based on neural network. Int. J. Agric. Biol. Eng. 2016, 9, 51–62. [Google Scholar] [CrossRef]
- Tu, K.; Li, L.; Yang, L.; Wang, J.; Sun, Q. Selection for high quality pepper seeds by machine vision and classifiers. J. Integr. Agric. 2016, 17, 1999–2006. [Google Scholar] [CrossRef]
- Ramírez-Meraz, M.; Méndez-Aguilar, R.; Hidalgo-Martínez, D.; Villa-Ruano, N.; Zepeda-Vallejo, L.G.; Vallejo-Contreras, F.; Hernández-Guerrero, C.J.; Becerra-Martínez, E. Experimental races of Capsicum annuum cv. jalapeño: Chemical characterization and classification by 1H NMR/machine learning. Food Res. Int. 2020; 138, 109763. [Google Scholar] [CrossRef]
- Dissanayake, A.; Rajapaksha, I.; Gunarathna, R.; Jayasinghe, S.; De Silva, H.; Hettiarachchi, S. Detection of Diseases and Nutrition in Bell Pepper. In Proceedings of the 5th International Conference on Advancements in Computing (ICAC), Colombo, Sri Lanka, 7–8 December 2023; pp. 286–291. [Google Scholar] [CrossRef]
- Haque, I.; Islam, M.A.; Roy, K.; Rahaman, M.M.; Shohan, A.A.; Islam, M.S. Classifying Pepper Disease based on Transfer Learning: A DeepLearning Approach. In Proceedings of the 2022 International Conference on Applied Artificial Intelligence and Computing (ICAAIC), Salem, India, 9–11 May 2022; pp. 620–629. [Google Scholar] [CrossRef]
- Fumia, N.; Kantar, M.; Lin, Y.; Schafleitner, R.; Lefebvre, V.; Paran, I.; Börner, A.; Diez, M.J.; Prohens, J.; Bovy, A.; et al. Exploration of high-throughput data for heat tolerance selection in Capsicum annuum. Plant Phenome J. 2023, 6, e20071. [Google Scholar] [CrossRef]
- Islam, S.; Samsuzzaman Reza, M.N.; Lee, K.-H.; Ahmed, S.; Cho, Y.J.; Noh, D.H.; Chung, S.-O. Image Processing and Support Vector Machine (SVM) for Classifying Environmental Stress Symptoms of Pepper Seedlings Grown in a Plant Factory. Agronomy 2024, 14, 2043. [Google Scholar] [CrossRef]
- Ataş, M.; Yardimci, Y.; Temizel, A. A new approach to aflatoxin detection in chili pepper by machine vision. Comput. Electron. Agric. 2012, 87, 129–141. [Google Scholar] [CrossRef]
- Whang, S.E.; Roh, Y.; Song, H.; Lee, J.-G. Data Collection and Quality Challenges in Deep Learning: A Data-Centric AI Perspective. VLDB J. 2023, 32, 791–813. [Google Scholar] [CrossRef]
- Linardatos, P.; Papastefanopoulos, V.; Kotsiantis, S. Explainable AI: A Review of Machine Learning Interpretability Methods. Entropy 2020, 23, 18. [Google Scholar] [CrossRef]
- Piorkowski, D.; Park, S.; Wang, A.Y.; Wang, D.; Muller, M.; Portnoy, F. How AI Developers Overcome Communication Challenges in a Multidisciplinary Team. Proc. ACM Hum. Comput. Interact. 2021, 5, 131. [Google Scholar] [CrossRef]
- Graziani, M.; Dutkiewicz, L.; Calvaresi, D.; Amorim, J.P.; Yordanova, K.; Vered, M.; Nair, R.; Abreu, P.H.; Blanke, T.; Pulignano, V.; et al. A Global Taxonomy of Interpretable AI: Unifying the Terminology for the Technical and Social Sciences. Artif. Intell. Rev. 2023, 56, 3473–3504. [Google Scholar] [CrossRef]
- Malounas, I.; Paliouras, G.; Nikolopoulos, D.; Liakopoulos, G.; Bresta, P.; Londra, P.; Katsileros, A.; Fountas, S. Early detection of broccoli drought acclimation/stress in agricultural environments utilizing proximal hyperspectral imaging and AutoML. Smart Agric. Technol. 2024, 8, 100463. [Google Scholar] [CrossRef]
- Ferentinos, K.P. Deep Learning Models for Plant Disease Detection and Diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
Traits | ||||
---|---|---|---|---|
Yield prediction | Artificial Neural Networks [31,32], Deep Convolutional Neural Networks [33,34], Supervised Learning [37] | Artificial Neural Networks [61,62,63], Support Vector Machines [61], k-Nearest Neighbors [61], Random Forests [61], Adaptive Boosting [61], Categorical Boosting Regression [62], Lightgradient Boosting Regression [62], Extreme Gradient boosting Regression [62] | Random Forests [73,74,75,78,79], Support Vector Machine [73,74,75,78,79], k-Nearest Neighbors [74,77,79], Extreme Gradient Boosting [77], Graph Neural Networks [77], Long Short-Term Memory Networks [77] | Random Forests [98,102], Bayesian Ridge Regression [102] |
Varietal identification & classification | Artificial Neural Networks & Random Forests [49] | Support Vector Machines [65], Convolutional Neural Networks [65] | Support Vector Machines [79], k-Nearest Neighbors [79], Random Forests [79], Convolutional Neural Network [81], Artificial Neural Networks [82] | Convolutional Neural Networks & Support Vector Machines [99], Artificial Neural Networks [100], Multilayer Perceptron Neural Network [101], Random Forests [102] |
Fruit/Tuber quality (shape, color, weight, firmness, etc.) | Support Vector Classification & Regression-based models [28], Artificial Neural Networks [40], Support Vector Machines [43,44,45], Random Forests [28,45] | Artificial Neural Networks [63] | Convolutional Neural Network [81,82], Artificial Neural Network [82] | Classification and Regression-based models [28], Random Forests [28,102] |
Biotic stess (early blight, leaf spot, fruit rot, pests etc.) | Artificial Neural Networks [52], Random Forests [53,55,57], Support Vector Machine [54,55], k-Nearest Neighbors [54,55], Naive Bayes [54], Decision Trees [54], k-Nearest Neighbors [54], Convolutional Neural Networks [57,58,59] | Support Vector Machine [68], Deep Convolutional Neural Network (VGG16) [69,71] | Deep Neural Networks [83], Random Forests [85,95], Support Vector Machine [87,92], Convolutional Neural Network [85,86,88,89,90,91,92,93,94] | Convolutional Neural Network [103,104] |
Abiotic stress (drought, cold stress, heat stress, salinity etc.) | Extreme Gradient Boosting [51], Random Forests [56] | _ | Extreme Gradient Boosting [96], Convolutional Neural Network [97] | Convolutional Neural Network [103], Random Forests [105], Support Vector Machine [106] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerakari, M.; Katsileros, A.; Kleftogianni, K.; Tani, E.; Bebeli, P.J.; Papasotiropoulos, V. Breeding of Solanaceous Crops Using AI: Machine Learning and Deep Learning Approaches—A Critical Review. Agronomy 2025, 15, 757. https://doi.org/10.3390/agronomy15030757
Gerakari M, Katsileros A, Kleftogianni K, Tani E, Bebeli PJ, Papasotiropoulos V. Breeding of Solanaceous Crops Using AI: Machine Learning and Deep Learning Approaches—A Critical Review. Agronomy. 2025; 15(3):757. https://doi.org/10.3390/agronomy15030757
Chicago/Turabian StyleGerakari, Maria, Anastasios Katsileros, Konstantina Kleftogianni, Eleni Tani, Penelope J. Bebeli, and Vasileios Papasotiropoulos. 2025. "Breeding of Solanaceous Crops Using AI: Machine Learning and Deep Learning Approaches—A Critical Review" Agronomy 15, no. 3: 757. https://doi.org/10.3390/agronomy15030757
APA StyleGerakari, M., Katsileros, A., Kleftogianni, K., Tani, E., Bebeli, P. J., & Papasotiropoulos, V. (2025). Breeding of Solanaceous Crops Using AI: Machine Learning and Deep Learning Approaches—A Critical Review. Agronomy, 15(3), 757. https://doi.org/10.3390/agronomy15030757