The Distribution Characteristics of Trichoderma in Turf and Its Inhibitory Effect on Rhizoctonia solani
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation of Trichoderma Strains
2.3. DNA Extraction, Amplification, Sequencing and Bioinformatics
2.4. In Vitro Inhibition of Trichoderma Isolates Against R. solani
2.5. Statistics Analysis
3. Results
3.1. Isolation and Identification of Trichoderma Species from Turf
3.2. Alpha Diversity Indices for Trichoderma Communities
3.3. Relationship Between Turf Management Measures and Trichoderma Diversity
3.4. Inhibition Effect of Trichoderma Against R. solani
3.5. The Distribution of Inhibitory Trichoderma Against Rhizoctonia solani
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bennett, A.B.; Lovell, S.T. A Comparison of Arthropod Abundance and Arthropod Mediated Predation Services in Urban Green Spaces. Insect Conserv. Divers. 2014, 7, 405–412. [Google Scholar] [CrossRef]
- Roberts, J.A.; Murphy, J.A.; Clarke, B.B. Lightweight Rolling Effects on Anthracnose of Annual Bluegrass Putting Greens. Agron. J. 2012, 104, 1176–1181. [Google Scholar] [CrossRef]
- Roberts, J.A.; Murphy, J.A. Anthracnose Disease on Annual Bluegrass as Affected by Foot Traffic and Sand Topdressing. Plant Dis. 2014, 98, 1321–1325. [Google Scholar] [CrossRef] [PubMed]
- Ou, L.; Latin, R. Influence of Management Practices on Distribution of Fungicides in Golf Course Turf. Agron. J. 2018, 110, 2523–2533. [Google Scholar] [CrossRef]
- Titone, P.; Mocioni, M.; Garibaldi, A.; Gullino, M.L. Fungicide Failure to Control Pythium Blight on Turf Grass in Italy. J. Plant Dis. Prot. 2009, 116, 55–59. [Google Scholar] [CrossRef]
- Matrood, A.A.A.; Rhouma, A. Evaluating Eco-Friendly Botanicals as Alternatives to Synthetic Fungicides against the Causal Agent of Early Blight of Solanum Melongena. J. Plant Dis. Prot. 2021, 128, 1517–1530. [Google Scholar] [CrossRef]
- Talibi, I.; Boubaker, H.; Boudyach, E.H.; Ben Aoumar, A.A. Alternative Methods for the Control of Postharvest Citrus Diseases. J. Appl. Microbiol. 2014, 117, 1–17. [Google Scholar] [CrossRef]
- Yoon, M.-Y.; Cha, B.; Kim, J.-C. Recent Trends in Studies on Botanical Fungicides in Agriculture. Plant Pathol. J. 2013, 29, 1–9. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, S.; Zhao, Z.; Guan, J.; Dong, Y.; Hu, J.; Lamour, K.; Yin, S.; Yang, Z. Fungicide Sensitivity of Clarireedia spp. Isolates from Golf Courses in China. Crop Prot. 2021, 149, 105785. [Google Scholar] [CrossRef]
- Ramya, M.; Ponmurugan, P.; Saravanan, D. Management of Cephaleuros Parasiticaus Karst (Trentepohliales: Trentepohliaceae), an Algal Pathogen of Tea Plant, Camellia sinsensis (L) (O. Kuntze). Crop Prot. 2013, 44, 66–74. [Google Scholar] [CrossRef]
- He, D.-C.; He, M.-H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef] [PubMed]
- Collinge, D.B.; Jensen, D.F.; Rabiey, M.; Sarrocco, S.; Shaw, M.W.; Shaw, R.H. Biological Control of Plant Diseases—What Has Been Achieved and What Is the Direction? Plant Pathol. 2022, 71, 1024–1047. [Google Scholar] [CrossRef]
- Alfiky, A.; Weisskopf, L. Deciphering Trichoderma-Plant-Pathogen Interactions for Better Development of Biocontrol Applications. J. Fungi 2021, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, M.R.; Chatterjee, N.C. Control of Fusarium Wilt of Solanum Melongena by Trichoderma spp. Biol. Plant. 2008, 52, 582–586. [Google Scholar] [CrossRef]
- Sallam, N.M.A.; Eraky, A.M.I.; Sallam, A. Effect of Trichoderma spp. on Fusarium Wilt Disease of Tomato. Mol. Biol. Rep. 2019, 46, 4463–4470. [Google Scholar] [CrossRef]
- Brito, R.A.S.; Cavalcante, G.P.; Stock, V.M.; Colman, A.A.; dos Santos, D.P.; Sermarini, R.A.; Maffia, L.A. Trichoderma species Show Biocontrol Potential against Ceratocystis Wilt in Mango Plants. Eur. J. Plant Pathol. 2020, 158, 781–788. [Google Scholar] [CrossRef]
- Coelho, L.; Reis, M.; Guerrero, C.; Dionísio, L. Biological Control of Turfgrass Diseases with Organic Composts Enriched with Trichoderma Atroviride. Biol. Control 2021, 159, 104620. [Google Scholar] [CrossRef]
- Lo, C.-T.; Nelson, E.B.; Harman, G.E. Improved Biocontrol Efficacy of Trichoderma harzianum 1295-22 for Foliar Phases of Turf Diseases by Use of Spray Applications. Plant Dis. 1997, 81, 1132–1138. [Google Scholar] [CrossRef]
- Liu, T.; Li, J.; Zhang, J. Rootzone Mixture Affects the Population of Root-Invading Fungi in Zoysiagrass. Urban For. Urban Green. 2019, 37, 168–172. [Google Scholar] [CrossRef]
- Watschke, T.L.; Prinster, M.G.; Breuninger, J.M. Plant Growth Regulators and Turfgrass Management. In Turfgrass; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1992; pp. 557–588. ISBN 978-0-89118-224-5. [Google Scholar]
- Macías-Rodríguez, L.; Contreras-Cornejo, H.A.; Adame-Garnica, S.G.; del-Val, E.; Larsen, J. The Interactions of Trichoderma at Multiple Trophic Levels: Inter-Kingdom Communication. Microbiol. Res. 2020, 240, 126552. [Google Scholar] [CrossRef]
- Li, J.; Yuan, X.; Ge, L.; Li, Q.; Li, Z.; Wang, L.; Liu, Y. Rhizosphere Effects Promote Soil Aggregate Stability and Associated Organic Carbon Sequestration in Rocky Areas of Desertification. Agric. Ecosyst. Environ. 2020, 304, 107126. [Google Scholar] [CrossRef]
- Li, Z.; Zu, C.; Wang, C.; Yang, J.; Yu, H.; Wu, H. Different Responses of Rhizosphere and Non-Rhizosphere Soil Microbial Communities to Consecutive Piper Nigrum L. Monoculture. Sci. Rep. 2016, 6, 35825. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Cai, F.; Druzhinina, I.S. In Honor of John Bissett: Authoritative Guidelines on Molecular Identification of Trichoderma. Fungal Divers. 2021, 107, 1–69. [Google Scholar] [CrossRef]
- Zhang, D.; Gao, F.; Jakovlić, I.; Zou, H.; Zhang, J.; Li, W.; Wang, G. PhyloSuite: An Integrated and Scalable Desktop Platform for Streamlined Molecular Sequence Data Management and Evolutionary Phylogenetics Studies. Mol. Ecol. Resour. 2020, 20, 348–355. [Google Scholar] [CrossRef]
- Villesen, P. FaBox: An Online Toolbox for Fasta Sequences. Mol. Ecol. Notes 2007, 7, 965–968. [Google Scholar] [CrossRef]
- Hu, J.; Zhou, Y.; Chen, K.; Li, J.; Wei, Y.; Wang, Y.; Wu, Y.; Ryder, M.H.; Yang, H.; Denton, M.D. Large-Scale Trichoderma Diversity Was Associated with Ecosystem, Climate and Geographic Location. Environ. Microbiol. 2020, 22, 1011–1024. [Google Scholar] [CrossRef]
- Felsenstein, J. Comparative Methods with Sampling Error and Within-Species Variation: Contrasts Revisited and Revised. Am. Nat. 2008, 171, 713–725. [Google Scholar] [CrossRef]
- Schloss, P.D. Reintroducing Mothur: 10 Years Later. Appl. Environ. Microbiol. 2020, 86, e02343-19. [Google Scholar] [CrossRef]
- Bell, D.K.; Wells, H.D.; Markham, C.R. In Vitro Antagonism of Trichoderma Species against Six Fungal Plant Pathogens. Phytopathology 1982, 72, 379–382. [Google Scholar] [CrossRef]
- Al-Obaidy, O.; Al-Rijabo, M. Antagonistic Activity and Production of Antifungal Compound(s) from Selected Trichoderma spp. J. Educ. Sci. 2010, 23, 18–27. [Google Scholar] [CrossRef]
- Bleckwedel, J.; Martínez, M.J.; Paula Claps, M.; De Lisi, V.; González, V.; Ploper, L.D.; Reznikov, S. Biological Control of Soybean Charcoal Rot by Native Trichoderma koningiopsis in Tucumán, Argentina. Biol. Control 2024, 196, 105581. [Google Scholar] [CrossRef]
- Bogumił, A.; Sas, L.; Lisek, A.; Trzcinski, P.; Harbuzov, A. Identification of New Trichoderma Strains with Antagonistic Activity against Botrytis Cinerea. Folia Hortic. 2013, 25, 123–132. [Google Scholar] [CrossRef]
- Wang, R.; Yu, X.; Yin, Y.; Norvienyeku, J.; Asad Ali Khan, R.; Zhang, M.; Ren, S.; Chen, J.; Liu, T. Biocontrol of Cucumber Fusarium Wilt by Trichoderma asperellum FJ035 Dependent on Antagonism and Spatiotemporal Competition with Fusarium oxysporum. Biol. Control 2023, 186, 105334. [Google Scholar] [CrossRef]
- Stracquadanio, C.; Quiles, J.M.; Meca, G.; Cacciola, S.O. Antifungal Activity of Bioactive Metabolites Produced by Trichoderma asperellum and Trichoderma atroviride in Liquid Medium. J. Fungi 2020, 6, 263. [Google Scholar] [CrossRef]
- Ma, J.; Tsegaye, E.; Li, M.; Wu, B.; Jiang, X. Biodiversity of Trichoderma from Grassland and Forest Ecosystems in Northern Xinjiang, China. 3 Biotech 2020, 10, 362. [Google Scholar] [CrossRef]
- Dou, K.; Gao, J.; Zhang, C.; Yang, H.; Jiang, X.; Li, J.; Li, Y.; Wang, W.; Xian, H.; Li, S.; et al. Trichoderma Biodiversity in Major Ecological Systems of China. J. Microbiol. 2019, 57, 668–675. [Google Scholar] [CrossRef]
- Joshi, D.; Singh, P.; Holkar, S.K.; Kumar, S. Trichoderma-Mediated Suppression of Red Rot of Sugarcane Under Field Conditions in Subtropical India. Sugar Tech 2019, 21, 496–504. [Google Scholar] [CrossRef]
- Anhar, A.; Putri, D.H.; Advinda, L.; Atika, V.; Amimi, S.; Aldo, W.; Ruchi, W. Molecular Characterization of Trichoderma Strains from West Sumatera, Indonesia and Their Beneficial Effects on Rice Seedling Growth. J. Crop Sci. Biotechnol. 2021, 24, 441–448. [Google Scholar] [CrossRef]
- Li, C.; Bo, H.; Song, B.; Chen, X.; Cao, Q.; Yang, R.; Ji, S.; Wang, L.; Liu, J. Reshaping of the Soil Microbiome by the Expansion of Invasive Plants: Shifts in Structure, Diversity, Co-Occurrence, Niche Breadth, and Assembly Processes. Plant Soil 2022, 477, 629–646. [Google Scholar] [CrossRef]
- Gao, M.; Xiong, C.; Gao, C.; Tsui, C.K.M.; Wang, M.-M.; Zhou, X.; Zhang, A.-M.; Cai, L. Disease-Induced Changes in Plant Microbiome Assembly and Functional Adaptation. Microbiome 2021, 9, 187. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Fan, S.; Sun, H.; Chen, C.; Wang, A.; Jiang, L.; Ma, D. Rhizosphere-Associated Microbiomes of Rice (Oryza sativa L.) Under the Effect of Increased Nitrogen Fertilization. Front. Microbiol. 2021, 12, 730506. [Google Scholar] [CrossRef] [PubMed]
- Mayer, Z.; Csorbainé, A.G.; Juhász, Á.; Ombódi, A.; Pápai, A.; Némethné, B.K.; Posta, K. Impact of Soil-Applied Microbial Inoculant and Fertilizer on Fungal and Bacterial Communities in the Rhizosphere of Robinia sp. and Populus sp. Plantations. Forests 2021, 12, 1218. [Google Scholar] [CrossRef]
- Wang, Q.; Ma, M.; Jiang, X.; Guan, D.; Wei, D.; Zhao, B.; Chen, S.; Cao, F.; Li, L.; Yang, X.; et al. Impact of 36 years of Nitrogen Fertilization on Microbial Community Composition and Soil Carbon Cycling-Related Enzyme Activities in Rhizospheres and Bulk Soils in Northeast China. Appl. Soil Ecol. 2019, 136, 148–157. [Google Scholar] [CrossRef]
- Semenov, M.V.; Krasnov, G.S.; Semenov, V.M.; van Bruggen, A.H.C. Long-Term Fertilization Rather than Plant Species Shapes Rhizosphere and Bulk Soil Prokaryotic Communities in Agroecosystems. Appl. Soil Ecol. 2020, 154, 103641. [Google Scholar] [CrossRef]
- Huang, F.; Liu, Z.; Mou, H.; Zhang, P.; Jia, Z. Effects of Different Long-Term Farmland Mulching Practices on the Loessial Soil Fungal Community in a Semiarid Region of China. Appl. Soil Ecol. 2019, 137, 111–119. [Google Scholar] [CrossRef]
- Bai, H.; He, S.; Qin, T.; Yan, D.; Weng, B.; Zhao, X.; Li, X.; Bai, Y.; Ma, J. Influences of Irrigation Amount on the Rhizospheric Microorganism Composition and Carbon Dioxide Flux of Maize Crops. Geoderma 2019, 343, 1–9. [Google Scholar] [CrossRef]
- Qin, K.; Dong, X.; Jifon, J.; Leskovar, D.I. Rhizosphere Microbial Biomass Is Affected by Soil Type, Organic and Water Inputs in a Bell Pepper System. Appl. Soil Ecol. 2019, 138, 80–87. [Google Scholar] [CrossRef]
- Dethoup, T.; Klaram, R.; Pankaew, T.; Jantasorn, A. Impact of Fungicides and Plant Extracts on Biocontrol Agents and Side-Effects of Trichoderma spp. on Rice Growth. Eur. J. Plant Pathol. 2022, 164, 567–582. [Google Scholar] [CrossRef]
- Chen, X.; Wicaksono, W.A.; Berg, G.; Cernava, T. Bacterial Communities in the Plant Phyllosphere Harbour Distinct Responders to a Broad-Spectrum Pesticide. Sci. Total Environ. 2021, 751, 141799. [Google Scholar] [CrossRef]
- Huang, J.; Wei, Z.; Tan, S.; Mei, X.; Yin, S.; Shen, Q.; Xu, Y. The Rhizosphere Soil of Diseased Tomato Plants as a Source for Novel Microorganisms to Control Bacterial Wilt. Appl. Soil Ecol. 2013, 72, 79–84. [Google Scholar] [CrossRef]
- Rolfe, S.A.; Griffiths, J.; Ton, J. Crying out for Help with Root Exudates: Adaptive Mechanisms by Which Stressed Plants Assemble Health-Promoting Soil Microbiomes. Curr. Opin. Microbiol. 2019, 49, 73–82. [Google Scholar] [CrossRef] [PubMed]
- Rolli, E.; Vergani, L.; Ghitti, E.; Patania, G.; Mapelli, F.; Borin, S. ‘Cry-for-Help’ in Contaminated Soil: A Dialogue among Plants and Soil Microbiome to Survive in Hostile Conditions. Environ. Microbiol. 2021, 23, 5690–5703. [Google Scholar] [CrossRef]
- Rudrappa, T.; Czymmek, K.J.; Paré, P.W.; Bais, H.P. Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria. Plant Physiol. 2008, 148, 1547–1556. [Google Scholar] [CrossRef]
- Bednarek, P.; Osbourn, A. Plant-Microbe Interactions: Chemical Diversity in Plant Defense. Science 2009, 324, 746–748. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Q.; Gan, L.; Yin, S.; Zhang, N.; Suo, X.; Jin, G.; Tang, R.; Liu, M. The Distribution Characteristics of Trichoderma in Turf and Its Inhibitory Effect on Rhizoctonia solani. Agronomy 2025, 15, 733. https://doi.org/10.3390/agronomy15030733
Niu Q, Gan L, Yin S, Zhang N, Suo X, Jin G, Tang R, Liu M. The Distribution Characteristics of Trichoderma in Turf and Its Inhibitory Effect on Rhizoctonia solani. Agronomy. 2025; 15(3):733. https://doi.org/10.3390/agronomy15030733
Chicago/Turabian StyleNiu, Qichen, Lu Gan, Shuxia Yin, Ning Zhang, Xin Suo, Guanfang Jin, Ruoyi Tang, and Man Liu. 2025. "The Distribution Characteristics of Trichoderma in Turf and Its Inhibitory Effect on Rhizoctonia solani" Agronomy 15, no. 3: 733. https://doi.org/10.3390/agronomy15030733
APA StyleNiu, Q., Gan, L., Yin, S., Zhang, N., Suo, X., Jin, G., Tang, R., & Liu, M. (2025). The Distribution Characteristics of Trichoderma in Turf and Its Inhibitory Effect on Rhizoctonia solani. Agronomy, 15(3), 733. https://doi.org/10.3390/agronomy15030733