A High Amount of Straw Pellets Returning Delays Maize Leaf Senescence, Improves Dry Matter Accumulation and Distribution, and Yield Increase in Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Climate Characteristics of the Experimental Site
2.2. Experimental Material
2.3. Experimental Design
2.4. Data Collection
2.4.1. Green Leaf Area Index (GLAI)
2.4.2. Leaf Senescence Fitting
2.4.3. Accumulation and Transportation of Dry Matter
2.4.4. Determination of Yield and Components
2.5. Statistical Analysis
3. Results
3.1. The Effect of the High Amount of Straw Pellets Returning to the Field on GLAI Fitting Curve of Maize
3.2. The Effect of the High Amount of Straw Pellets Returning to the Field on Senescence Rate of Maize Leaves
3.3. The Effect of the High Amount of Straw Pellets Returning to the Field on Dry Matter Accumulation Before and After Maize Anthesis
3.4. The Effect of the High Amount of Straw Pellets Returning to the Field on Dry Matter Accumulation and Distribution in Different Parts of Maize R1 Stage
3.5. The Effect of the High Amount of Straw Pellets Returning to the Field on Dry Matter Accumulation and Distribution in Different Parts of Maize R6 Stage
3.6. The Effect of the High Amount of Straw Pellets Returning to the Field on Dry Matter Transport in Maize
3.7. The Effect of the High Amount of Straw Pellets Returning to the Field on Maize Yield and Components
4. Discussion
4.1. High Amount of Straw Pellets Returning to the Field Increased GLAI of Maize and Delayed Senescence Rate of Leaves
4.2. High Amount of Straw Pellets Returning to the Field Enhances Accumulation of Dry Matter, Which Is Beneficial for the Distribution of Dry Matter to the Ear Parts of the Fruit
4.3. High Amount of Straw Pellets Returning to the Field Enhances Contribution of Post-Anthesis Dry Matter Accumulation to Grain
4.4. High Amount of Straw Pellets Returning to the Field Increases Number of Kernels per Ear, 100 Kernel Weight, Ensuring Stable and High Crop Yields
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, S.; Zhao, J.; Dong, S.; Zhao, M.; Li, C.; Cui, Y.; Liu, Y.; Gao, J.; Xue, J.; Wang, L.; et al. Advances and Prospects of Maize Cultivation in China. Sci. Agric. Sin. 2017, 50, 1941–1959. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China’s Grain Production Reaches Historic Milestone: Deputy Director Wei Fenghua of NBS Rural Department Analyzes 2024 Agricultural Performance. China Information News, 16 December 2024. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Guo, X.; Liu, W.; Xie, R.; Ming, B.; Xue, J.; Wang, K.; Li, S.; Hou, P. Coordinating Maize Source and Sink Relationship to Achieve Yield Potential of 22.5 Mg Ha−1. Field Crops Res. 2022, 283, 108544. [Google Scholar] [CrossRef]
- Jin, Z.; Shah, T.; Zhang, L.; Liu, H.; Peng, S.; Nie, L. Effect of Straw Returning on Soil Organic Carbon in Rice–Wheat Rotation System: A Review. Food Energy Secur. 2020, 9, e200. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Qu, Z.; Xu, X.; Huang, Q.; Huang, G. Impact of Biochar Addition on Soil Properties and Water-Fertilizer Productivity of Tomato in Semi-Arid Region of Inner Mongolia, China. Geoderma 2018, 331, 100–108. [Google Scholar] [CrossRef]
- Melero, S.; López-Garrido, R.; Murillo, J.M.; Moreno, F. Conservation Tillage: Short- and Long-Term Effects on Soil Carbon Fractions and Enzymatic Activities under Mediterranean Conditions. Soil Tillage Res. 2009, 104, 292–298. [Google Scholar] [CrossRef]
- Cong, P. Fertilization effect and mechanism of Subsoil under High Dosage Straw Returning in Black Soil of Northeast China. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. [Google Scholar]
- Deng, X.; Liang, L.; Liao, X.; Liu, Y.; Li, Z.; Yue, T.; Dong, J.; Sun, Z.; Chen, M. Research on Changes in Grain Production Pressure and Protection Strategies in the Black Soil Region of Northeast China under the Influence of International Grain Trade. Acta Agron. Sin. 2022, 37, 2209. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, C.; Yao, X.; Yun, W.; Ma, J.; Gao, L.; Li, P. Scenario Simulation of the Tradeoff between Ecological Land and Farmland in Black Soil Region of Northeast China. Land Use Policy 2022, 114, 105991. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Wang, L.; Zheng, M.; Wang, Z.; Song, K. Effects of Cropland Reclamation on Soil Organic Carbon in China’s Black Soil Region over the Past 35 Years. Glob. Change Biol. 2023, 29, 5460–5477. [Google Scholar] [CrossRef]
- Liu, X.; Han, X.; Song, C.; Herbert, S.J.; Xing, B. Soil Organic Carbon Dynamics in Black Soils of China Under Different Agricultural Management Systems. Commun. Soil Sci. Plant Anal. 2003, 34, 973–984. [Google Scholar] [CrossRef]
- Zhu, F.; Lin, X.; Guan, S.; Dou, S. Deep Incorporation of Corn Straw Benefits Soil Organic Carbon and Microbial Community Composition in a Black Soil of Northeast China. Soil Use Manag. 2022, 38, 1266–1279. [Google Scholar] [CrossRef]
- Qiao, Y.-F.; Miao, X.-C.; Burger, M.; Miao, S.-J. Shift of Fungal Community Composition in Response to Exogenous C Application Associated with Soil Properties after 10-Year Field Experiment in Black Soil of China. J. Soils Sediments 2022, 22, 2281–2289. [Google Scholar] [CrossRef]
- Wu, D.; Li, M.; Du, L.; Ren, D.; Wang, J. Straw Return in Paddy Field Alters Photodegradation of Organic Contaminants by Changing the Quantity Rather than the Quality of Water-Soluble Soil Organic Matter. Sci. Total Environ. 2022, 821, 153371. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cheng, M.; Yang, L.; Gu, X.; Jin, J.; Fu, M. Regulation of Straw Decomposition and Its Effect on Soil Function by the Amount of Returned Straw in a Cool Zone Rice Crop System. Sci. Rep. 2023, 13, 15673. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Zhuang, J.; Cong, Y.; Lu, Y.; Guo, M. Fine-Crush Straw Returning Enhances Dry Matter Accumulation Rate of Maize Seedlings in Northeast China. Agronomy 2021, 11, 1144. [Google Scholar] [CrossRef]
- Pang, H. Innovate the way of returning straw to the field to help the black soil area “store grain in the ground”. Agric. Compr. Dev. 2021, 23–24. [Google Scholar]
- Zhang, L. Mechanisms of Maize Straw Granulated Incorporation on Soil Fertility Maintenance in Huang-Huai-Hai Plain. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2019. [Google Scholar]
- Wang, J.; Zhang, L.; Pang, H.; Zhang, J. Returning granulated straw for accelerating decomposition rate and improving soil fertility. Trans. Chin. Soc. Agric. Eng. 2017, 33, 177–183. [Google Scholar] [CrossRef]
- Zhang, L.; Li, Y.; Pang, H.; Wang, J.; Cong, P.; Zhang, J.; Gao, J. Effects of Granulated Maize Straw Incorporation on Soil Organic Carbon Contents and Grain Yield. J. Agric. Resour. Environ. 2019, 36, 160–168. [Google Scholar] [CrossRef]
- Wang, Y. Effects of Straw Granulated on Carbon and Nitrogen Fractions and Enzyme Activities on Soil of Vegetable Fields in Facilities. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2023. [Google Scholar]
- Xu, Z.; Liu, J.; Lu, X.; Wu, J.; Li, J.; Chen, X.; Zhang, B.; Zhang, X.; Yang, Y. Effects of returning granulated corn stover on soil enzyme activities and bacterial community in black soil. Acta Ecol. Sin. 2019, 39, 4347–4355. [Google Scholar]
- Dong, J.; Song, W.; Cong, P.; Li, Y.; Pang, H.; Zheng, X.; Wang, Y.; Wang, J.; Kuang, S.; Xue, Y. Improving Farmland Soil Physical Properties by Rotary Tillage Combined with High Amount of Granulated Straw. Sci. Agric. Sin. 2021, 54, 2789–2803. [Google Scholar] [CrossRef]
- Xie, L.; Wang, J.; Xu, Y.; Liu, W.; Duan, X.; Wu, J.; Chen, X.; Wang, Z. Greenhouse gas emissions under massive granulated organic material incorporation into barren cropland soils. Chin. J. Ecol. 2024, 1–14. [Google Scholar]
- Fan, T.; Liu, N.; Zang, X.; Zang, Y.; Wang, X.; Yiu, J. Effects of application of granular straw with different ingredients on available plant nutrients in soil and wheat growth. Agric. Res. Arid. Areas 2020, 38, 84–90. [Google Scholar] [CrossRef]
- Wang, X. Effect of High Dosage Straw Pelletized Incorporation on Improvement of Soil Organic Carbon and Crop Yield Synchronously in Northeast China’s Black Soil Field. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar]
- Wang, X.; Lv, G.; Zhang, Y.; Yu, Y.; Wang, X.; Peixoto, L.; Qian, C.; Pang, H. Annual Burying of Straw after Pelletizing: A Novel and Feasible Way to Improve Soil Fertility and Productivity in Northeast China. Soil Tillage Res. 2023, 230, 105699. [Google Scholar] [CrossRef]
- Wang, P.; Wang, X.; Zong, R.; Wang, X.; Ni, H.; Liu, L.; Yang, Y.; Hao, Y.; Zhang, Y.; Pang, H.; et al. Annual Burying of Pelletized Straw Benefits Grain Amino Acid by Increasing Soil Mineral Elements: A Case Study in Northeast China. Field Crops Res. 2024, 314, 109458. [Google Scholar] [CrossRef]
- Cong, P.; Pang, H.; Wang, J.; Liu, N.; Li, Y.; Zhang, L. Effect of Returning Chopped and Pelletized Straw at A High Rate Enhancing Soil Organic Carbon in Subsoil of Farmlands of Black Soil. Acta Pedol. Sin. 2020, 57, 811–823. [Google Scholar] [CrossRef]
- Lim, P.O.; Kim, H.J.; Gil Nam, H. Leaf Senescence. Annu. Rev. Plant Biol. 2007, 58, 115–136. [Google Scholar] [CrossRef]
- Ahmad, I.; Kamran, M.; Su, W.; Haiqi, W.; Ali, S.; Bilegjargal, B.; Ahmad, S.; Liu, T.; Cai, T.; Han, Q. Application of Uniconazole Improves Photosynthetic Efficiency of Maize by Enhancing the Antioxidant Defense Mechanism and Delaying Leaf Senescence in Semiarid Regions. J. Plant Growth Regul. 2019, 38, 855–869. [Google Scholar] [CrossRef]
- Breda, N.J.J. Ground-Based Measurements of Leaf Area Index: A Review of Methods, Instruments and Current Controversies. J. Exp. Bot. 2003, 54, 2403–2417. [Google Scholar] [CrossRef]
- Alton, P.B. The Sensitivity of Models of Gross Primary Productivity to Meteorological and Leaf Area Forcing: A Comparison between a Penman–Monteith Ecophysiological Approach and the MODIS Light-Use Efficiency Algorithm. Agric. For. Meteorol. 2016, 218–219, 11–24. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of Different Vegetation Indices for the Remote Assessment of Green Leaf Area Index of Crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Fang, H.; Baret, F.; Plummer, S.; Schaepman-Strub, G. An Overview of Global Leaf Area Index (LAI): Methods, Products, Validation, and Applications. Rev. Geophys. 2019, 57, 739–799. [Google Scholar] [CrossRef]
- Liu, Z.; Gao, J.; Zhao, S.; Sha, Y.; Huang, Y.; Hao, Z.; Ke, L.; Chen, F.; Yuan, L.; Mi, G. Nitrogen Responsiveness of Leaf Growth, Radiation Use Efficiency and Grain Yield of Maize (Zea mays L.) in Northeast China. Field Crops Res. 2023, 291, 108806. [Google Scholar] [CrossRef]
- Li, R.; Hu, D.; Ren, H.; Yang, Q.; Dong, S.; Zhang, J.; Zhao, B.; Liu, P. How Delaying Post-Silking Senescence in Lower Leaves of Maize Plants Increases Carbon and Nitrogen Accumulation and Grain Yield. Crop J. 2022, 10, 853–863. [Google Scholar] [CrossRef]
- Duan, X.; Zhao, J.; Li, Y.; Wang, Y.; Xing, J.; Zhang, H.; Liu, X.; Liu, C.; Zhang, X.; Zhang, C. Study on the Breeding and Supporting Technology of New Maize Variety ‘Jingnongke 728’. J. Agric. Sci. 2015, 5, 10–14. [Google Scholar]
- Li, S.; Wang, K.; Chu, Z.; Li, H.; Zhang, W.; Wang, J.; Du, S.; Liu, Y.; Xie, Y.; Hou, P.; et al. Study on the Current Status of Maize Mechanical Kernel Harvest and the Hultivar Characteristics in the 1-3 Accumulated Temperature Zones in Heilongjiang Province. J. Maize Sci. 2019, 27, 110–117. [Google Scholar] [CrossRef]
- Qian, C.; Yu, Y.; Gong, X.; Jiang, Y.; Zhao, Y.; Yang, Z.; Hao, Y.; Li, L.; Song, Z.; Zhang, W. Response of Grain Yield to Plant Density and Nitrogen Rate in Spring Maize Hybrids Released from 1970 to 2010 in Northeast China. Crop J. 2016, 4, 459–467. [Google Scholar] [CrossRef]
- Guo, X.; Li, G.; Ding, X.; Zhang, J.; Ren, B.; Liu, P.; Zhang, S.; Zhao, B. Response of Leaf Senescence, Photosynthetic Characteristics, and Yield of Summer Maize to Controlled-Release Urea-Based Application Depth. Agronomy 2022, 12, 687. [Google Scholar] [CrossRef]
- Lan, T.; Du, L.; Wang, X.; Zhan, X.; Liu, Q.; Wei, G.; Lyu, C.; Liu, F.; Gao, J.; Feng, D.; et al. Synergistic Effects of Planting Density and Nitrogen Fertilization on Chlorophyll Degradation and Leaf Senescence after Silking in Maize. Crop J. 2024, 12, 605–613. [Google Scholar] [CrossRef]
- Yu, Y.; Qian, C.; Gu, W.; Li, C. Responses of Root Characteristic Parameters and Plant Dry Matter Accumulation, Distribution and Transportation to Nitrogen Levels for Spring Maize in Northeast China. Agriculture 2021, 11, 308. [Google Scholar] [CrossRef]
- Guo, Y.; Ren, G.; Zhang, K.; Li, Z.; Miao, Y.; Guo, H. Leaf Senescence: Progression, Regulation, and Application. Mol. Hortic. 2021, 1, 5. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Y.; Tan, S.; Yang, Q.; Wang, H.-L.; Xia, X.; Luo, J.; Guo, H.; Zhang, Z.; Li, Z. LSD 4.0: An Improved Database for Comparative Studies of Leaf Senescence. Mol. Hortic. 2022, 2, 24. [Google Scholar] [CrossRef]
- Li, R.-F.; Liu, P.; Yang, Q.-L.; Ren, H.; Dong, S.-T.; Zhang, J.-W.; Zhao, B. Effects of Lower Leaf Senescence on Carbon and Nitrogen Distribution and Yield Formation in Maize (Zea mays L.) with High Planting Density. Acta Agron. Sin. 2018, 44, 1032. [Google Scholar] [CrossRef]
- Bernhard, B.J.; Below, F.E. Plant Population and Row Spacing Effects on Corn: Phenotypic Traits of Positive Yield-responsive Hybrids. Agron. J. 2020, 112, 1589–1600. [Google Scholar] [CrossRef]
- Li, P.; Yin, W.; Fan, Z.; Hu, F.; Zhao, L.; Fan, H.; He, W.; Chai, Q. Improving Crop Productivity by Optimizing Straw Returning Patterns to Delay Senescence of Wheat Leaves. Eur. J. Agron. 2024, 159, 127274. [Google Scholar] [CrossRef]
- Pan, Y.Q.; Tung, S.A.; Yang, L.; Wang, Y.; Zhou, X.B. Effect of Straw Return and Nitrogen Application Rate on the Photosynthetic Characteristics and Yield of Double-Season Maize. J. Soil Sci. Plant Nutr. 2022, 22, 660–673. [Google Scholar] [CrossRef]
- Liu, G.; Yang, Y.; Guo, X.; Liu, W.; Xie, R.; Ming, B.; Xue, J.; Wang, K.; Li, S.; Hou, P. A Global Analysis of Dry Matter Accumulation and Allocation for Maize Yield Breakthrough from 1.0 to 25.0 Mg Ha−1. Resour. Conserv. Recycl. 2023, 188, 106656. [Google Scholar] [CrossRef]
- Fan, P.; Ming, B.; Anten, N.P.R.; Evers, J.B.; Li, Y.; Li, S.; Xie, R. Plastic Response of Leaf Traits to N Deficiency in Field-Grown Maize. AoB Plants 2022, 14, plac053. [Google Scholar] [CrossRef]
- Li, X.; Long, A.; Ji, X.; Wang, X.; Wang, Z.; Gong, X.; Zhang, W.; Qi, H.; Jiang, Y.; Sun, Z.; et al. Straw Return and Nitrogen Fertilizer Application Regulate the Efficient Use of Radiation, Water, Nitrogen and Maize Productivity in Northeast China. Agric. Water Manag. 2024, 301, 108973. [Google Scholar] [CrossRef]
- Liu, C.; Gong, X.; Dang, K.; Zhang, P.; Yang, Q.; Deng, X.; Feng, B. The Efficient Use of Radiation, Water, and Nitrogen Uptake by Low-Nitrogen-Tolerant Broomcorn Millet (Panicum Miliaceum L.) Increased Grain Yield in the Loess Plateau, China. Agric. For. Meteorol. 2021, 308–309, 108616. [Google Scholar] [CrossRef]
- Xiao, L.; Zhou, S.; Zhao, R.; Greenwood, P.; Kuhn, N.J. Evaluating Soil Organic Carbon Stock Changes Induced by No-Tillage Based on Fixed Depth and Equivalent Soil Mass Approaches. Agric., Ecosyst. Environ. 2020, 300, 106982. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Yuan, J.; Chi, F.; Kuang, E.; Zhu, Y.; Sun, L.; Wei, D.; Liu, J. Analysis of the Fluorescence Spectral Characteristics of Dissolved Organic Matter in a Black Soil with Different Straw Return Amounts. Sci. Rep. 2024, 14, 29948. [Google Scholar] [CrossRef]
- Chen, L.; Sun, S.; Yao, B.; Peng, Y.; Gao, C.; Qin, T.; Zhou, Y.; Sun, C.; Quan, W. Effects of Straw Return and Straw Biochar on Soil Properties and Crop Growth: A Review. Front. Plant Sci. 2022, 13, 986763. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, L.; Wang, X.; Dong, Y.; Li, Y.; Zhang, H.; Pang, H.; Wang, J. Effects of Different Amounts of Straw Pellets Returning on Soil Enzyme Activities in Facility Soils. Soil Fert. Sci. China 2023, 30–39. [Google Scholar]
- Liu, Z.; Gao, J.; Gao, F.; Liu, P.; Zhao, B.; Zhang, J. Late Harvest Improves Yield and Nitrogen Utilization Efficiency of Summer Maize. Field Crops Res. 2019, 232, 88–94. [Google Scholar] [CrossRef]
- Shi, W.; Xiao, G.; Struik, P.C.; Jagadish, K.S.V.; Yin, X. Quantifying Source-Sink Relationships of Rice under High Night-Time Temperature Combined with Two Nitrogen Levels. Field Crops Res. 2017, 202, 36–46. [Google Scholar] [CrossRef]
- Fan, P.; Ming, B.; Evers, J.B.; Li, Y.; Li, S.; Xie, R.; Anten, N.P.R. Nitrogen Availability Determines the Vertical Patterns of Accumulation, Partitioning, and Reallocation of Dry Matter and Nitrogen in Maize. Field Crops Res. 2023, 297, 108927. [Google Scholar] [CrossRef]
- Ma, Q.; Sun, Q.; Zhang, X.; Li, F.; Ding, Y.; Tao, R.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; et al. Controlled-release Nitrogen Fertilizer Management Influences Grain Yield in Winter Wheat by Regulating Flag Leaf Senescence Post-anthesis and Grain Filling. Food Energy Secur. 2022, 11, e361. [Google Scholar] [CrossRef]
- Zhou, M.; Yang, J. Delaying or Promoting? Manipulation of Leaf Senescence to Improve Crop Yield and Quality. Planta 2023, 258, 48. [Google Scholar] [CrossRef]
- Liu, S.; Chai, Q.; Huang, G. Relationships among Soil Respiration, Soil Temperature and Dry Matter Accumulation for Wheat-Maize Intercropping in an Arid Environment. Can. J. Plant Sci. 2013, 93, 715–724. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, Q.; Fang, Q. Effects of Dryland with Straw Return on Photosynthetic Characteristics and Yield of Wheat after Flowering Stage. Acta Agric. Boreali Sin. 2013, 28, 110–114. [Google Scholar] [CrossRef]
- Zhao, B.; Niu, X.; Ata-Ul-Karim, S.T.; Wang, L.; Duan, A.; Liu, Z.; Lemaire, G. Determination of the Post-Anthesis Nitrogen Status Using Ear Critical Nitrogen Dilution Curve and Its Implications for Nitrogen Management in Maize and Wheat. Eur. J. Agron. 2020, 113, 125967. [Google Scholar] [CrossRef]
- Guo, J.; Fan, J.; Xiang, Y.; Zhang, F.; Zhang, X.; Yan, S.; Zhang, C.; Zhang, J.; Zheng, J.; Yan, F. Synchronizing Nitrogen Supply and Uptake by Rainfed Maize Using Mixed Urea and Slow-Release Nitrogen Fertilizer. Nutr. Cycl. Agroecosyst. 2022, 122, 157–171. [Google Scholar] [CrossRef]
- Tian, P.; Sui, P.; Lian, H.; Wang, Z.; Meng, G.; Sun, Y.; Wang, Y.; Su, Y.; Ma, Z.; Qi, H.; et al. Maize Straw Returning Approaches Affected Straw Decomposition and Soil Carbon and Nitrogen Storage in Northeast China. Agronomy 2019, 9, 818. [Google Scholar] [CrossRef]
- Fu, Z.; Chen, P.; Zhang, X.; Du, Q.; Zheng, B.; Yang, H.; Luo, K.; Lin, P.; Li, Y.; Pu, T.; et al. Maize-Legume Intercropping Achieves Yield Advantages by Improving Leaf Functions and Dry Matter Partition. BMC Plant Biol. 2023, 23, 438. [Google Scholar] [CrossRef] [PubMed]
- Weiner, J. Allocation, Plasticity and Allometry in Plants. Perspect. Plant Ecol. Evol. Syst. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- Qi, D.; Hu, T.; Liu, T. Biomass Accumulation and Distribution, Yield Formation and Water Use Efficiency Responses of Maize (Zea Mays L.) to Nitrogen Supply Methods under Partial Root-Zone Irrigation. Agric. Water Manag. 2020, 230, 105981. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Jiang, W.; Zhao, B.; Man, Y.; Zhang, K.; Diao, Y.; Zhu, K. Effects of Different Planting Patterns on Dry Matter Accumulation, Distribution and Yield of Maize. J. Maize Sci. 2021, 29, 128–136. [Google Scholar] [CrossRef]
- Meng, Q.; Yue, S.; Hou, P.; Cui, Z.; Chen, X. Improving Yield and Nitrogen Use Efficiency Simultaneously for Maize and Wheat in China: A Review. Pedosphere 2016, 26, 137–147. [Google Scholar] [CrossRef]
- Distelfeld, A.; Avni, R.; Fischer, A.M. Senescence, Nutrient Remobilization, and Yield in Wheat and Barley. J. Exp. Bot. 2014, 65, 3783–3798. [Google Scholar] [CrossRef]
- Zhai, J.; Zhang, G.; Zhang, Y.; Xu, W.; Xie, R.; Ming, B.; Hou, P.; Wang, K.; Xue, J.; Li, S. Effect of the Rate of Nitrogen Application on Dry Matter Accumulation and Yield Formation of Densely Planted Maize. Sustainability 2022, 14, 14940. [Google Scholar] [CrossRef]
- Zhao, H.; Ning, P.; Chen, Y.; Liu, J.; Ghaffar, S.A.; Xiaohong, T.; Shi, J. Effect of Straw Amendment Modes on Soil Organic Carbon, Nitrogen Sequestration and Crop Yield on the North-Central Plain of China. Soil Use Manag. 2019, 35, 511–525. [Google Scholar] [CrossRef]
- Zhang, J.; Ma, G. Reflections on the application of crop straw pellets returning to the field to decompose in brown loam soil. Agric. Mach. Using Maint. 2020, 142–143. [Google Scholar] [CrossRef]
- Cong, P.; Li, Y.; Gao, Z.; Wang, J.; Zhang, L.; Pang, H. High dosage of pelletized straw returning rapidly improving soil organic carbon content and wheat-maize yield. Trans. Chin. Soc. Agric. Eng. 2019, 35, 148–156. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Pang, H.; Zhang, J.; Guo, J.; Dong, G. Effects of short-term granulated straw incorporation on grain yield and soil respiration in awinter wheat-summer maize cropping system. Chin. J. Appl. Ecol. 2018, 29, 565–572. [Google Scholar] [CrossRef]
- Dong, J. Study on the Mechanism of Tobacco Planting Soil Quality Improvement by Tillage Management and Returning Granulated Straw. Ph.D. Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2021. [Google Scholar]
- Guo, S.; Zhang, X.; Zhang, Q.; Wang, Z.; Li, Y.; Guo, S.; Jiao, N.; Yin, F.; Fu, G. Effects of Straw Mulching and Subsoiling on Ear Leaf Senescence after Anthesis and Yield of Summer Maize. J. Maize Sci. 2012, 20, 104–107. [Google Scholar] [CrossRef]
- Gelang, J.; Pleijel, H.; Sild, E.; Danielsson, H.; Younis, S.; Selldén, G. Rate and Duration of Grain Filling in Relation to Flag Leaf Senescence and Grain Yield in Spring Wheat (Triticum Aestivum) Exposed to Different Concentrations of Ozone. Physiol. Plant. 2000, 110, 366–375. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Pang, H.; Zhang, J.; Guo, J.; Dong, G.; Cong, P. Effect of granulated straw incorporation on soil nutrient and grain yield of winter wheat. Chin. J. Eco Agric. 2017, 25, 1770–1778. [Google Scholar] [CrossRef]
- Devêvre, O.C.; Horwáth, W.R. Decomposition of Rice Straw and Microbial Carbon Use Efficiency under Different Soil Temperatures and Moistures. Soil Biol. Biochem. 2000, 32, 1773–1785. [Google Scholar] [CrossRef]
- Wahdan, S.F.M.; Ji, L.; Schädler, M.; Wu, Y.-T.; Sansupa, C.; Tanunchai, B.; Buscot, F.; Purahong, W. Future Climate Conditions Accelerate Wheat Straw Decomposition alongside Altered Microbial Community Composition, Assembly Patterns, and Interaction Networks. ISME J. 2023, 17, 238–251. [Google Scholar] [CrossRef]
- Cheng, M.; Zhan, W.; Chen, S.; Lan, T.; Liu, Z.; Shao, X.; Wang, L.; Lyu, Y.; Wang, Y. Effects of Straw Return and Nitrogen Fertilization on Grain Yield and Leaf Senescence of Maize in Northeast China. Int. J. Plant Prod. 2023, 17, 503–515. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, S.; Xu, L.; Shen, Y. Spatial Distribution Characteristics of Interdecadal Variations in Precipitation in Heilongjiang Province. Heilongjiang Meteorol. 2024, 41, 40. [Google Scholar] [CrossRef]
Month | Average Temperatures (°C) | Precipitation (mm) | Sunshine Hours (h) | |||
---|---|---|---|---|---|---|
2023 | 2024 | 2023 | 2024 | 2023 | 2024 | |
April | 8.13 | 10.50 | 22.50 | 11.90 | 230.10 | 242.20 |
May | 16.35 | 15.12 | 42.70 | 78.00 | 285.30 | 212.20 |
June | 22.21 | 19.69 | 14.10 | 248.50 | 236.20 | 178.60 |
July | 23.01 | 24.54 | 221.60 | 116.00 | 233.20 | 195.80 |
August | 21.81 | 23.58 | 199.50 | 104.70 | 224.50 | 196.30 |
September | 17.26 | 16.30 | 19.00 | 29.00 | 200.00 | 243.50 |
Treatments | FS1 | FS5 | KL5 | CK |
---|---|---|---|---|
0 d | 0 | 0 | 0 | 0 |
7 d | −4.78 | −6.44 | −3.32 | −4.19 |
14 d | −1.56 | −1.29 | −1.48 | −1.88 |
21 d | −1.66 | −0.41 | −1.16 | −1.27 |
28 d | −3.43 | −0.77 | −3.20 | −5.59 |
35 d | −8.14 | −4.01 | −6.53 | −7.03 |
42 d | −15.59 | −17.11 | −12.87 | −15.00 |
49 d | −13.57 | −16.02 | −13.70 | −18.93 |
56 d | −63.08 | −57.29 | −51.18 | −61.25 |
63 d | −96.87 | −97.15 | −89.55 | −96.42 |
Year | Treatments | DMAbefore (g/Plant) | DMAafter (g/Plant) |
---|---|---|---|
2023 | FS1 | 147.12 ± 4.20 c | 152.29 ± 11.21 ab |
FS5 | 164.84 ± 9.16 b | 115.66 ± 13.75 b | |
KL5 | 180.27 ± 5.58 a | 185.92 ± 23.00 a | |
CK | 170.85 ± 13.00 ab | 135.79 ± 26.24 b | |
2024 | FS1 | 161.30 ± 3.05 b | 164.57 ± 1.59 a |
FS5 | 160.63 ± 10.52 b | 145.43 ± 11.34 b | |
KL5 | 201.93 ± 8.95 a | 169.07 ± 7.47 a | |
CK | 166.93 ± 4.96 b | 155.97 ± 11.19 ab |
Year | Treatments | DMTA (g/Plant) | DMTE (%) | CRDMGafter (%) | ||
---|---|---|---|---|---|---|
Leaf | Stem | Leaf | Stem | |||
2023 | FS1 | 11.34 ± 1.72 bc | 9.84 ± 3.29 b | 32.96 ± 5.78 ab | 13.62 ± 5.83 b | 86.18 ± 3.46 a |
FS5 | 15.07 ± 2.74 ab | 22.57 ± 4.93 a | 32.77 ± 5.46 ab | 26.16 ± 5.72 a | 78.97 ± 2.98 b | |
KL5 | 10.01 ± 2.02 c | 8.67 ± 1.95 b | 25.14 ± 5.37 b | 9.93 ± 2.92 b | 89.77 ± 2.81 a | |
CK | 16.46 ± 2.65 a | 21.56 ± 0.82 a | 37.05 ± 3.48 a | 22.55 ± 1.55 a | 76.71 ± 0.35 b | |
2024 | FS1 | 4.98 ± 0.93 b | 11.13 ± 0.71 ab | 12.47 ± 1.86 c | 12.66 ± 1.89 a | 91.14 ± 0.94 ab |
FS5 | 8.97 ± 0.90 a | 12.28 ± 4.19 a | 27.59 ± 4.89 a | 16.07 ± 3.21 a | 85.15 ± 2.45 c | |
KL5 | 5.47 ± 1.12 b | 7.27 ± 0.23 b | 11.72 ± 2.58 c | 7.86 ± 0.66 b | 93.35 ± 0.63 a | |
CK | 7.43 ± 0.80 a | 11.57 ± 1.06 ab | 19.16 ± 1.96 b | 13.03 ± 1.37 a | 89.03 ± 1.22 b |
Treatments | 2023 | 2024 | ||||||
---|---|---|---|---|---|---|---|---|
Ear Number (Ear/ha) | Kernel Number (ear−1) | 100-Kernel Weight (g) | Yield (t/ha) | Ear Number (Ear/ha) | Kernel Number (ear−1) | 100-Kernel Weight (g) | Yield (t/ha) | |
FS1 | 67,949 ± 2937.43 a | 535 ± 15.67 ab | 33.72 ± 0.88 bc | 12.25 ± 0.32 a | 66,026 ± 2220.49 a | 521 ± 30.85 ab | 33.58 ± 0.96 b | 12.22 ± 0.03 b |
FS5 | 66,667 ± 4003.04 a | 461 ± 18.67 c | 34.67 ± 0.93 ab | 11.23 ± 0.29 b | 63,462 ± 1923.00 a | 464 ± 44.69 c | 34.14 ± 0.25 b | 11.07 ± 0.47 c |
KL5 | 69,231 ± 6661.47 a | 568 ± 13.90 a | 35.85 ± 0.94 a | 12.34 ± 0.72 a | 66,026 ± 2220.49 a | 546 ± 31.96 a | 36.21 ± 0.37 a | 13.86 ± 0.17 a |
CK | 68,590 ± 2937.43 a | 519 ± 29.69 b | 32.73 ± 0.43 c | 11.25 ± 0.18 b | 66,026 ± 1110.24 a | 490 ± 26.62 bc | 33.70 ± 1.72 b | 12.59 ± 0.25 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, M.; Zhang, Y.; Lv, G.; Yu, Y.; Hao, Y.; Jiang, Y.; Han, L.; Pang, H.; Jiao, F.; Qian, C. A High Amount of Straw Pellets Returning Delays Maize Leaf Senescence, Improves Dry Matter Accumulation and Distribution, and Yield Increase in Northeast China. Agronomy 2025, 15, 711. https://doi.org/10.3390/agronomy15030711
Cheng M, Zhang Y, Lv G, Yu Y, Hao Y, Jiang Y, Han L, Pang H, Jiao F, Qian C. A High Amount of Straw Pellets Returning Delays Maize Leaf Senescence, Improves Dry Matter Accumulation and Distribution, and Yield Increase in Northeast China. Agronomy. 2025; 15(3):711. https://doi.org/10.3390/agronomy15030711
Chicago/Turabian StyleCheng, Meng, Yiteng Zhang, Guoyi Lv, Yang Yu, Yubo Hao, Yubo Jiang, Linjing Han, Huancheng Pang, Feng Jiao, and Chunrong Qian. 2025. "A High Amount of Straw Pellets Returning Delays Maize Leaf Senescence, Improves Dry Matter Accumulation and Distribution, and Yield Increase in Northeast China" Agronomy 15, no. 3: 711. https://doi.org/10.3390/agronomy15030711
APA StyleCheng, M., Zhang, Y., Lv, G., Yu, Y., Hao, Y., Jiang, Y., Han, L., Pang, H., Jiao, F., & Qian, C. (2025). A High Amount of Straw Pellets Returning Delays Maize Leaf Senescence, Improves Dry Matter Accumulation and Distribution, and Yield Increase in Northeast China. Agronomy, 15(3), 711. https://doi.org/10.3390/agronomy15030711