Assessing Agricultural Reuse Potential of Treated Wastewater: A Hybrid Machine Learning Approach
Abstract
:1. Introduction
1.1. The Role of Wastewater Reuse in Sustainable Irrigation
1.2. Artificial Intelligence for Wastewater Quality Prediction and Reuse
2. Materials and Methods
2.1. Data Source: Biological Wastewater Treatment Plant
2.2. Scenarios Based on Wastewater Quality Parameters
2.3. Artificial Intelligence Algorithms
2.3.1. Artificial Neural Networks
2.3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
2.4. Combined Artificial Intelligence Algorithms
2.5. The Reuse Potential of Treated Wastewater of K-WWTP in Agriculture
3. Results
3.1. Performance of ANNs
3.2. Performance of ANFIS
3.3. Fuzzy-Based Assessment of Treated Wastewater Suitability for Irrigation
3.4. Quantitative Reuse Potential of K-WWTP Discharge in Agriculture
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gleick, H.P. Water and conflict: Fresh water resources and international security. Int. Secur. 1993, 18, 79–112. [Google Scholar] [CrossRef]
- Shiklomanov, I.A. World Water Resources: A New Appraisal and Assessment for the 21st Century; United Nations Educational, Scientific and Cultural Organization (UNESCO): Paris, France, 1998; pp. 4–27. [Google Scholar]
- Jaramillo, M.F.; Restrepo, I. Wastewater reuse in agriculture: A review about its limitations and benefits. Sustainability 2017, 9, 1734. [Google Scholar] [CrossRef]
- Reznik, A.; Dinar, A.; Hernández-Sancho, F. Treated wastewater reuse: An efficient and sustainable solution for water resource scarcity. Environ. Resour. Econ. 2019, 74, 1647–1685. [Google Scholar] [CrossRef]
- Salem, H.S. Socioeconomic, environmental, and health impacts of reusing treated wastewater in agriculture in some Arab countries, including occupied Palestine, in view of climate change. Nat. Resour. Conserv. Res. 2023, 6, 2229. [Google Scholar] [CrossRef]
- Arena, C.; Genco, M.; Mazzola, M. Environmental benefits and economical sustainability of urban wastewater reuse for irrigation—A cost-benefit analysis of an existing reuse project in Puglia, Italy. Water 2020, 12, 2926. [Google Scholar] [CrossRef]
- Wan, J.; Huang, M.; Ma, Y.; Guo, W.; Wang, Y.; Zhan, H.; Sun, X. Prediction of effluent quality of a paper mill wastewater treatment using an adaptive network-based fuzzy inference system. Appl. Soft Comput. J. 2011, 11, 3238–3246. [Google Scholar] [CrossRef]
- Essahlaoui, F.; Elhajrat, N.; Halimi, M.; El Abbassi, A. New approach to monitoring a wastewater irrigation system controlled by the artificial neural network (ANN). Groundw. Sustain. Dev. 2023, 23, 100999. [Google Scholar] [CrossRef]
- Alprol, A.E.; Mansour, A.T.; Ibrahim, M.E.E.D.; Ashour, M. Artificial Intelligence Technologies Revolutionizing Wastewater Treatment: Current Trends and Future Prospective. Water 2024, 16, 314. [Google Scholar] [CrossRef]
- Shah, S.M.H.; Yassin, M.A.; Abba, S.I.; Lawal, D.U.; Aliyu, F.; Al-Qadami, E.H.H.; Mustaffa, Z.; Pande, C.B.; Sammen, S.S.; Aljundi, I.H. Treated Wastewater Assessment to Optimize Agricultural Water Reuse in Al-Qatif Region Saudi Arabia Using Hybrid Machine Learning Techniques. Preprints 2024. [Google Scholar] [CrossRef]
- Niel, O.; Bastard, P. Artificial intelligence in nephrology: Core concepts, clinical applications, and perspectives. Am. J. Kidney Dis. 2019, 74, 803–810. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine learning in agriculture: A review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Ahmed, A.N.; Dawal, S.Z.; Hassan, M.R.; Muniandy, S. Machine learning methods for better water quality prediction. J. Hydrol. 2019, 578, 124084. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Chen, J.; Liu, S.; Jia, K.; Roupsard, O. Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agric. For. Meteorol. 2017, 242, 55–74. [Google Scholar] [CrossRef]
- Kannangara, M.; Dua, R.; Ahmadi, L.; Bensebaa, F. Modeling and prediction of regional municipal solid waste generation and diversion in Canada using machine learning approaches. Waste Manag. 2018, 74, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Moral, H.; Aksoy, A.; Gokcay, C.F. Modeling of the activated sludge process by using artificial neural networks with automated architecture screening. Comput. Chem. Eng. 2008, 32, 2471–2478. [Google Scholar] [CrossRef]
- Abba, S.I.; Elkiran, G. Effluent prediction of chemical oxygen demand from the wastewater treatment plant using artificial neural network application. Procedia Comput. Sci. 2017, 120, 156–163. [Google Scholar] [CrossRef]
- Wang, D.; Thunéll, S.; Lindberg, U.; Yu, Z.; Chen, S. A machine learning framework to improve effluent quality control in wastewater treatment plants. Sci. Total Environ. 2021, 784, 147138. [Google Scholar] [CrossRef]
- Sheik, A.G.; Kumar, A.; Jain, A.; Bux, F.; Kumari, S. Prediction of wastewater quality parameters using adaptive and machine learning models: A South African case study. J. Water Process Eng. 2024, 67, 106185. [Google Scholar] [CrossRef]
- Lv, J.Q.; Yin, W.X.; Xu, J.M.; Cheng, H.Y.; Li, Z.L.; Yang, J.X.; Wang, A.J.; Wang, H.C. Augmented machine learning for sewage quality assessment with limited data. Environ. Sci. Ecotech. 2025, 23, 100512. [Google Scholar] [CrossRef]
- Yin, H.; Chen, Y.; Zhou, J.; Xie, Y.; Wei, Q.; Xu, Z. A probabilistic deep learning approach to enhance the prediction of wastewater treatment plant effluent quality under shocking load events. Water Res. X 2025, 26, 100291. [Google Scholar] [CrossRef]
- TSMS 2019. Turkish State Meteorological Service, Tekirdağ Provincial Meteorological Data Records. Available online: https://bulut.mgm.gov.tr/share/ (accessed on 5 March 2023).
- Pescod, M.B. Wastewater Treatment and Use in Agriculture-FAO Irrigation and Drainage Paper 47; FAO: Rome, Italy, 1992; 128p. [Google Scholar]
- Sinsomboonthong, S. Performance Comparison of New Adjusted Min-Max with Decimal Scaling and Statistical Column Normalization Methods for Artificial Neural Network Classification. Int. J. Math. Math. Sci. 2022, 1, 3584406. [Google Scholar] [CrossRef]
- Kira, K.; Rendell, L.A. The feature selection problem: Traditional methods and a new algorithm. In Proceedings of the 10th National Conference on Artificial Intelligence, San Jose, CA, USA, 12–16 July 1992; AAAI Press: Atlanta, Georgia, 1992; pp. 129–134. [Google Scholar]
- Robnik-Šikonja, M.; Kononenko, I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53, 23–69. [Google Scholar] [CrossRef]
- Boger, Z.; Guterman, H. Knowledge extraction from artificial neural network models. In Proceedings of the 1997 IEEE International Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 12–15 October 1997; pp. 3030–3035. [Google Scholar]
- Yamaç, S.S.; Todorovic, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 2020, 228, 105875. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; 156p. [Google Scholar]
- Annex 7. Atıksu Arıtma Tesisleri Teknik Usuller Tebliği. Available online: https://www.mevzuat.gov.tr/mevzuat?MevzuatNo=13873&MevzuatTur=9&MevzuatTertip=5 (accessed on 8 June 2023).
- Rajaee, T.; Khani, S.; Ravansalar, M. Artificial intelligence-based single and hybrid models for prediction of water quality in rivers: A review. Chemom. Intell. Lab. Syst. 2020, 200, 103978. [Google Scholar] [CrossRef]
- Wen, X.; Fang, J.; Diao, M. Artificial neural network modeling of dissolved oxygen in the Heihe River, Northwestern China. Environ. Monit. Assess. 2013, 185, 4361–4371. [Google Scholar] [CrossRef]
- Ravansalar, M.; Rajaee, T.; Ergil, M. Prediction of dissolved oxygen in River Calder by noise elimination time series using wavelet transform. J. Exp. Theor. Artif. Intell. 2015, 28, 689–706. [Google Scholar] [CrossRef]
- Zounemat-Kermani, M.; Scholz, M. Modeling of dissolved oxygen concentrations using an extreme learning machine. Environ. Sci. Pollut. Res. 2013, 20, 5078–5087. [Google Scholar]
- Singh, K.P.; Gupta, S.; Rai, P. Predicting dissolved oxygen concentration using kernel regression modeling approaches with nonlinear hydro-chemical data. Environ. Monit. Assess. 2014, 186, 2749–2765. [Google Scholar] [CrossRef]
- Jafar, R.; Awad, A.; Jafar, K.; Shahrour, I. Predicting effluent quality in full-scale wastewater treatment plants using shallow and deep artificial neural networks. Sustainability 2022, 14, 15598. [Google Scholar] [CrossRef]
- Sattari, M.T.; Joudi, A.R.; Kusiak, A. Estimation of water quality parameters with data-driven model. J. Am. Water Works Assoc. 2016, 108, E232–E239. [Google Scholar] [CrossRef]
- Najah, A.; El-Shafie, A.H.A.H.; Karim, O.A.; Jaafar, O.; El-Shafie, A.H. An application of different artificial intelligences techniques for water quality prediction. Int. J. Phys. Sci. 2011, 6, 5298–5308. [Google Scholar]
- Fu, Z.; Cheng, J.; Yang, M.; Batista, J. Prediction of industrial wastewater quality parameters based on wavelet de-noised ANFIS model. In Proceedings of the IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, NV, USA, 8–10 January 2018; pp. 301–306. [Google Scholar]
- Hong, E.; Yeneneh, A.M.; Sen, T.K.; Ang, H.M.; Kayaalp, A. ANFIS based modelling of dewatering performance and polymer dose optimization in a wastewater treatment plant. J. Environ. Chem. Eng. 2018, 6, 1957–1968. [Google Scholar] [CrossRef]
- Farhi, N.; Kohen, E.; Mamane, H.; Shavitt, Y. Prediction of wastewater treatment quality using LSTM neural network. Environ. Technol. Innov. 2021, 23, 101632. [Google Scholar] [CrossRef]
- USSL. Diagnosis and improvement of saline and alkali soils. In U.S. Department of Agriculture Handbook No. 60; U.S. Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Scofield, C.S. The Salinity of Irrigation Water; U.S. Government Printing Office: Washington, DC, USA, 1936.
- Wilcox, L.V. The quality of water for irrigation use. In Technical Bulletin 962; U.S. Department of Agriculture: Washington, DC, USA, 1948. [Google Scholar]
- Ching, P.M.; So, R.H.; Morck, T. Advances in soft sensors for wastewater treatment plants: A systematic review. J. Water Proc. Eng. 2021, 44, 102367. [Google Scholar] [CrossRef]
- Shiek, A.G.; Machavolu, V.R.K.; Seepana, M.M.; Ambati, S.R. Design of control strategies for nutrient removal in a biological wastewater treatment process. Environ. Sci. Pollut. Res. 2021, 28, 12092–12106. [Google Scholar] [CrossRef]
- Antanasijević, D.; Pocajt, V.; Perić-Grujić, A.; Ristić, M. Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo simulation uncertainty analysis. J. Hydrol. 2014, 519, 1895–1907. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Z. A hybrid model for water quality prediction based on an artificial neural network, wavelet transform, and long short-term memory. Water 2022, 14, 610. [Google Scholar] [CrossRef]
- Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K.P. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environ. Model. Softw. 2010, 25, 891–909. [Google Scholar] [CrossRef]
- Fang, F.; Ni, B.; Li, W.; Sheng, G.; Yu, H. A simulation-based integrated approach to optimize the biological nutrient removal process in a full-scale wastewater treatment plant. Chem. Eng. 2011, 174, 2–3, 635–643. [Google Scholar] [CrossRef]
- Cha, D.; Park, S.; Kim, M.S.; Kim, T.; Hong, S.W.; Cho, K.H.; Lee, C. Prediction of oxidant exposures and micropollutant abatement during ozonation using a machine learning method. Environ. Sci. Technol. 2021, 55, 709–718. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.; Wang, J.; Yang, X.; Zhang, Y.; Zhang, L.; Ren, H.; Wu, B.; Ye, L. A review of the application of machine learning in water quality evaluation. Eco-Environ. Health 2022, 1, 107–116. [Google Scholar] [CrossRef]
- Sharma, L.K.; Singh, R.; Umrao, R.K.; Sharma, K.M.; Singh, T.N. Evaluating the modulus of elasticity of soil using soft computing system. Eng. Comput. 2017, 33, 497–507. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, Y.J.; Wang, Y.T.; Li, J.G.; Zeng, Y.N.; Guo, H.W.; Liu, H.; Dong, K.L.; Zhang, L.Y. Application and innovation of artificial intelligence models in wastewater treatment. J. Contam. Hydrol. 2024, 267, 104426. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Panahi, M.; Khosravi, K.; Pourghasemi, H.R.; Rezaie, F.; Parvinnezhad, D. Spatial prediction of groundwater potentiality using ANFIS ensembled with teaching-learning-based and biogeography-based optimization. J. Hydrol. 2019, 572, 435–448. [Google Scholar] [CrossRef]
- Okeke, O.P.; Aminu, I.; Rotimi, A.; Najashi, B.G.; Jibril, M.M.; Ibrahim, A.S.; Bashir, A.; Malami, S.I.; Habibu, M.A.; Magaji, M.M. Performance analysis and control of wastewater treatment plant using adaptive neuro-fuzzy inference system (ANFIS) and multi-linear regression (MLR) techniques. GSC Adv. Eng. Technol. 2022, 4, 1–16. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Kingston, G.B.; Maier, H.R.; Lambert, M.F. Bayesian model selection applied to artificial neural networks used for water resources modelling. Water Resour. Res. 2008, 44, W04419. [Google Scholar] [CrossRef]
- Anmala, J.; Meier, O.W.; Meier, A.J.; Grubbs, S. GIS and Artificial Neural Network–Based Water Quality Model for a Stream Network in the Upper Green River Basin, Kentucky, USA. J. Environ. Eng. 2014, 141, 04014082. [Google Scholar] [CrossRef]
- Burchard-Levine, A.; Liu, S.; Vince, F.; Li, M.; Ostfeld, A. A hybrid evolutionary data-driven model for river water quality early warning. J. Environ. Manag. 2014, 143, 8–16. [Google Scholar] [CrossRef]
- Tümer, A.E.; Edebali, S. An artificial neural network model for wastewater treatment plant of Konya. Int. J. Intell. Syst. Appl. Eng. 2015, 3, 131. [Google Scholar] [CrossRef]
- Pedrero, F.; Kalavrouziotis, I.; Alarcón, J.J.; Koukoulakis, P.; Asano, T. Use of treated municipal wastewater in irrigated agriculture—Review of some practices in Spain and Greece. Agric. Water Manag. 2010, 97, 1233–1241. [Google Scholar] [CrossRef]
- Cirelli, G.L.; Consoli, S.; Licciardello, F.; Aiello, R.; Giuffrida, F.; Leonardi, C. Treated municipal wastewater reuse in vegetable production. Agric. Water Manag. 2012, 104, 163–170. [Google Scholar] [CrossRef]
- Urbano, V.R.; Mendonça, T.G.; Bastos, R.G.; Souza, C.F. Effects of treated wastewater irrigation on soil properties and lettuce yield. Agric. Water Manag. 2017, 181, 108–115. [Google Scholar] [CrossRef]
- Bouwer, H. Integrated water management: Emerging issues and challenges. Agric. Water Manag. 2000, 45, 217–228. [Google Scholar] [CrossRef]
- IPCC. Climate change 2014: Mitigation of climate change. In Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
Parameters | Statistical Data | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ranges | Mean | SD | Skewness | Kurtosis | 95.0 % CI | Units | |||
Inlet | pH | 6.19 | 8.74 | 7.42 | 0.35 | −0.36 | 2.71 | (7.37, 7.47) | - |
EC | 998.00 | 1615.00 | 1107.90 | 95.22 | 2.22 | 7.02 | (1094.3, 1121.5) | μS/cm | |
Salinity | 0.32 | 0.81 | 0.52 | 0.07 | 1.11 | 3.92 | (0.51, 0.53) | % | |
DO | 0.01 | 5.87 | 1.47 | 1.22 | 1.34 | 1.67 | (1.30, 1.64) | mg/L | |
COD | 114.00 | 368.00 | 227.50 | 57.22 | 0.59 | −0.20 | (219.3, 235.7) | mg/L | |
Total N | 21.40 | 169.00 | 52.57 | 25.37 | 1.33 | 2.18 | (48.94, 56.20) | mg/L | |
NH4 | 12.60 | 73.10 | 37.42 | 11.13 | 0.52 | 0.69 | (35.83, 39.01) | mg/L | |
NO3 | 0.30 | 3.39 | 0.97 | 0.66 | 1.44 | 1.32 | (0.88, 1.06) | mg/L | |
Total P | 1.77 | 14.40 | 5.99 | 2.32 | 1.08 | 1.42 | (5.66, 6.32) | mg/L | |
TSS | 10.00 | 232.00 | 82.77 | 46.98 | 1.04 | 0.56 | (76.05, 89.49) | mg/L | |
Outlet | pH | 6.17 | 9.52 | 7.38 | 0.36 | 1.11 | 9.39 | (7.33, 7.43) | - |
EC | 717.00 | 1143.00 | 887.97 | 81.18 | 0.68 | 0.40 | (876.37, 899.57) | μS/cm | |
Salinity | 0.35 | 0.71 | 0.46 | 0.06 | 1.16 | 2.63 | (0.45, 0.47) | % | |
COD | 14.20 | 125.00 | 57.09 | 20.47 | 0.56 | 0.54 | (54.16, 60.02) | mg/L | |
Total N | 4.22 | 89.90 | 24.45 | 19.20 | 1.65 | 1.90 | (21.71, 27.19) | mg/L | |
Total P | 0.28 | 8.95 | 2.24 | 2.11 | 1.35 | 1.03 | (1.94, 2.54) | mg/L | |
TSS | 1 | 72.00 | 19.06 | 14.91 | 1.41 | 1.66 | (16.93, 21.19) | mg/L |
Output Parameters | Input Parameters | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
pH | EC | Salinity | DO | COD | Total N | Total P | TSS | NH4 | NO3 | |
pH | 0.03815 | 0.00505 | 0.00447 | 0.01142 | 0.00812 | 0.01041 | 0.00172 | 0.01176 | 0.00368 | 0.00170 |
EC | 0.00355 | 0.00321 | 0.07357 | 0.00875 | 0.01042 | 0.01476 | 0.00077 | 0.00526 | 0.00772 | 0.01075 |
Salinity | 0.00290 | 0.05163 | 0.01089 | 0.00320 | 0.00914 | 0.01936 | 0.00083 | 0.00751 | 0.00517 | 0.00054 |
COD | 0.00916 | 0.02405 | 0.01131 | 0.00916 | 0.02725 | 0.01138 | 0.00079 | 0.01020 | 0.00132 | 0.00649 |
Total N | 0.02291 | 0.02600 | 0.02118 | 0.00824 | 0.00681 | 0.05131 | 0.01928 | 0.00810 | 0.00245 | 0.00012 |
Total P | 0.00810 | 0.02290 | 0.02601 | 0.00245 | 0.02118 | 0.05131 | 0.00681 | 0.01928 | 0.00824 | 0.00012 |
TSS | 0.01079 | 0.01240 | 0.00916 | 0.00202 | 0.02716 | 0.00931 | 0.00368 | 0.01573 | 0.00125 | 0.00073 |
Output | Scenarios | Input Parameters | Train (%) | Validation (%) | Test (%) | MSE | R2 |
---|---|---|---|---|---|---|---|
pH | 1 | pH, TSS, DO, Total N, COD, EC, Salinity, NH4, Total P, NO3 | 80 | 5 | 15 | 0.01279 | 0.89 |
9 | pH, TSS | 75 | 10 | 15 | 0.01145 | 0.83 | |
EC | 1 | Salinity, Total N, NO3, COD, DO, NH4, TSS, pH, EC, Total P | 80 | - | 20 | 31.28646 | 0.97 |
9 | Salinity, Total N | 80 | - | 20 | 107.30676 | 0.96 | |
Salinity | 1 | EC, Total N, Salinity, COD, TSS, NH4, DO, pH, Total P, NO3 | 80 | 5 | 15 | 0.00006 | 0.96 |
6 | Conductivity, Total N, Salinity, COD, TSS | 85 | - | 15 | 0.00007 | 0.94 | |
COD | 1 | COD, EC, Total N, Salinity, TSS, pH, DO, NO3, NH4, Total P | 80 | 5 | 15 | 40.14093 | 0.86 |
5 | COD, Conductivity, Total N, Salinity, TSS, pH | 80 | 5 | 15 | 56.55725 | 0.80 | |
Total N | 1 | Total N, EC, pH, Salinity, Total P, DO, TSS, COD, NH4, NO3 | 85 | - | 15 | 1.82925 | 0.96 |
3 | Total N, EC, pH, Salinity, Total P, DO, TSS, COD | 85 | - | 15 | 9.83923 | 0.91 | |
Total P | 1 | Total N, Salinity, EC, COD, TSS, NH4, pH, Total P, DO, NO3 | 80 | 5 | 15 | 0.32555 | 0.90 |
6 | Total N, Salinity, Conductivity, COD, TSS | 80 | 5 | 15 | 0.67912 | 0.74 | |
TSS | 1 | COD, TSS, EC, pH, Total N, Salinity, Total P, DO, NH4, NO3 | 75 | 10 | 15 | 5.25323 | 0.92 |
5 | COD, TSS, Conductivity, pH, Total N, Salinity | 75 | 10 | 15 | 33.69808 | 0.85 |
Input Parameter | Rank of Categorized Parameters | Training (%) | Testing (%) | MF Type | Number of MFs | Training RMSE | Testing RMSE | R2 | ||
---|---|---|---|---|---|---|---|---|---|---|
pH | 6< | ≤6–8≥ | >8 | 80 | 20 | Trapmf | 3 | 0 | 0.0003 | 0.99 |
0 | 1 | 0 | ||||||||
EC | <700 | ≤700–900≥ | 900> | 80 | 20 | Trapmf | 3 | 0.0005 | 0.0007 | 0.97 |
1 | 0.5 | 0 | ||||||||
Salinity | <0.7 | ≤0.7–1.5≥ | 1.5> | 80 | 20 | Trapmf | 3 | 0 | 0 | 1 |
1 | 0.5 | 0 | ||||||||
COD | <50 | ≤50–100≥ | 100> | 80 | 20 | Trapmf | 3 | 0 | 0 | 1 |
1 | 0.5 | 0 | ||||||||
Total N | <7.5 | ≤7.5–15≥ | 15> | 80 | 20 | Trapmf | 3 | 0.090 | 0.091 | 0.92 |
1 | 0.5 | 0 | ||||||||
Total P | <1 | ≤1–2≥ | 2> | 80 | 20 | Trapmf | 3 | 0.036 | 0.036 | 0.96 |
1 | 0.5 | 0 | ||||||||
TSS | <15 | ≤15–30≥ | 30> | 80 | 20 | Trapmf | 3 | 0.045 | 0.045 | 0.90 |
1 | 0.5 | 1 |
Crops | Area | Area of Centre | Production | Yield | Total ETc | Total Reff | Cropping Pattern | Growing Days | q | Irrigable Area |
---|---|---|---|---|---|---|---|---|---|---|
(ha) | (ha) | (t) | (t/ha) | (mm) | (mm) | (%) | (day) | (L/s/ha) | (ha) | |
Sunflower | 74,051 | 17,661.1 | 210,930 | 2.85 | 558 | 188.8 | 33.6 | 150 | 1.3784 | 145 |
Maize | 10,765 | 2431.5 | 503,525 | 46.77 | 717 | 231.8 | 4.9 | 160 | 1.8115 | 110 |
Canola | 3700 | 46.2 | 13,875 | 3.75 | 407 | 391.2 | 1.7 | 250 | 0.0589 | 3394 |
Rice | 2109 | 4.4 | 17,745 | 8.41 | 689 | 231.8 | 1.0 | 170 | 1.7069 | 117 |
Clover | 1725 | 500.0 | 33,182 | 19.24 | 777 | 277.4 | 0.8 | 210 | 1.8652 | 107 |
Sugar Beat | 1412 | 52.0 | 67,334 | 47.68 | 736 | 296.6 | 0.6 | 190 | 1.6405 | 122 |
Oat | 787 | 34.4 | 2754 | 3.50 | 524 | 189 | 0.4 | 260 | 1.2507 | 160 |
Triticale | 982 | 180.0 | 4041 | 4.12 | 513 | 493 | 0.4 | 270 | 0.0746 | 2681 |
Chickpea | 88 | 8.4 | 119 | 1.35 | 357 | 189 | 0.1 | 120 | 0.6272 | 319 |
Potato | 75 | 7.7 | 1532 | 20.32 | 555 | 188.8 | 0.1 | 150 | 1.3672 | 146 |
Total | 95,694 | 20,925.7 | 11.7811 | 7301 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köksal, D.D.; Ahi, Y.; Todorovic, M. Assessing Agricultural Reuse Potential of Treated Wastewater: A Hybrid Machine Learning Approach. Agronomy 2025, 15, 703. https://doi.org/10.3390/agronomy15030703
Köksal DD, Ahi Y, Todorovic M. Assessing Agricultural Reuse Potential of Treated Wastewater: A Hybrid Machine Learning Approach. Agronomy. 2025; 15(3):703. https://doi.org/10.3390/agronomy15030703
Chicago/Turabian StyleKöksal, Daniyal Durmuş, Yeşim Ahi, and Mladen Todorovic. 2025. "Assessing Agricultural Reuse Potential of Treated Wastewater: A Hybrid Machine Learning Approach" Agronomy 15, no. 3: 703. https://doi.org/10.3390/agronomy15030703
APA StyleKöksal, D. D., Ahi, Y., & Todorovic, M. (2025). Assessing Agricultural Reuse Potential of Treated Wastewater: A Hybrid Machine Learning Approach. Agronomy, 15(3), 703. https://doi.org/10.3390/agronomy15030703