Modeling the Effects of Extreme Temperatures on the Infection Rate of Botrytis cinerea Using Historical Climate Data (1951–2023) of Central Chile
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Extreme Temperature Trends
3.2. The Five-Year Averages of Extreme Maximum Temperatures (EMTs)
3.3. Effects of Extreme Temperatures on Infection Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- del Pozo, A.; Brunel-Saldias, N.; Engler, A.; Ortega-Farias, S.; Acevedo-Opazo, C.; Lobos, G.A.; Molina-Montenegro, M.A. Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). Sustainability 2019, 11, 2769. [Google Scholar] [CrossRef]
- Vautard, R.; Cattiaux, J.; Happé, T.; Singh, J.; Bonnet, R.; Cassou, C.; Yiou, P. Heat extremes in Western Europe increasing faster than simulated due to atmospheric circulation trends. Nat. Commun. 2023, 14, 6803. [Google Scholar] [CrossRef]
- Campillay-Llanos, W.; Gonzalez-Colville, P.; Ortega-Farias, S.; López-Flores, M.M. Historical trends and future scenario projection of maximum summer temperatures in the southern hemisphere: Central-southern zone of Chile. Idesia 2024, 42, 43–54. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Antle, J.; Garrett, K.A.; Izaurralde, R.C.; Mader, T.; Marshall, E.; Nearing, M.; Robertson, G.P.; Ziska, L. Indicators of climate change in agricultural systems. Clim. Change 2020, 163, 1719–1732. [Google Scholar] [CrossRef]
- Litchman, E.; Thomas, M.K. Are we underestimating the ecological and evolutionary effects of warming? Interactions with other environmental drivers may increase species vulnerability to high temperatures. Oikos 2023, 2023, e09155. [Google Scholar] [CrossRef]
- Chaloner, T.M.; Gurr, S.J.; Bebber, D.P. Plant pathogen infection risk tracks global crop yields under climate change. Nat. Clim. Change 2021, 11, 710–715. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The impact of climate change on agricultural insect pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Baquerizo, M.; Guerra, C.A.; Cano-Díaz, C.; Egidi, E.; Wang, J.T.; Eisenhauer, N.; Maestre, F.T. The proportion of soil-borne pathogens increases with warming at the global scale. Nat. Clim. Change 2020, 10, 550–554. [Google Scholar] [CrossRef]
- Ummenhofer, C.C.; Meehl, G.A. Extreme weather and climate events with ecological relevance: A review. Philos. Trans. R. Soc. B 2017, 372, 20160135. [Google Scholar] [CrossRef]
- Cassou, C.; Cattiaux, J. Disruption of the European climate seasonal clock in a warming world. Nat. Clim. Change 2016, 6, 589–594. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. An apparent hiatus in global warming? Earth’s Future 2013, 1, 19–32. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Valentini, R. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Summary for Policymakers. In Climate Change 2013: The Physical Science Basis; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M.M.B., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Barredo, J.I.; Mauri, A.; Caudullo, G.; Dosio, A. Assessing shifts of Mediterranean and arid climates under RCP4.5 and RCP8.5 climate projections in Europe. In Meteorology and Climatology of the Mediterranean and Black Seas; Springer: Berlin/Heidelberg, Germany, 2019; pp. 235–251. [Google Scholar] [CrossRef]
- Sippel, S.; Zscheischler, J.; Heimann, M.; Otto, F.E.L.; Peters, J.; Mahecha, M.D. Quantifying changes in climate variability and extremes: Pitfalls and their overcoming. Geophys. Res. Lett. 2015, 42, 9990–9998. [Google Scholar] [CrossRef]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Rezende, E.L.; Bozinovic, F.; Szilágyi, A.; Santos, M. Predicting temperature mortality and selection in natural Drosophila populations. Science 2020, 369, 1242–1245. [Google Scholar] [CrossRef] [PubMed]
- Sillero, N.; Arenas-Castro, S.; Enriquez-Urzelai, U.; Vale, C.G.; Sousa-Guedes, D.; Martínez-Freiría, F.; Real, R.; Barbosa, A.M. Want to model a species niche? A step-by-step guideline on correlative ecological niche modelling. Ecol. Model. 2021, 456, 109671. [Google Scholar] [CrossRef]
- Droby, S.; Lichter, A. Post-harvest Botrytis infection: Etiology, development and management. In Botrytis: Biology, Pathology and Control; Springer: Dordrecht, The Netherlands, 2007; pp. 349–367. [Google Scholar] [CrossRef]
- Magarey, R.D.; Sutton, T.B.; Thayer, C.L. A simple generic infection model for foliar fungal plant pathogens. Phytopathology 2005, 95, 92–100. [Google Scholar] [CrossRef]
- Ponti, R.; Sannolo, M. The importance of including phenology when modelling species ecological niche. Ecography 2023, 2023, e06143. [Google Scholar] [CrossRef]
- Bozinovic, F.; Cavieres, G.; Martel, S.I.; Alruiz, J.M.; Molina, A.N.; Roschzttardtz, H.; Rezende, E.L. Thermal effects vary predictably across levels of organization: Empirical results and theoretical basis. Proc. R. Soc. B 2020, 287, 20202508. [Google Scholar] [CrossRef]
- Villeneuve, A.R.; Komoroske, L.M.; Cheng, B.S. Environment and phenology shape local adaptation in thermal performance. Proc. R. Soc. B 2021, 288, 20210741. [Google Scholar] [CrossRef] [PubMed]
- Wooliver, R.; Vtipilthorpe, E.E.; Wiegmann, A.M.; Sheth, S.N. A viewpoint on ecological and evolutionary study of plant thermal performance curves in a warming world. AoB Plants 2022, 14, plac016. [Google Scholar] [CrossRef] [PubMed]
- Vidal, M.A.; Rezende, E.L.; Bacigalupe, L.D. Intra and interspecific variation in thermal performance and critical limits in anurans from southern Chile. J. Therm. Biol. 2024, 121, 103851. [Google Scholar] [CrossRef] [PubMed]
- Broome, J.C.; English, J.T.; Marois, J.J.; Latorre, B.A.; Aviles, J.C. Development of an infection model for Botrytis bunch rot of grapes based on wetness duration and temperature. Phytopathology 1995, 85, 97–102. [Google Scholar] [CrossRef]
- Latorre, B.A.; Spadaro, I.; Rioja, M.E. Occurrence of resistant strains of Botrytis cinerea to anilinopyrimidine fungicides in table grapes in Chile. Crop Prot. 2002, 21, 957–961. [Google Scholar] [CrossRef]
- Ferrada, E.E.; Latorre, B.A.; Zoffoli, J.P.; Castillo, A. Identification and characterization of Botrytis blossom blight of Japanese plums caused by Botrytis cinerea and B. prunorum sp. nov. in Chile. Phytopathology 2016, 106, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Tian, L.; Liu, X.; Li, X. The destructive fungal pathogen Botrytis cinerea: Insights from genes studied with mutant analysis. Pathogens 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Altieri, V.; Rossi, V.; Fedele, G. Biocontrol of Botrytis cinerea as influenced by grapevine growth stages and environmental conditions. Plants 2023, 12, 3430. [Google Scholar] [CrossRef] [PubMed]
- Melo, O.; Foster, W. Agricultural and forestry land and labor use under long-term climate change in Chile. Atmosphere 2021, 12, 305. [Google Scholar] [CrossRef]
- Malhi, G.S.; Kaur, M.; Kaushik, P. Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability 2021, 13, 1318. [Google Scholar] [CrossRef]
- Farooq, A.; Farooq, N.; Akbar, H.; Hassan, Z.U.; Gheewala, S.H. A critical review of climate change impact at a global scale on cereal crop production. Agronomy 2023, 13, 162. [Google Scholar] [CrossRef]
- Mirón, I.J.; Linares, C.; Díaz, J. The influence of climate change on food production and food safety. Environ. Res. 2023, 216, 114674. [Google Scholar] [CrossRef] [PubMed]
- Cabré, M.F.; Solman, S.; Núñez, M. Regional climate change scenarios over southern South America for future climate (2080–2099) using the MM5 model. Mean, interannual variability and uncertainties. Atmósfera 2016, 29, 35–60. [Google Scholar] [CrossRef]
- González, J.; Velasco, R. Evaluation of the impact of climatic change on the economic value of land in agricultural systems in Chile. Chil. J. Agric. Res. 2008, 68, 56–68. [Google Scholar] [CrossRef]
- Stigler, S.M. Studies in the History of Probability and Statistics. XXXIV: Napoleonic statistics: The work of Laplace. Biometrika 1975, 62, 503–517. [Google Scholar] [CrossRef]
- Debnath, L.; Basu, K. A short history of probability theory and its applications. Int. J. Math. Educ. Sci. Technol. 2015, 46, 13–39. [Google Scholar] [CrossRef]
- Mazzonia, E.; Vazquez, M. Desertification in Patagonia. Dev. Earth Surf. Process. 2009, 13, 351–377. [Google Scholar] [CrossRef]
- Meinander, O.; Dagsson-Waldhauserova, P.; Amosov, P.; Aseyeva, E.; Atkins, C.; Baklanov, A.; Vukovic Vimic, A. Newly identified climatically and environmentally significant high latitude dust sources. Atmos. Chem. Phys. Discuss. 2021, 22, 11889–11930. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Wu, C.; Jardim, A.M.D.R.F.; Fang, M.; Yao, L.; Tang, X. Drought-induced stress on rainfed and irrigated agriculture: Insights from multi-source satellite-derived ecological indicators. Agric. Water Manag. 2025, 307, 109249. [Google Scholar] [CrossRef]
- Birrell, J.H.; Frakes, J.I.; Shah, A.A.; Woods, H.A. Mechanisms underlying thermal breadth differ by species in insects from adjacent but thermally distinct streams—A test of the climate variability hypothesis. J. Therm. Biol. 2023, 112, 103435. [Google Scholar] [CrossRef]
- Chevin, L.M.; Hoffmann, A.A. Evolution of phenotypic plasticity in extreme environments. Philos. Trans. R. Soc. B Biol. Sci. 2017, 372, 20160138. [Google Scholar] [CrossRef] [PubMed]
- Wadia, K.D.R.; Butler, D.R. Relationships between temperature and latent periods of rust and leaf-spot diseases of groundnut. Plant Pathol. 1994, 43, 121–129. [Google Scholar] [CrossRef]
- Ciliberti, N.; Fermaud, M.; Roudet, J.; Rossi, V. Environmental conditions affect Botrytis cinerea infection of mature grape berries more than the strain or transposon genotype. Phytopathology 2015, 105, 1090–1096. [Google Scholar] [CrossRef] [PubMed]
- Beniston, M. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys. Res. Lett. 2004, 31, L02202. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A review of the European summer heat wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Stott, P.A.; Stone, D.A.; Allen, M.R. Human contribution to the European heatwave of 2003. Nature 2004, 432, 610–614. [Google Scholar] [CrossRef] [PubMed]
- Matsueda, M. Predictability of Euro-Russian blocking in summer of 2010. Geophys. Res. Lett. 2011, 38, L06801. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Fasullo, J.T. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res. Atmos. 2012, 117, D17103. [Google Scholar] [CrossRef]
- Hoerling, M.; Kumar, A.; Dole, R.; Nielsen-Gammon, J.W.; Eischeid, J.; Perlwitz, J.; Chen, M. Anatomy of an extreme event. J. Clim. 2013, 26, 2811–2832. [Google Scholar] [CrossRef]
- Christidis, N.; Jones, G.S.; Stott, P.A. Dramatically increasing chance of extremely hot summers since the 2003 European heatwave. Nat. Clim. Change 2015, 5, 46–50. [Google Scholar] [CrossRef]
- Costa, R.L.; de Mello Baptista, G.M.; Gomes, H.B.; dos Santos Silva, F.D.; da Rocha Júnior, R.L.; de Araújo Salvador, M.; Herdies, D.L. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Lovino, M.A.; Müller, O.V.; Berbery, E.H.; Müller, G.V. How have daily climate extremes changed in the recent past over northeastern Argentina? Glob. Planet. Change 2018, 168, 78–97. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The central Chile mega drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2020, 40, 421–439. [Google Scholar] [CrossRef]
- Gulizia, C.N.; Raggio, G.A.; Camilloni, I.A.; Saurral, R.I. Changes in mean and extreme climate in southern South America under global warming of 1.5 °C, 2 °C, and 3 °C. Theor. Appl. Climatol. 2022, 150, 787–803. [Google Scholar] [CrossRef]
- Meseguer-Ruiz, O.; Ponce-Philimon, P.I.; Quispe-Jofré, A.S.; Guijarro, J.A.; Sarricolea, P. Spatial behaviour of daily observed extreme temperatures in Northern Chile (1966–2015): Data quality, warming trends, and its orographic and latitudinal effects. Stoch. Environ. Res. Risk Assess. 2018, 32, 3503–3523. [Google Scholar] [CrossRef]
- Mutz, S.G.; Scherrer, S.; Muceniece, I.; Ehlers, T.A. Twenty-first century regional temperature response in Chile based on empirical-statistical downscaling. Clim. Dyn. 2021, 56, 2881–2894. [Google Scholar] [CrossRef]
- Whan, K.; Zscheischler, J.; Orth, R.; Shongwe, M.; Rahimi, M.; Asare, E.O.; Seneviratne, S.I. Impact of soil moisture on extreme maximum temperatures in Europe. Weather Clim. Extrem. 2015, 9, 57–67. [Google Scholar] [CrossRef]
- Meehl, G.A.; Tebaldi, C.; Adams-Smith, D. US daily temperature records past, present, and future. Proc. Natl. Acad. Sci. USA 2016, 113, 13977–13982. [Google Scholar] [CrossRef]
- Huth, R.; Pokorná, L. Parametric versus non-parametric estimates of climatic trends. Theor. Appl. Climatol. 2004, 77, 107–112. [Google Scholar] [CrossRef]
- Schumacher, D.; Singh, J.; Hauser, M.; Fischer, E.; Seneviratne, S. Why climate models underestimate the exacerbated warming in Western Europe. Nat. Commun. 2023, 14, 6803. [Google Scholar] [CrossRef]
- Zhan, J.; McDonald, B.A. Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Mol. Ecol. 2011, 20, 1689–1701. [Google Scholar] [CrossRef]
- Donatelli, M.; Magarey, R.D.; Bregaglio, S.; Willocquet, L.; Whish, J.P.; Savary, S. Modelling the impacts of pests and diseases on agricultural systems. Agric. Syst. 2017, 155, 213–224. [Google Scholar] [CrossRef]
- Peralta-Maraver, I.; Rezende, E.L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 2021, 11, 58–63. [Google Scholar] [CrossRef]
- Gallegos, C.; Chevin, L.M.; Hodgins, K.A.; Monro, K. Predicting adaptation and evolution of plasticity from temporal environmental change. Methods Ecol. Evol. 2024, 16, 84–96. [Google Scholar] [CrossRef]
- González-Domínguez, E.; Caffi, T.; Ciliberti, N.; Rossi, V. A mechanistic model of Botrytis cinerea on grapevines that includes weather, vine growth stage, and the main infection pathways. PLoS ONE 2015, 10, e0140444. [Google Scholar] [CrossRef]
- Latorre, B.A.; Elfar, K.; Ferrada, E.E. Gray mold caused by Botrytis cinerea limits grape production in Chile. Cienc. Investig. Agrar. 2015, 42, 305–330. [Google Scholar] [CrossRef]
- Detka, J.; Jafari, M.; Gomez, M.; Gilbert, G.S. Machine learning vs. empirical models: Estimating leaf wetness patterns in a wildland landscape for plant disease management. Agric. For. Meteorol. 2025, 362, 110392. [Google Scholar] [CrossRef]
- Lichter, A.; Zhou, H.-W.; Vaknin, M.; Dvir, O.; Zutchi, Y.; Kaplunov, T.; Lurie, S. Survival and responses of Botrytis cinerea after exposure to ethanol and heat. J. Phytopathol. 2003, 151, 553–563. [Google Scholar] [CrossRef]
- Yin, X.; Kropff, M.J.; McLaren, G.; Visperas, R.M. A nonlinear model for crop development as a function of temperature. Agric. For. Meteorol. 1995, 77, 1–16. [Google Scholar] [CrossRef]
- Yan, W.; Hunt, L.A. An equation for modelling the temperature response of plants using only the cardinal temperatures. Ann. Bot. 1999, 84, 607–614. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Jones, J.W. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [PubMed]
- Pinto, M.; Torres, R.; Campillay-Llanos, W.; Guevara-Morales, F. Applications of proportional calculus and a non-Newtonian logistic growth model. Proyecciones 2020, 39, 1471–1513. [Google Scholar] [CrossRef]
- Campillay-Llanos, W.; Guevara, F.; Pinto, M.; Torres, R. Differential and integral proportional calculus: How to find a primitive for f(x) = (1/2) * π * e^(-(1/2) * x^2). Int. J. Math. Educ. Sci. Technol. 2021, 52, 463–476. [Google Scholar] [CrossRef]
City | Slope (a) | Coef. (b) | 2024 | 2025 | 2026 | Prob (%) |
---|---|---|---|---|---|---|
Santiago | 0.033913 | −33.32 | 35.32 ± 1.30 | 35.35 ± 1.30 | 35.39 ± 1.30 | 70 |
Talca | 0.059391 | −83.92 | 36.29 ± 1.20 | 36.35 ± 1.20 | 36.41 ± 1.20 | 75 |
Chillán | 0.14952 | −265.58 | 37 ± 2.00 | 37.19 ± 2.00 | 37.34 ± 2.00 | 87 |
Los Ángeles | 0.21096 | −388.54 | 38.44 ± 2.80 | 38.65 ± 2.80 | 38.86 ± 2.80 | 83 |
City | Slope (a) | Coef. (b) | 2024 | 2025 | 2026 | Prob(%) |
---|---|---|---|---|---|---|
Santiago | 0.10004 | −166.87 | 35.6 ± 1.10 | 35.7 ± 1.10 | 35.8 ± 1.10 | 83 |
Talca | 0.069304 | −104.02 | 36.2 ± 1.70 | 36.31 ± 1.70 | 36.38 ± 1.70 | 83 |
Chillán | 0.13974 | −245.50 | 37.33 ± 2.30 | 37.47 ± 2.30 | 37.61 ± 2.30 | 75 |
Los Ángeles | 0.13161 | −228.06 | 38.31 ± 2.84 | 38.45 ± 2.84 | 38.58 ± 2.84 | 83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campillay-Llanos, W.; Ortega-Farías, S.; González-Colville, P.; Díaz, G.A.; López-Flores, M.M.; López-Olivari, R. Modeling the Effects of Extreme Temperatures on the Infection Rate of Botrytis cinerea Using Historical Climate Data (1951–2023) of Central Chile. Agronomy 2025, 15, 608. https://doi.org/10.3390/agronomy15030608
Campillay-Llanos W, Ortega-Farías S, González-Colville P, Díaz GA, López-Flores MM, López-Olivari R. Modeling the Effects of Extreme Temperatures on the Infection Rate of Botrytis cinerea Using Historical Climate Data (1951–2023) of Central Chile. Agronomy. 2025; 15(3):608. https://doi.org/10.3390/agronomy15030608
Chicago/Turabian StyleCampillay-Llanos, William, Samuel Ortega-Farías, Patricio González-Colville, Gonzalo A. Díaz, Marlon M. López-Flores, and Rafael López-Olivari. 2025. "Modeling the Effects of Extreme Temperatures on the Infection Rate of Botrytis cinerea Using Historical Climate Data (1951–2023) of Central Chile" Agronomy 15, no. 3: 608. https://doi.org/10.3390/agronomy15030608
APA StyleCampillay-Llanos, W., Ortega-Farías, S., González-Colville, P., Díaz, G. A., López-Flores, M. M., & López-Olivari, R. (2025). Modeling the Effects of Extreme Temperatures on the Infection Rate of Botrytis cinerea Using Historical Climate Data (1951–2023) of Central Chile. Agronomy, 15(3), 608. https://doi.org/10.3390/agronomy15030608